
© Daffodil international university

Internship report on:

Online academic information Hub (OAIHUB)

&

Daffodil Idea Hunt

Submitted by:

Jashim Uddin Ahmed

ID:181-16-279

Department of Computing and Information System (CIS)

Supervised by:

Nayeema Rahman

Senior Lecturer, Department of Computing and Information System

(CIS)

Daffodil international university

© Daffodil international university

APPROVAL

This Project title “Online academic information hub (OAIHUB)” and “Daffodil Idea

Hunt”, Submitted by Jashim Uddin Ahmed, ID No: 181-16-279 to the Department of

Computing & Information Systems, Daffodil International University has been

accepted as satisfactory for the partial fulfillment of the requirements for the degree of

B.Sc. in Computing & Information Systems and approved as to its style and contents.

The presentation has been held on 19-07-2020.

BOARD OF EXAMINERS

Mr. Md Sarwar Hossain Mollah Chairman

Assistant Professor and Head

Department of Computing & Information Systems

Faculty of Science & Information Technology

Daffodil International University

Ms. Nayeema Rahman Internal Examiner

Sr. Lecturer

Department of Computing & Information Systems

Faculty of Science & Information Technology

Daffodil International University

© Daffodil international university

Mr. Minhaj Hosen Internal Examiner

Lecturer

Department of Computing & Information Systems

Faculty of Science & Information Technology

Daffodil International University

Dr. Saifuddin Md. Tareeq External Examiner

Professor

Department of Computer Science and Engineering

Dhaka University, Dhaka

© Daffodil international university
i

Acknowledgement

In the name of Allah, Most Gracious, Most Merciful. All praise is due to Allah, the Lord

of the Worlds. For his blessings I successfully complete the project.

To our Project Supervisor, Nayeema Rahman Senior lecturer, Daffodil International

University. First of all, I would like to thank the teacher who has always been by my

side like a shadow and has always inspired me, with his precious time.

Also, I would like to express my sincere gratitude to my family members and other

teachers in my department especially my parents who are praying a lot for me to

complete this project. I have received a lot of support from the teachers in my

department during my project. I would like to say thanks to my big brothers and friends

on campus, I could not have done this project without their support.

© Daffodil international university
ii

Executive Summary

My six-month internship program work was with Daffodil international academy. I was

involved in this as a software developer intern with their intern team name

“DIAINTERNTEAM”. This report will cover some background information on the

projects was involved in as well as details on how the project was developed. The

report also states that which academic courses and projects helped me in overall in

internship experience so far.

At the very opening of the internship work I prepared several learning goals, which I

wanted to learn about a lot of things. So, many projects they are developing at that

time when I was joined there as an intern. I have worked in “OAIHUB (online

academic information HUB)” which is one of their major projects and I had a

significant role in this project. At the same time, I worked with a single projector called

“DAFFODIL IDEA HUNT”. My task was to do following:

• Understand and working with spring boot framework and Thyme leaf.

• Understand and working with GIT & Rest API.

I obtain so many new technical skills though my work. I acquire new knowledge in front

end development using thyme leaf. I also brushed my HTML5, CSS3, BOOTSTRAP4,

JavaScript, java skills while working there. I also develop the “Daffodil Idea Hunt” web

application using PHP.

This project is going to develop a web-based system name “DAFFODIL IDEA HUNT”.

This is a web application all users are registration here. This system is allowing all

user to share their any kind of idea (Technical or Non-Technical). Admin can manage

all user file which is uploaded by user. The special feature of this system is text

processing system. In this project I implement database to store end user data and

project idea information. The innovation Idea Award policy is intended to provide

guidelines on how to evaluate, award and recognize academic along with non-

academic, staff to Daffodil Family with best innovation idea that dent positive impacts

on the development of the family and national as well.

This internship work also helps me to develop research and analysis skills. That work

helps me to enrich my code documentation knowledge too. This report shows

© Daffodil international university
iii

advantages of using spring boot framework and my working capabilities and detailed

overview of that project where I was involved.

© Daffodil international university
iv

Table of Contents

Chapter 1 - Introduction ... 1

1.1 Purpose ... 2

Chapter 2 - Initial Study .. 3

2.1 OAIHUB ... 3

2.1.1 Background of the project .. 3

2.1.2 Problem Area ... 3

2.1.3 Possible solution ... 3

2.2 DAFFODIL IDEA HUNT ... 4

2.2.1 Background of the project .. 4

2.2.2 Problem Area ... 4

2.2.3 The expected solution ... 4

2.2.4 Feasibility analysis .. 5

2.2.5 The motivation and objectives of the project .. 5

2.2.6 Contribution ... 5

Chapter 3 - Literature Review ... 6

3.1 Discussion on problem domain based on published articles 6

3.2 Discussion on problem solutions based on published articles 7

3.3 Comparison of three/four leading solutions ... 7

3.3.1 Best features .. 7

3.3.2 Limitations ... 7

3.4 Recommended approach ... 8

Chapter 4 - Methodology .. 9

4.1 What to use ... 9

4.2 Why to use... 11

4.3 Sections of methodology ... 11

4.3.1 Transparency ... 12

4.3.2 Inspection ... 12

4.3.3 Adaption ... 12

© Daffodil international university
v

4.4 Implementation plans ... 13

Chapter 5 - Planning ... 14

5.1 Project Plan ... 14

5.1.1 Management Plan / Work Breakdown Structure (WBS) 14

5.1.2 Time Duration / Time Boxing... 15

5.1.3 Gantt Chart ... 16

5.2 Test Plan .. 16

5.2.1 Required tests .. 16

5.2.2 Test Case .. 18

5.2.3 User acceptance test plan ... 19

Chapter 6 - Foundation ... 20

6.1 OAIHUB ... 20

6.1.1 Overall Requirement List .. 20

6.1.2 What Technology to be implemented (Client/Web/Standalone) 21

a. Technical Languages ... 21

b. Databases Systems .. 21

c. Technologies ... 22

d. Framework... 22

e. Build tool ... 22

f. Server Platforms ... 22

6.2 DAFFODIL IDEA HUNT ... 22

6.2.1 Requirement list .. 22

a. List of functional requirements .. 22

b. List of system-wide non-functional requirements .. 23

Chapter 7 - Exploration ... 24

7.1 Old Full System Use Case .. 24

Description: .. 25

7.2 Old Full System Activity Diagram .. 26

Description: .. 27

© Daffodil international university
vi

7.3 Prototype of new system (OAIHUB) .. 28

Description: .. 28

7.4 Diagram of the overall architecture (Daffodil Idea Hunt) 29

Chapter 8 - Engineering .. 30

8.1 New System Modules ... 30

8.2 Use Case ... 31

Description: .. 32

8.3 Class Diagram ... 33

Description: .. 38

8.4 ERD Diagram ... 39

Description: .. 39

8.5 Sequence Diagram .. 41

a. As an admin .. 41

Description: .. 42

b. As a moderator ... 43

Description: .. 43

c. As a user ... 44

Description: .. 45

8.6 Use Cases of Daffodil Idea Hunt .. 45

8.7 ERD Diagram of Daffodil Idea Hunt ... 46

8.8 Activity diagram of Daffodil Idea Hunt .. 47

Chapter 9 - Deployment / Development ... 48

9.1 OAIHUB ... 48

9.1.1 User Management ... 48

a. User Class ... 48

b. User Dao Class ... 53

c. User Repository Class .. 54

d. Role Class ... 55

e. Role Dao Class .. 56

© Daffodil international university
vii

f. Role Repository Class .. 57

g. CustomeUserDetailsService Class .. 58

h. UserDashController Class .. 58

i. userController Class ... 59

j. Signup Controller Class ... 61

k. Role Controller Class ... 64

l. HomeController Class .. 65

m. AdminDashController class .. 66

9.1.2 Configuration ... 66

a. Login Security Class .. 66

b. WevMvcConfig Class .. 69

9.1.3 Generic Interface ... 69

a. This interface is used to hold all similar methods & signature in one place &

use them in all the necessary classes & codes where it needs to be used 69

9.1.4 Exam Management .. 70

a. Exam Class.. 70

b. Exam Repository... 71

c. Exam Dao .. 72

d. Exam Controller .. 73

e. Comments ... 75

f. Child Comments ... 77

g. Comment Repository .. 79

h. Child Comments Repository .. 79

i. Child Comments Dao .. 81

j. Comment Controller ... 82

9.1.5 Forum Code sample .. 87

a. Post Controller .. 87

b. Feedback of threads controller .. 89

c. Thread comments Controller ... 90

© Daffodil international university
viii

d. Post / thread DAO class ... 91

e. Feedback of posts .. 92

f. post comment Dao .. 93

g. Post Class ... 95

h. Post Comment Model Class ... 101

i. Post feedback model class .. 103

j. Post feedback repository ... 105

k. Post repository ... 105

l. Post comment ... 105

9.1.6 Voting code samples ... 105

a. Votes Controller .. 105

b. Vote Types Controller ... 107

c. Suggested Edit Votes ... 108

d. Suggested edit votes Dao .. 109

e. Votes Dao .. 110

f. Vote types Dao .. 111

g. Suggested edit model class ... 112

h. Votes Model class ... 115

i. Vote type model class .. 118

9.2 DAFFODIL IDEA HUNT ... 120

9.2.1 The programming language and framework which I choose and why 120

9.2.2 Details paragraph about each working function ... 120

Chapter 10 - Testing .. 127

10.1 OAIHUB ... 127

10.1.1 Unit testing .. 127

10.1.2 Integration Testing: ... 131

10.2 DAFFODIL IDEA HUNT ... 134

10.2.1 Unit, System and module Testing outcome and errors 134

10.2.2 Interface Testing: .. 134

© Daffodil international university
ix

10.2.3 Performance Testing: .. 134

10.2.4 Usability Testing: .. 135

10.2.5 Black Box Testing: .. 137

10.2.6 White Box Testing: .. 137

10.2.7 Identify Possible Test Scenarios: ... 137

a. Test Case for Registration ... 138

b. Test Case for login .. 139

10.2.8 Quality Assurance technique ... 140

Chapter 11 - Implementation .. 141

11.1 Training ... 141

11.1.1 Assess training needs ... 141

11.1.2 Set organizational training objectives .. 141

11.1.3 Create training action plan .. 142

11.1.4 Implement training initiatives.. 142

11.1.5 Evaluate & revise training ... 142

11.2 Big Bang .. 142

Chapter 12 - Critical Appraisal and Evaluation ... 144

12.1 Objective that could be met ... 144

12.1.1 Success rate against each objective .. 145

12.1.2 How much better it could be done .. 145

12.1.3 How better are the features of the solution? ... 145

12.2 Objectives totally not met / touched .. 146

12.2.1 OAIHUB .. 146

a. Why it could not be touched .. 146

b. What could have been done ... 146

12.2.2 DAFFODIL IDEA HUNT .. 147

a. The requirements that cannot be implemented completely and how I

overcome them .. 147

Chapter 13 - Conclusion ... 148

© Daffodil international university
x

13.1 OAIHUB ... 148

13.1.1 Conclusion ... 148

13.1.2 Summary of the project .. 148

13.1.3 Goal of the project ... 149

13.1.4 Success of the project .. 149

13.1.5 Value of the project ... 149

13.2 DAFFODIL IDEA HUNT ... 150

13.3.1 Strengths and weakness .. 150

13.3.2 Future extension scopes .. 150

13.3.3 Restate contribution precisely ... 150

13.3 My experience ... 150

References .. 152

Plagiarism Report: ... 153

© Daffodil international university
xi

Figure 1: Agile Methodology ... 9

Figure 2: Sprint ... 10

Figure 3: Scrum Framework .. 11

Figure 4: Three pillars of Scrum ... 12

Figure 5: WBS Chart. ... 15

Figure 6: Time Boxing .. 15

Figure 7: Gantt Chat ... 16

Figure 8: Test Case table ... 19

Figure 9: User acceptance test plan ... 19

Figure 10: Old Full System Use Case ... 24

Figure 11: Old Full System Activity Diagram ... 26

Figure 12: Architectural design: MVC architecture ... 28

Figure 13: Overall architecture of this web application. 29

Figure 14: Use case Diagram .. 31

Figure 15: Full system Class Diagram .. 37

Figure 16: ERD Diagram .. 39

Figure 17: Sequence Diagram for admin .. 41

Figure 18:Sequence Diagram for moderator ... 43

Figure 19: Sequence Diagram for user ... 44

Figure 20: Use Cases of Daffodil Idea Hunt ... 45

Figure 21: ERD Diagram of Daffodil Idea Hunt .. 46

Figure 22: Activity diagram of Daffodil Idea Hunt ... 47

Figure 23: This is the login page... 121

Figure 24: Temporary block user cannot login. .. 121

Figure 25: Student registration. .. 122

Figure 26: Employee registration.. 122

Figure 27: Dashboard page. .. 123

Figure 28: View All user and student. ... 123

Figure 29: Admin can view every user’s profile individually. 124

Figure 30: Admin can manage every user role and permission. 124

Figure 31: Admin can add category of idea and sub category of idea. 125

Figure 32: User can share their idea. .. 125

Figure 33: User can view his idea. .. 126

© Daffodil international university
xii

Figure 34: Admin can view all idea which was uploaded and have right to give

any kind of status. .. 126

Figure 35: In this graph we can see that overall performance report. 135

Figure 36: The usability test report of this site. ... 136

© Daffodil international university
1

Chapter 1 - Introduction

In my entire internet time, I have developed two web application projects. These two

projects are educational that support the any king of academy. One of these projects

is completely developed by me alone which is “DAFFODIL IDEA HUNT”, and the

other one I developed “OAIHUB (online academic information HUB)” by working

with my teammates. I will describe my complete documentation with these two web

applications.

At present, people are usually depending on modern technology for their daily

activities. But the education system in Bangladesh has not been digitized with modern

technology yet. Education is one of the most important parts where we need to improve

ourselves. There is a lot of gaps in our education system. There is no site where people

can get the initial information for their children’s admission or anything else. People

are suffering many problems for the information gap from the institution. The guardians

and students don’t know about the procedure for their admission to any school, college

or university.

So, we want to develop a system where students can get their necessary educational

information. The system will contain all the information of all the educational

institutions from school to university. They can know about the cost of the individual

school, college or university and the procedure for admission to the specific institute.

They can know about the facility of the institute, ranking of their desired institute. Each

and everything information will be uploaded in this system so that students and

guardians can be benefitted. The system will also contain all the public exam questions

and answers. Students can share any questions and answer in this system and there

are an admin and moderator who moderate the user activity, give them access to

share questions or any other. There is a forum where they can discuss the questions

or any queries. Any abusive post will be moderated by the moderator. Students can

get any update information by this system. So, this system will be helpful for the

students.

© Daffodil international university
2

1.1 Purpose

The documentation below contains a detailed discussion about the workflow of the

project. The purpose of the documentation is to clear the procedure of the project to

any new developer who will be working with this system. As there will be a number of

functionalities in this system which might be tough to understand for some developers.

This documentation will help them to adopt the system with proper knowledge about

the system. There will be some detailed diagrams about the system which will help the

user to understand the workflow of the system. The interfaces of different

functionalities will be provided here for a better understanding of the developers. As

we need to run some testing to find out if the system is running properly, the testing

details with the result will the documented here for the reference. This documentation

will clarify the design of the system and also the reason behind the way the system is

designed. This document contains the algorithm used for the system with proper

justification. It also contains the uses of the database. It clarifies the design of the

database, the entity-relationship model and how the relations are working here. We

can consider this documentation as a clear view of the system. The documentation

part is one of the most important parts of the project. As the system will be developed

for public uses so the user interface and the functionalities must be explained here so

that the system remains understandable to all. With the documentation, the

functionalities and designing of the system may not be understood by the users of the

system. For the reason, proper documentation is always needed for the project.

© Daffodil international university
3

Chapter 2 - Initial Study

2.1 OAIHUB

2.1.1 Background of the project

In our country admission coaching business plays a significant role when a time

periods comes to our students to get admission in school, college and university. They

are facing so many problems at that moment. At first, they are suffering from

information lacking about that institutions. So many students are unable to collect

information from their preferred institutions by visiting that institutions. Sometimes they

missed their admission test due to lack of valid information. Students can’t decide that

moment which educational institute is good for them. Most students don’t know about

payment scheme of an educational institutions. OAIHUB web application will capable

to reduce all of these problems in future. It allows user to found all information from

remote home.

2.1.2 Problem Area

Every year in our country students are facing so many problems when they are going

to get admitted into a school, college, university, and national university. The student

doesn’t know which school, college, university and the national university is good for

him. which documents are needed if they want to get admitted to their favorite

institution? They also don’t know about their payment system and payment amount.

They also don’t have any concept about their admission test exam questions and so

many important information about their preferred institutions. Sometimes lack of

proper information they missed their admission test exam.

2.1.3 Possible solution

After analyzing all problems, I saw in our country students are facing so many

problems when they are going to take admission to any educational institute. To

reduce all these problems OAIHUB web application is the best possible solution. This

system brings all academic information to its users. User also can discuss about their

academic problems by creating post with other users. A user also can judge or provide

© Daffodil international university
4

a solution to a post via creating a comment. User can view previous admission test

question of various year. They also can participate in those old admission test exams

to improve their skills. User never miss any notification of any admission test what user

wants to participate. In this system user also can view their educational institute rank

and other important information also. OAIHUB also a great feature for pro users only

which is a paid feature of this system. By using this feature user will get IELTS, GRE,

SAT, etc. questions and answer for that questions and they also participate in online

mock test exams.

2.2 DAFFODIL IDEA HUNT

2.2.1 Background of the project

In the project I have developed which is “Daffodil Idea Hunt”. I developed this project

as a web base application. In this application is developed for all staff/employee and

student of daffodil family. In the project administrator can control all the users of this

system. User can do their job in organized way and share their idea through this web

application. The administration can control all the submitted idea which was shared by

user.

2.2.2 Problem Area

Idea is one of the biggest challenges of the 21st century. Everything is already made

in this century but the biggest problem creating something new and creative,

something which is different. Each of us strive to solve our everyday obstacles and all

we are doing is not anything new, repeating old things over and over again. We are

bound in a circle and We have to get out of this circle and develop our thinking.

2.2.3 The expected solution

I have developed this project for an organization “Daffodil Idea Hunt” to solve this

problem. In their different types of users are share their idea through this system. If a

user wants to submit their idea than they are use this system. In there they analysis

all the idea which is submitted by the user. After than they will find out the best thing

and give reward the user who submitted the idea.

© Daffodil international university
5

2.2.4 Feasibility analysis

A thorough understanding of all aspects of a project, concept or plan to be aware of

any potential problems that may arise during the project implementation.

Executive summary: Formulate a description that describes the project, plan, or

service details.

Technical Feasibility: In this project I need to use some of child organization

information for verify the actual user.

Operational: The viability of a plan being implemented and run in this section. E.g. In

there I will implement the data which I collected before.

Findings and recommendations: Divide into technology, organization, and financial

sub-sets.

2.2.5 The motivation and objectives of the project

I'm encouraged to do it because it's so unique. To developed this project, I have

learned about many new things and apply them into this system. The biggest

motivation is to developed this project is, it is the first time I'm working with a big

organization.

2.2.6 Contribution

The organization will be profitable with this system, because the innovation idea will

the organization to grow up. This will increase the market value of the organization.

The organization will be able to generate new ideas day by day from its staff and

student.

© Daffodil international university
6

Chapter 3 - Literature Review

3.1 Discussion on problem domain based on published articles

In our country people suffer from various kinds of problems in education sector.

• Most of the people does not know how to accommodate with the education

system for their child.

• A father doesn’t know which school will be suitable for his child and cost friendly

for him and also well facilitated for both of them based on their situation.

• Sometimes people don’t even know how much money to take out for admission

fees.

• Sometimes some institution may show people that they’re offering very

affordable cost for people but later with time they demand too much high price

for completion of their child’s study. Which creates a heavy pressure on

parents.

• When it comes to the question which college will be good and what type of

study a student has to go through nobody knows the proper one.

• Nobody can answer what kind of specific preparation a student should take as

there are thousands of coaching centers and book publishers offering their own

methodologies which only leads to their own business purposes. Students are

greatly suffered there.

• Students cannot find or have to buy previous question banks for high prices for

taking preparation in the exams.

• Model test costs are very much high depending on coaching centers

advertisements “Getting A+ in God Speed” or “Getting admitted into desired

institution with zero study” which is not affordable for all of the students.

• Students who have just graduated don’t know which companies to apply based

on their skills.

• New graduates can’t give proper model tests for their specific job exams or

interviews.

• Students cannot find answers of question banks, cannot take suggestion or

teachings sometime to have the best answer for his problem.

© Daffodil international university
7

• We do not have a discussion hub of our country for educational discussion or

working purpose.

3.2 Discussion on problem solutions based on published articles

Depending on all these problems various people came up with various solutions.

▪ Institutes started their own terms of marketing with benefits. Giving various

offers to the students.

▪ A lot of mini coaching centers for school, college, university admission has

created.

▪ Each and individual coaching centers had specified a specific publication of

books to read.

▪ People started using various social media sites to find information about

institutions and resources to study for giving exams.

▪ No specific Solutions has made to solve all the above-mentioned problems.

▪ Students with low lost budgets are missing thousands of chances and facilities

to shine their life.

▪ With the digital technology people started learning accordingly how to cope up

with all of this term by term.

3.3 Comparison of three/four leading solutions

3.3.1 Best features

▪ Digitization has made people’s life easier. People can easily access to their

required information though they have to surf for it too much.

▪ People can rely on specific institutes for getting admitted into them.

▪ Various information can be found on various places on internet about the

institutions, course curriculum, cost and a lot more.

▪ Some question answer sheets of various years can be found on internet.

3.3.2 Limitations

▪ Information are lack of accuracy. Proper information cannot be found.

© Daffodil international university
8

▪ Different sources tell different information. Questions and answers are not

found with accurate guideline or answers.

▪ Job applications or advertisements are not accurate.

▪ People do not have the ability to speak with the specialists for better solutions.

3.4 Recommended approach

▪ All the educational information and related things should be brought together.

▪ All students should be treated equally.

▪ Parents should know what they are doing. Where their children are getting

admitted, is it affordable and maintaining for the parents.

▪ Students must have the ability to decide where they want to study and grow

their future career.

▪ All educational equipment should be very much affordable so that no one

misses their rights.

▪ Students can give their model test for very much affordable cost for getting

prepared for the exams or jobs.

▪ A place where all the legal information will be found about each and every

educational institution to make decisions for the children. Where People can

compere between the institutions and decide which will be better for their

children and affordable for the parents.

▪ Nothing should be compromised when it’s the question of education and the

future of our country.

▪ Whenever any student is asking a question or in a problem will have the ability

to share it in somewhere where all kinds of specialists will be available to give

solutions.

▪ Nobody will miss their education rights to study and brighten their future.

© Daffodil international university
9

Chapter 4 - Methodology

Methodology is a set of procedures or a particular procedure. It helps to provide

appropriate guideline principle for developing an application or system.

4.1 What to use

In software development site, there are so many methodologies for developing an

application. Agile is one of them. Actually, agile is an evolutionary project management

approach under which requirements and solution evolve through the collaborative

effort of self-organizing/ cross-functional teams and their customer/end users.

Figure 1: Agile Methodology

it is a project management methodology what uses small development cycles name

“sprints” to attention on continues improvement in the development of an application

or a system.

© Daffodil international university
10

Figure 2: Sprint

In this project development our team has been conducted with scrum framework of

agile. This framework within which people can address complex adaptive problems,

while productively and creatively delivering products of the highest possible value.

Scrum is lightweight, simple to understand and difficult to master

© Daffodil international university
11

Figure 3: Scrum Framework

4.2 Why to use

The reason of using Scrum framework is given below:

• Higher productivity.

• Better-quality products.

• Reduced time to market.

• Improved stakeholder satisfaction.

• Better team dynamics.

• Happier employees.

4.3 Sections of methodology

There are three pillars of Scrum.

© Daffodil international university
12

Figure 4: Three pillars of Scrum

4.3.1 Transparency

Significant aspects of the process must be visible to those responsible for the

outcome. Transparency requires those aspects be defined by a common standard so

observers share a common understanding of what is being seen.

4.3.2 Inspection

Scrum users must frequently inspect Scrum artifacts and progress toward a Sprint

Goal to detect undesirable variances. Their inspection should not be so frequent that

inspection gets in the way of the work. Inspections are most beneficial when diligently

performed by skilled inspectors at the point of work.

4.3.3 Adaption

If an inspector determines that one or more aspects of a process deviate outside

acceptable limits, and that the resulting product will be unacceptable, the process or

the material being processed must be adjusted. An adjustment must be made as soon

as possible to minimize further deviation.

© Daffodil international university
13

4.4 Implementation plans

Agile implementation is a form of project management that works in small increments

and well suited to projects that could be become irreverent once delivered, especially

useful in software development. The key to the agile plan is that it provides flexibility

for changes to the product as it continues to be developed. Scrum is a framework of

agile what delivering product iteratively and incrementally in a timebox fashion. This is

simple illustration of what the scrum implementors and others define it, moving with it.

© Daffodil international university
14

Chapter 5 - Planning

5.1 Project Plan

Here I’m going to show the entire internship work planning in a way that the internship

work is being done by me. The whole work is divided in small pieces and those are

done within the fixed period of time. In this phase a specific task when will be started

and when will be end those things are defined.

5.1.1 Management Plan / Work Breakdown Structure (WBS)

WBS (work breakdown structure) is a tool what make the work more manageable and

approachable. This approach helps to complete all the task within fixed time duration.

The WBS (work breakdown structure) chart of my whole internship work is given

below:

Serial no. Task title Start date End date
Durations

(Days)

1 Introductions 01.01.20 02.01.20 2

2 Initial study 03.01.20 09.01.20 7

3 Literature review 10.01.20 14.01.20 5

4 Methodology 15.01.20 18.01.20 4

5 Planning 19.01.20 24.01.20 5

6 Foundation 25.01.20 30.01.20 6

7 Exploration 01.02.20 04.02.20 5

8 Engineering 05.02.20 09.02.20 5

9 Deployment 10.02.20 01.03.20 20

© Daffodil international university
15

10 Testing 02.03.20 11.03.20 12

11 Implementation 12.03.20 21.03.20 12

12 Critical Appraisal and Evaluation 22.03.20 28.03.20 7

13 Conclusion 29.03.20 30.03.20 2

Total 90 days

Figure 5: WBS Chart.

5.1.2 Time Duration / Time Boxing

The whole system is being done with agile methodology. All the tasks are iterative in

this approach. Timeboxing is one of the useful parts for this project management

approach (scruminc, 2019). In this timeboxing process that we follow shown here

below:

Figure 6: Time Boxing

This is one of the critical components of a good scrum. Sprint used for utilize the length

of the project. Sprint planning is actually a meeting what timeboxed 8 hour or less for

a one month. Daily scrum process is actually a timebox for 15 minutes per day what

helps to synchronize teams’ activities. Sprint review also a time boxing to adapt the

© Daffodil international university
16

backlog based on feedback. Sprint retrospectives is an event what inspect itself

identifies processes.

5.1.3 Gantt Chart

This chart shows activity schedule of the projects and the time duration of specific

tasks of the projects. This thing is very important for developing a project. Gantt chart

of this projects is given below:

Figure 7: Gantt Chat

5.2 Test Plan

A test plan is a list of documents which is describes scope and activities for the

software testing. It is the foundation on which to properly test any software / product

within a project. Amongst other things, it identifies test objects, the features to be

tested, the testing tasks, which will do for each task, the test environment, the test

design methods and the standards to be used for entry and exit, intendency of the

tester and the rationale for their choice and any risks that necessitate contingency

planning. It is a record of the procedure of planning tests. (test-plan, 2020)

5.2.1 Required tests

There are many types of testing methods and techniques that we will use here in

stages. We will test our application here using different testing methods. There are lots

© Daffodil international university
17

of testing categories for testing web application but in this section, I have followed

some popular and efficient testing methods for test this web application. By following

these I have fully tested this web application. The types of tests that web application

testing should focus on are described below. (guru99, 2020)

a. Unit Testing

Unit Testing is a type of web application testing where a web application tests

individual units or components. The persistence of the application code is to validate

that each unit performs as predictable. This testing is completed by developers

throughout the development of an application. This test separate and verify the

completeness of a unit of code. A unit might be a function, method, procedure, module,

or object of its own (unit-testing-guide, 2020).

b. Integration Testing

System Integration Testing is described as a kind of web application testing performed

in a server and system environment to validate the whole application behavior. It is

testing which is steered out on a complete, integrated application to assess

compliance of the system with its quantified requirement (system-integration-testing,

2020).

c. Module Testing

This testing focuses mainly on testing web application’s programs or sub-program

modules, relatively this testing the entire web application at once. This testing in

software engineering is very advantageous and at all times suggested since it is very

easy to identify, understand and fix the faults and errors at the level of the segment

rather than fix that at the section of the application. The main goal of this testing is to

confirm that the module is completely tested and functional to contribute in Application

Testing (softwaretestingclass, 2020).

d. Performance Testing

“OAIHUB” Is a web application, In the situation of web development, performance

testing includes pretending how an application runs through a specific circumstance

by consuming the software tools. Measurable performance testing is response time

when qualitative testing is about the scalability of this site, stability and interoperability

© Daffodil international university
18

of this application. Performance testing of this web application allows to identify issues

and improve complete performance, which can lead to develop the user experience

(UX) and increased expediency. This testing can expose many common problems,

like bottlenecks (keycdn, 2020).

e. Security Testing

This testing is a category of testing which is reveals vulnerabilities, threats, risks in this

web application and prevents malicious attacks. The reason of this tests is to finding

all possible loopholes and weaknesses that could outcome in information loss,

revenue loss etc. The objective of this testing is to finding the threats and measure its

potential vulnerabilities, so that the application does not stop working. It also helps to

notice all possible security risks inside the application and helps to solve these

problems (security-testing, 2020).

5.2.2 Test Case

Mainly test case is a set of rules or variables by which a tester will determine that

whether a system meets all the requirements of this web application or is functioning

acceptably. This can also help to finding problems in an application’s requirements.

Test Priority: Test Execute by:

Unit test No: Test Execute Date:

Test case:

Objective:

Data Source:

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

© Daffodil international university
19

01

02

Figure 8: Test Case table

5.2.3 User acceptance test plan

User Acceptance Testing (UAT) it can be defining a process that the application is

delivered to customer/client in one-word direct user, they use the application for a

specified period of time and finding the problem of the web application.

Unit test No: Test Execute User Name:

Test case: Test Execute User Role:

Objective:

Data Source:

Pre-condition:

Post-condition:

Case

No.
Steps

Result
Status

(Pass/Fail)
Comments Actual

result

Expected

result

01

02

Figure 9: User acceptance test plan

© Daffodil international university
20

Chapter 6 - Foundation

6.1 OAIHUB

6.1.1 Overall Requirement List

To Build the preliminary system we need following things to be implemented for

constructing the project. The basic requirements will probably able to cut out the edge

of the project which has been planned out. The requirements which has been analyzed

for so long to develop this system will going to be cover maximum objective

requirements of the proposed system. Here is all the overall requirement list given

below:

▪ To register & save new user

▪ To register & save new moderator

▪ To register & save new university moderator

▪ To give control of the whole system in one hand (Admin)

▪ To register & save pro user

▪ To upload and download files via specific users

▪ To upload verified question & answer sheet by moderators

▪ To Upload & view institute details

▪ Compare between institutes details

▪ View & edit user profile

▪ View & edit moderator profile

▪ View & edit pro user profile

▪ View & edit university moderator profile

▪ To register normal registered user as pro user through payment

▪ Pro user has access to most of the things

▪ Pro user can view & download question – answer sheets

▪ Pro user can give model tests

▪ Pro user can apply for model tests

▪ Pro user can apply for specific institutes online

▪ Education board’s various types of exam routines will be shown in the notice

board

▪ UGC notices will be shown through moderators.

© Daffodil international university
21

▪ Institute’s over all details like cost, facilities, study quality, admission details

everything will be shown

▪ A discussion forum or system is needed

▪ Every user, requirement-based moderators, pro users, will be able to post the

discussion topics as threads

▪ Other users can comment under those post.

▪ Important threads can be upvoted via rating system

▪ Threads will be attached with tags to make it retable to specific topics

▪ Model tests will be examined and moderated via top notch teachers.

▪ Specific thread publisher names will be visual individually

▪ Specific comment publisher names will be viewed

▪ Every thread will be viewed by time and date.

▪ Comments under a thread will be viewed by date and time. Important file will

be able to uploaded through users, pro users in the threads e.g. snapshots,

code snippets, word docks, images, and many more.

▪ A strong secure database system is needed to store all these information part

by part and sequentially

▪ All specific details will be analyzed and saved via the system.

6.1.2 What Technology to be implemented

(Client/Web/Standalone)

The technologies and languages which are going to be implemented in this system to

develop the proposed system are given below:

a. Technical Languages

Java, JavaScript, AJAX, XHTML, CSS, Json, JSP, JSTL, HTML, Codemix, NodeJS,

Bootstrap, jQuery,

b. Databases Systems

MySQL, Tomcat, JDBC,

© Daffodil international university
22

c. Technologies

ORM (Object Relational Model) tool, Hibernate, REST API, Restful API, Data JPA,

Spring Boot, Spring Security, Spring Boot Dev tools,

d. Framework

Spring, Thyme Leaf

e. Build tool

Maven, Gradle

f. Server Platforms

Daffodil Web Server Storage

6.2 DAFFODIL IDEA HUNT

6.2.1 Requirement list

a. List of functional requirements

User details:

▪ Add employee: This system will allow to add employee.

▪ Add Student: This system will allow to add student.

Role management: In their admin can manage the role of user.

Login: Login page for admin, staff/employee and student.

Dashboard: See personal activity report on the dashboard.

User authentication: In the first login user need to admin permission.

View user: In their admin can see all Staff and employee user as well as student.

Block & Unblock: Admin can block & unblock faculty user as well as student.

File upload: Admin and faculty member can upload file (login require).

© Daffodil international university
23

Category:

▪ Add category: Admin can add any kind of category.

▪ Add sub category: Admin can add sub category under a category.

Report: Admin can see the full system birds eye view.

Search: Admin can search the any user.

Download file: Admin can download uploaded file which is uploaded by the users.

b. List of system-wide non-functional requirements

Security and auditing:

▪ Administrator’s rights: The Administrator’s will have all right to add,

delete or update any kind of information.

▪ System user login ID: Every system user has individual login id to control

the system.

▪ Modification: The system can be modifying if it’s needed.

Reliability: Create a requirement that data created in the system will be retained for

a number of years without the data being changed by the system.

Performance: Requirements about properties required, response time, benchmark

specifications or anything else having to do with performance.

Maintainability: This is the ability of the application to go through changes with a fair

degree of smoothness. This quality is the flexibility with which the application can be

modified, fixing issues, or to add new functionality.

Supportability: Supportability requirements are concerned with the ease of changes

to the system after deployment.

Usability: Requirements about how problematic it will be to learn and function the

system. The requirements are often expressed in learning time or comparable metrics.

© Daffodil international university
24

Chapter 7 - Exploration

7.1 Old Full System Use Case

Figure 10: Old Full System Use Case

© Daffodil international university
25

Description:

In this information hub there are total 5 types of user. Every user has their own rule to

use this system. They have various type of data access in this system such as:

Admin: He/she can register themselves into the system and can login by their

personal information. They can make and modify role in the system, can add user,

display all user role. Modify user, block user, delete user, update user data those also

can be accessible by admin. All type of University, College and Department related

data can be display, blocked, modify or delete by the admin. They also have some pro

feature such as control, provide permission and attend mock test (tester). All

necessary file can be handled by the admin panel, modifying files, delete files, make

thread, download file and view file are the admin panels task. Contain manage like

modify, delete, make thread, add and view contain.

Moderator: This panel has less power and access then the admin. Modify user, block

user, delete user, update user data those also can be accessible by moderator panel.

Necessary file can be also handled by the moderator panel. Modifying files, delete

files, make thread, download file and view file are the admin panels task. Contain

manage like modify, delete, make thread, add and view contain.

Register user: This panel they can login and register in the beginning. They can see

university, college and department data. From this panel they can also attend mock

test. They will have access to view file and download them. They can able to add

content and also view others.

Pro-user: This panel members are the special then register member. This panel

member can login and register in the beginning. They can view university, college and

department all data. From this panel they can attend mock test. They will have access

to view file and download them. They can also able to add content and also view

others.

General user/visitor: They have the less ability in this system. Visitor can register

themselves. Then they can do many things. Without registration they can only view

can view university, college, department data and some content.

© Daffodil international university
26

7.2 Old Full System Activity Diagram

Figure 11: Old Full System Activity Diagram

© Daffodil international university
27

Description:

In the activity diagram above the whole procedure that can be undertaken by a user

are shown. If the user is registered, he will go the login page and log into the system

providing valid user ID and password. If he is not registered, he will go to the

registration or sign up page. He has to input some information like name, password

and other relevant information. After signing up he will be able to go to the sign in page

to enter the system. After signing in there will be three type of access. Those are

admin, moderator and general user. Admin can create, delete, update and retrieve

any data or account. Admin will also have to access to block any user. Moderator will

have the access to the content management and file management. For general visitor

there will be a view access where the user can only view the system and its contents.

But if they want to download or download any content, they have to sign in there. After

signing in they will have the access to pro features. In pro feature they can attend the

mock tests from the question bank we have in our database. The admin will have the

access to all the features like content, file management, University management,

College management, department management, User management, role

management and pro features. After using the system all kind of user will be able to

log out from the system using a logout function.

© Daffodil international university
28

7.3 Prototype of new system (OAIHUB)

Figure 12: Architectural design: MVC architecture

Description:

It’s a system architecture diagram. We followed the design pattern of MVC for our

system design. When a user make request our system through webpage then the

webpage make a http request to the controller as a first step. Controller then process

the http request and generate result in the model. Model gets data from the database.

Here model is acting like a bridge between database and controller. Model does the

definition and validation those data which age coming from the database. Then model

send data to the controller. Controllers then pass those arrange data to view. View

shows those data with a nice user interface through the modern webpage. User

© Daffodil international university
29

interface which is usually seen by the end user. That request and processing are the

backend task. If any user make interaction with UI or make some input then the UI

send those inputted data to the controller and controller send them to the model for

analysis and arrange and check validation of those data then model send them to

database to store those user data safely and securely. Then data base store those

data and use shows on the UI that his or her data are securely store in the system

database.

7.4 Diagram of the overall architecture (Daffodil Idea Hunt)

Here is the diagram of the overall architecture of “Daffodil Idea Hunt”.

Figure 13: Overall architecture of this web application.

© Daffodil international university
30

Chapter 8 - Engineering

8.1 New System Modules

In this Web Application The newly proposed and under developed modules are

fascinating. A total discussion hub, the forum is going to be added and implemented

in this system. Some pro features are going to be introduced for which user will have

to pay to use. Forum discussion will be much like stack overflow. People can discuss

about study, question answers, talk about institutions, post and share job articles and

exams, give mock test, find all kinds of resources every student need in every exam,

as it will also going to be connected with Education boards of Bangladesh & UGC. So,

Students, users will find almost every facility to accommodate.

© Daffodil international university
31

8.2 Use Case

Figure 14: Use case Diagram

© Daffodil international university
32

Description:

In this information hub there are total 5 types of user. Every user has their own rule to

use this system. They have various type of data access in this system such as:

Admin: He/she can register themselves into the system and can login by their

personal information. They can make and modify role in the system, can add user,

display all user role. Modify user, block user, delete user, update user data those also

can be accessible by admin. All type of University, College and Department related

data can be display, blocked, modify or delete by the admin. They also have some pro

feature such as control, provide permission and attend mock test (tester). All

necessary file can be handled by the admin panel, modifying files, delete files, make

thread, download file and view file are the admin panels task. Contain manage like

modify, delete, make thread, add and view contain.

Moderator: This panel has less power and access then the admin. Modify user, block

user, delete user, update user data those also can be accessible by moderator panel.

Necessary file can be also handled by the moderator panel. Modifying files, delete

files, make thread, download file and view file are the admin panels task. Contain

manage like modify, delete, make thread, add and view contain.

Register user: This panel they can login and register in the beginning. They can see

university, college and department data. From this panel they can also attend mock

test. They will have access to view file and download them. They can able to add

content and also view others.

Pro-user: This panel members are the special then register member. This panel

member can login and register in the beginning. They can view university, college and

department all data. From this panel they can attend mock test. They will have access

to view file and download them. They can also able to add content and also view

others.

General user/visitor: They have the less ability in this system. Visitor can register

themselves. Then they can do many things. Without registration they can only view

can view university, college, department data and some content.

© Daffodil international university
33

8.3 Class Diagram

© Daffodil international university
34

© Daffodil international university
35

© Daffodil international university
36

© Daffodil international university
37

Figure 15: Full system Class Diagram

© Daffodil international university
38

Description:

Class diagram is that which contains variables, methods, classes, functions, working

structure and shows the relationship between each one of them. It has a set of classes,

interfaces, collaborations and their relationships. It shows the interactions between the

classes that is used in this system. It represents the whole system in a diagram. This

class diagram contains many classes like, university, department, user, user detail,

files, exam, role etc. and all these class has so many attributes, methods.

Such as, university has university id, university name, location, total student, academic

staff etc. Which shows the all information about a university. Department has,

department id, department name, course duration, amount and also university id which

act as a foreign key here. Department will represent the information of each

university’s information. User has user id, name, password, email, roles, role id etc.

Role has role id, role name. Exam has exam type, exam name. All these classes with

their attributes have relationships between them. By using this UML class diagram, we

can show the whole system relationship how each of the table interact with each other.

User management system has the accessibility and security layer for every type of

user. Admin, moderator, university moderator, user, pro user. All these users have

different part of accessibility in the system. Admin has control over the whole system,

moderator has access to the part which university and institution is going to be

registered in the web application and show their details, they will manage all types of

previous questions and answers of all education boards, and all university module

information. There will be individual university moderator who will be managing

specific university ‘s information which will be modified based on priority time and

demand.

Users can see discussions on the forum, question bank on the forum, talk with people,

rate discussion topics, give answers, post job articles, post job exams, and many

more. Users who are going to take part in these things will have to register without

only seeing things posted in the forum. Everyone can post article in the forum and talk

about. Moderators will be monitoring 24 hrs which post will going to be allowed or not

in the forum, if there any bad comments are given or not, later which will be put into

the AI to monitor each and every second if any bad comments are coming or not,

which comments should be given priority or permitted to post. There will be a pro

© Daffodil international university
39

feature item in this web application. In this feature there will be thousand types of

model tests to be given for getting prepared for the desired destination. Various types

of exams, time duration, exam time schedule, school-college-university admission

tests and many more can be given online. Various types of respective teachers from

different institutions will be moderating the answer sheets. Pro features will be

accessible after paying a short amount of cost.

8.4 ERD Diagram

Figure 16: ERD Diagram

Description:

An entity relationship diagram (ERD) shows the relationships of entity sets stored in a

database. An entity in this context is an object, a component of data. An entity set is a

collection of similar entities. These entities can have attributes that define its

properties. By defining the entities, their attributes, and showing the relationships

between them, an ER diagram illustrates the logical structure of databases.ER

diagrams are used to sketch out the design of a database. Entity user has user_id

BIGINT (20) primary key. Child_comments has comments id BIGINT (20) primary

key.user role has two primary keys as user id and role id BIGINT (20). persistent logins

have series primary key. university has university id. Department, user organization

and finance all have their individual id as primary key. Role has role id as primary key.

© Daffodil international university
40

File has file id. Exam has exam id as primary id. Password reset token has also id has

primarily. Organization entity has org id as primary key. Here entity User has many to

1 relation between entity user_role. Entity user has many to 1 relation between entity

role. Entity user role has many to 1 relation to entity password_reset_token. Entity

hibernate_sequence has many to 1 relation between persistent_login.

Child_comments entity has also many to 1 relation between entity comment. entity

comment has 1 to many relations to entity files. Entity files has 1 to many relations to

exams. Entity University has 1 to many relationships between entity department.

Financial entity has 1 to many relations between organization. entity organization has

1 to many relations with entity user_organization

Now here comes the forum part. There are different and a bunch of entities are utilized

in this system. Badge id from badge entity is settled as foreign field in user section.

Votes are going to take place through the posts of the forum. People can give an

upvote or a downvote to individual post. One user one vote system has designed.

Votes are also systemized with the type of vote people can give. The system will show

suggestion about editing votes and a result of edited votes. People can give feedback

about the post. It’s different from comment section. There will be a trash systemization

of closed thing topics, post, and more. The ‘Close as off topic reason types” will hold

the details of users registered and blocked or deleted/banned with specific time

calculation and the typical reason the user’s banned for. And a post with deleted

section where all kinds of specific details of the post/post will be captured. How the

post was, post type, comments and everything about it. Posts can be flagged or

reposted by users based on some flag types or custom flagging types. When posts

are flagged a review section as created for moderators and admins. Posts will be

reviewed and a date will be stored for it. The flagged post will be reviewed by a

systematic way which will follow some rules. After review a detailed information about

the review will be stored for future consultation. Furthermore, a Post History section

will be stored and monetized. Every post will be categorized by post history types. Well

now a very important part is Tagging posts with specific keywords for making it relevant

with the discussion topics. Tags will be connected by post id. A synonym section of

tags is also available for posts. Last but not the least the most important part is Post /

Threads by which the Forum term is stablished. All the posts are utilized by user ids,

© Daffodil international university
41

post types, comments, post links, post notice, post notice types. All the Entities are

very much connected to each other in the system.

8.5 Sequence Diagram

a. As an admin

Figure 17: Sequence Diagram for admin

© Daffodil international university
42

Description:

This diagram shows that the admin request for login to the admin portal. It fetches the

data which stored on the database server. Database stored the information of the

school, college and university. Admin can view the detail information of the institution

that are stored on the database server. Admin can manage the university, college, and

department. And he can also remove any user from the system. The files which are

uploaded by the user are managed by admin and he can manage or remove any files

from the database server.

© Daffodil international university
43

b. As a moderator

Figure 18:Sequence Diagram for moderator

Description:

Moderator request to login into the system. It fetches data from database and give

them login onto the system. Moderator can manage the files, remove any files from

the server and he also manage the user. He can approve any user to use the system

or block them from the system if any abusive is occurred by them.

© Daffodil international university
44

c. As a user

Figure 19: Sequence Diagram for user

© Daffodil international university
45

Description:

To login into the system as a user first they have to sign up. After that, the user

information will be stored on the database. Every time when user request to login it

fetch the data from the database server and give them approval to login. User can

view the detail information of university, school or college. They can upload any file

which are approved by the moderator. User can request for any test to participate on

that. All these information, question bank and answer are store on database server.

After any request it fetch the data from database and show the detail information to

user.

8.6 Use Cases of Daffodil Idea Hunt

Here is the use case diagram of “Daffodil Idea Hunt”.

Figure 20: Use Cases of Daffodil Idea Hunt

© Daffodil international university
46

8.7 ERD Diagram of Daffodil Idea Hunt

Here is the ERD diagram of “Daffodil Idea Hunt”.

Figure 21: ERD Diagram of Daffodil Idea Hunt

© Daffodil international university
47

8.8 Activity diagram of Daffodil Idea Hunt

Here is the Activity diagram of “Daffodil Idea Hunt”.

Figure 22: Activity diagram of Daffodil Idea Hunt

© Daffodil international university
48

Chapter 9 - Deployment / Development

9.1 OAIHUB

Core Module Coding Samples

9.1.1 User Management

In this section the user, Admin & Moderator management section Has been coded.

The code architecture of user management is given bellow.

a. User Class

Here the Class is created to take user information in the system.

▪ Libraries are Imported here

package ac.daffodil.model;

import org.hibernate.validator.constraints.Length;

import javax.persistence.*;

import javax.validation.constraints.Email;

import javax.validation.constraints.NotEmpty;

import java.util.Set;

© Daffodil international university
49

▪ User Entity is Created

@Entity

@Table(name = "user")

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "user_id")

 private Long id;

 @Column(name = "email")

 @Email(message = "*Please provide a valid Email")

 @NotEmpty(message = "*Please provide an email")

 private String email;

 @Column(name = "password")

 @Length(min = 4, message = "*Your password must have at least 4 characters")

 private String password;

 @Column(name = "firstName")

 @NotEmpty(message = "*Please provide your first name")

 private String firstName;

 @Column(name = "last_name")

 @NotEmpty(message = "*Please provide your last name")

 private String lastName;

 @Column(name = "mobile")

 @NotEmpty(message = "*Please provide your mobile number")

 private String mobileNumber;

 @Column(name = "active")

 private int active;

 @Column(name = "roleId")

 private long roleId;

 @ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)

 @JoinTable(name = "user_role", joinColumns = @JoinColumn(name = "user_id",

 referencedColumnName = "user_id"), inverseJoinColumns = @JoinColumn(name

= "role_id",

 referencedColumnName = "role_id"))

 private Set<Role> roles;

 public User() {

 }

© Daffodil international university
50

▪ Variables or Field Data of Entity

 public User(User user) {

 this.id = user.getId();

 this.email = user.getEmail();

 this.firstName = user.getFirstName();

 this.active = user.getActive();

 this.roleId = user.getRoleId();

 this.roles = user.getRoles();

 this.mobileNumber = user.getMobileNumber();

 this.lastName = user.getLastName();

 this.password = user.getPassword();

 }

© Daffodil international university
51

▪ Getter Setters for taking Data & Saving them into Database

 public Long getId() {
 return id;

 }

 public void setId(Long id) {
 this.id = id;

 }

 public String getEmail() {
 return email;

 }

 public void setEmail(String email) {
 this.email = email;

 }

 public String getPassword() {

 return password;
}

 public void setPassword(String password) {

 this.password = password;

 }

 public String getFirstName() {

 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;

 }

 public String getMobileNumber() {
 return mobileNumber;

 }

 public void setMobileNumber(String mobileNumber) {
 this.mobileNumber = mobileNumber;
 }

 public int getActive() {
 return active;

 }

 public void setActive(int active) {

© Daffodil international university
52

▪ A Method is created to Show all those data

 @Override

 public String toString() {

 return "User{" +

 "id=" + id +

 ", email='" + email + '\'' +

 ", password='" + password + '\'' +

 ", firstName='" + firstName + '\'' +

 ", lastName='" + lastName + '\'' +

 ", mobileNumber='" + mobileNumber + '\'' +

 ", active=" + active +

 ", roleId=" + roleId +

 ", roles=" + roles +

 '}';

 }

}

© Daffodil international university
53

b. User Dao Class

▪ The Data Access object is to fetch data from database of user and

modify them.

▪ This Class implements the generic class where all the method

signatures remain same to call upon all the class.

@Service

public class UserDao implements GenericInterface<User> {

 @Qualifier("userRepository")

 @Autowired

 private UserRepository userRepository;

 @Override

 public User save(User user) {

 userRepository.save(user);

 return user;

 }

 @Override

 public User update(User user) {

 userRepository.save(user);

 return user;

 }

 @Override

 public boolean delete(User user) {

 userRepository.delete(user);

 return true;

 }

 @Override

 public List<User> getAll() {

 return userRepository.findAll();

 }

 @Override

 public Optional<User> find(Long id) {

 return userRepository.findById(id);

 }

 public Optional<User> findByUsername(String userName) {

 return userRepository.findByFirstName(userName);

© Daffodil international university
54

c. User Repository Class

▪ The JPA Repository dependency class is inherited

package ac.daffodil.repository;

import ac.daffodil.model.University;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

@Repository("universityRepository")

public interface UniversityRepository extends JpaRepository<University, Long> {

}

© Daffodil international university
55

d. Role Class

▪ Role will be added by this class code objects

package ac.daffodil.model;

import javax.persistence.*;

@Entity

@Table(name = "role")

public class Role {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "role_id")

 private long id;

 @Column(name = "roleName")

 private String roleName;

 public Role() {

 }

 public long getId() {

 return id;

 }

 public void setId(long id) {

 this.id = id;

 }

 public String getRoleName() {

 return roleName;

 }

 public void setRoleName(String roleName) {

 this.roleName = roleName;

 }

 @Override

 public String toString() {

 return "Role{" +

© Daffodil international university
56

e. Role Dao Class

Here Libraries, role class & role repository has been imported to call in action

package ac.daffodil.dao;

import ac.daffodil.model.Role;

import ac.daffodil.repository.RoleRepository;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.stereotype.Service;

import java.util.List;

import java.util.Optional;

@Service

public class RoleDao implements GenericInterface<Role> {

 @Qualifier("roleRepository")

 @Autowired

 private RoleRepository roleRepository;

 @Override

 public Role save(Role role) {

 roleRepository.save(role);

 return role;

 }

 @Override

 public Role update(Role role) {

 roleRepository.save(role);

 return role;

 }

© Daffodil international university
57

 @Override

 public boolean delete(Role role) {

 roleRepository.delete(role);

 return true;

 }

 @Override

 public List<Role> getAll() {

 return roleRepository.findAll();

 }

 @Override

 public Optional<Role> find(Long id) {

 return roleRepository.findById(id);

 }

}

f. Role Repository Class

▪ The JPA Repository dependency class is inherited

package ac.daffodil.repository;

import ac.daffodil.model.Role;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.data.jpa.repository.Query;

import org.springframework.stereotype.Repository;

@Repository("roleRepository")

public interface RoleRepository extends JpaRepository<Role, Long> {

 @Query(value = "SELECT MAX(ROLE_ID) FROM ROLE", nativeQuery = true)

 long countForMaxId();

}

© Daffodil international university
58

g. CustomeUserDetailsService Class

▪ This class fetches all the emails and search for existing emails to login

or signup process

@Service
public class CustomUsersDetailsService implements UserDetailsService {

 @Autowired
 @Qualifier("userRepository")

 private UserRepository userRepository;

 @Override
 public UserDetails loadUserByUsername(String email) throws

UsernameNotFoundException {
 Optional<User> optionalUsers = userRepository.findByEmail(email);

 optionalUsers

 .orElseThrow(() -> new UsernameNotFoundException("Username not
found"));
 return optionalUsers

 .map(CustomUsersDetails::new).get();
 }
}

h. UserDashController Class

▪ All information is fetched and shown through this program in the user

dashboard

@Controller

@RequestMapping("/user")

public class userDashController {

 @RequestMapping(value = {"/userDashPage"}, method = RequestMethod.GET)

 public ModelAndView index(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.setViewName("user/userDash");

 return modelAndView;

 }

}

© Daffodil international university
59

i. userController Class

▪ This class is for moderator & admin to control user system

@Controller
@RequestMapping("/user")
public class UserController {
 @Autowired

 BCryptPasswordEncoder passwordEncoder;

 @Autowired
 UserDao userDao;

 @Autowired
 RoleDao roleDao;

▪ method for fetching user & role information

 @RequestMapping(value = {"/userPage"}, method = RequestMethod.GET)
 public ModelAndView index(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();
 modelAndView.addObject("users", userDao.getAll());
 modelAndView.addObject("roles", roleDao.getAll());
// for (Role role : roleDao.getAll()) {

// System.out.println(role.getRoleName());
// }
 modelAndView.addObject("message", request.getParameter("message"));
 modelAndView.addObject("newUser", new User());

 modelAndView.addObject("newRole", new Role());
 modelAndView.setViewName("admin/adminUser");
 return modelAndView;
 }

© Daffodil international university
60

▪ Method for Saving a user & his/her role

 @RequestMapping(value = "/saveUser", method = RequestMethod.POST)
 public String saveUser(User user) {

 ModelAndView modelAndView = new ModelAndView();
 Optional<Role> role = roleDao.find(user.getRoleId());
 Set<Role> roles = new HashSet<Role>();
 roles.add(role.get());

 user.setRoles(roles);
 user.setPassword(passwordEncoder.encode(user.getPassword()));
 userDao.save(user);
 modelAndView.addObject("message", " Data Has Been Saved...");

 return "redirect:/user/userPage";
 }

▪ Method for editing a user information

 @RequestMapping(value = {"/findForEditUser/{id}"}, method = RequestMethod.GET)
 public ModelAndView findForEditUser(@PathVariable(required = true, name = "id")

Long id) {
 ModelAndView modelAndView = new ModelAndView();
 Optional<User> user = userDao.find(id);
 modelAndView.addObject("newUser", user.get());

 modelAndView.addObject("users", userDao.getAll());
 modelAndView.addObject("roles", roleDao.getAll());
 modelAndView.setViewName("admin/adminUser");
 return modelAndView;

 }

▪ Method for deleting a user completely

 @RequestMapping(value = "/deleteUser/{id}", method = RequestMethod.GET)
 public String deleteUser(@PathVariable(required = true, name = "id") Long id) {
 ModelAndView modelAndView = new ModelAndView();
 Optional<User> user = userDao.find(id);
 userDao.delete(user.get());
 modelAndView.addObject("message", " Data Has Been Deleted...");
 return "redirect:/user/userPage";
 }
}

© Daffodil international university
61

j. Signup Controller Class

▪ Here all the user classes have been imported

▪ All the Data Access Object Classes are imported

▪ All the information is processed to assign a new user information

package ac.daffodil.controller;

import ac.daffodil.dao.RoleDao;
import ac.daffodil.dao.UserDao;
import ac.daffodil.model.Role;
import ac.daffodil.model.User;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.support.RedirectAttributes;

import javax.servlet.http.HttpServletRequest;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

@Controller
public class signupController {

 @Autowired
 BCryptPasswordEncoder passwordEncoder;

 @Autowired
 UserDao userDao;

 @Autowired
 RoleDao roleDao;

▪ Login Page & backend Operation method Attached

 @RequestMapping(value = {"/login"}, method = RequestMethod.GET)

 public ModelAndView loginPage(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.setViewName("fragments/login");

 return modelAndView;

 }

© Daffodil international university
62

▪ Redirecting to login method

 @GetMapping("/loginFailure")
 public String loginFailure(RedirectAttributes redirectAttributes) {
 redirectAttributes.addFlashAttribute("message", "Invalid Username or
Password...");
 redirectAttributes.addFlashAttribute("alertClass", "alert-danger");
 return "redirect:/login";
 }

▪ Signup Method

 @RequestMapping(value = {"/signup"}, method = RequestMethod.GET)

 public ModelAndView signup(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("newUser", new User());

 modelAndView.addObject("roles", roleDao.getAll());

 modelAndView.setViewName("fragments/signup");

 return modelAndView;

 }

© Daffodil international university
63

▪ Save the newly signed up user in database

 @RequestMapping(value = "/saveUser", method = RequestMethod.POST)

 public String saveUser(User user, RedirectAttributes redirectAttributes,

HttpServletRequest request) {

 try {

 user.setActive(1);

 List<Role> roles = roleDao.getAll();

 for (Role role : roles) {

 if (role.getRoleName().equals("user")) {

 user.setRoleId(role.getId());

 Set<Role> roleSet = new HashSet<Role>();

 roleSet.add(role);

 user.setRoles(roleSet);

 }

 }

 user.setPassword(passwordEncoder.encode(user.getPassword()));

 userDao.save(user);

 redirectAttributes.addFlashAttribute("message", "User Saved

SuccessFully... ");

 redirectAttributes.addFlashAttribute("alertClass", "alert-success");

 return "redirect:/signup";

 } catch (Exception e) {

 redirectAttributes.addFlashAttribute("message", "Error... Please Cheack

and input Correct Data.");

 redirectAttributes.addFlashAttribute("alertClass", "alert-danger");

 return "redirect:/signup";

 }

 }

}

© Daffodil international university
64

k. Role Controller Class

▪ Role management methods are written here

@Controller
@RequestMapping("/role")

public class RoleController {

 @Autowired
 RoleDao roleDao;

 @RequestMapping(value = {"/rolePage"}, method = RequestMethod.GET)
 public ModelAndView index(HttpServletRequest request) {
 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("roles", roleDao.getAll());
 modelAndView.addObject("message", request.getParameter("message"));
 modelAndView.addObject("newRole", new Role());
 modelAndView.setViewName("admin/adminRole");

 return modelAndView;
 }

▪ Save new role

 @RequestMapping(value = "/saveRole", method = RequestMethod.POST)
 public String saveRole(Role newRole) {

 ModelAndView modelAndView = new ModelAndView();
 roleDao.save(newRole);
 modelAndView.addObject("message", " Data Has Been Saved...");
 return "redirect:/role/rolePage";

 }

▪ Edit role

 @RequestMapping(value = {"/findForEditRole/{id}"}, method = RequestMethod.GET)
 public ModelAndView findForEditRole(@PathVariable(required = true, name = "id")

Long id) {
 ModelAndView modelAndView = new ModelAndView();
 Optional<Role> role = roleDao.find(id);
 modelAndView.addObject("newRole", role.get());

 modelAndView.addObject("roles", roleDao.getAll());
 modelAndView.setViewName("admin/adminRole");
 return modelAndView;
 }

© Daffodil international university
65

▪ Delete role

 @RequestMapping(value = "/deleteRole/{id}", method = RequestMethod.GET)
 public String deleteRole(@PathVariable(required = true, name = "id") Long id) {

 ModelAndView modelAndView = new ModelAndView();
 Optional<Role> role = roleDao.find(id);
 roleDao.delete(role.get());
 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/role/rolePage";
 }
}

l. HomeController Class

▪ This class controls, models & shows the homepage / dashboard in a

designed way

@Controller
public class HomeController {

 @RequestMapping(value = {"/"}, method = RequestMethod.GET)
 public ModelAndView index() {
 ModelAndView modelAndView = new ModelAndView();

 modelAndView.setViewName("fragments/layout");
 return modelAndView;
 }

▪ Admin & user login controller

 @RequestMapping(value = {"/defaultLogin"}, method = RequestMethod.GET)

 public String defaultLogin(HttpServletRequest request) {

 if (request.isUserInRole("admin")) {

 return "redirect:/admin/adminDashPage";

 }

 return "redirect:/user/userDashPage";

 }

}

© Daffodil international university
66

m. AdminDashController class

▪ This class controls how the admin dashboard will show up

@Controller
@RequestMapping("/admin")

public class adminDashController {
 @RequestMapping(value = {"/adminDashPage"}, method = RequestMethod.GET)
 public ModelAndView index(HttpServletRequest request) {
 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("message", request.getParameter("message"));
 modelAndView.setViewName("admin/adminDash");
 return modelAndView;
 }

}

9.1.2 Configuration

a. Login Security Class

@EnableJpaRepositories(basePackageClasses = UserRepository.class)
@Configuration

@EnableWebSecurity
public class LoginSecurity extends WebSecurityConfigurerAdapter {

 @Autowired
 CustomUsersDetailsService userDetailsService;

 @Autowired

 BCryptPasswordEncoder passwordEncoder;

 @Bean
 public BCryptPasswordEncoder passwordEncoder() {

 BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();
 return bCryptPasswordEncoder;
 }

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth.userDetailsService(userDetailsService).passwordEncoder(passwordEncoder);
 }

© Daffodil international university
67

▪ Security & Authorization method for users

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .csrf()
 .disable().authorizeRequests()
 .antMatchers("/", "/login").permitAll()

.antMatchers("/admin/**").hasAnyRole("admin").and().authorizeRequests()
 .antMatchers("/user/**").hasAnyRole("admin", "user")

.and().authorizeRequests().and().exceptionHandling().accessDeniedPage("/403")
 .and().formLogin()
 .loginPage("/login")
 .defaultSuccessUrl("/defaultLogin")
 .failureUrl("/loginFailure")
 .usernameParameter("username")
 .passwordParameter("password")
 .and().logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/");

 }

© Daffodil international university
68

▪ Password encryption Method & Algorithm imported from java library

▪ If password matches with the stored password in the database, user will

be logged in

 private PasswordEncoder getPasswordEncoder() {

 return new PasswordEncoder() {

 @Override

 public String encode(CharSequence charSequence) {

 return charSequence.toString();

 }

 @Override

 public boolean matches(CharSequence charSequence, String s) {

 return true;

 }

 };

 }

}

© Daffodil international university
69

b. WevMvcConfig Class

▪ Ensures security by using this design pattern

@Configuration

public class WebMvcConfig extends WebMvcConfigurerAdapter {

 @Bean

 public BCryptPasswordEncoder passwordEncoder() {

 BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();

 return bCryptPasswordEncoder;

 }

 public static void main(String[] args) {

 BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();

 System.out.println(bCryptPasswordEncoder.encode("1234"));

 }

}

9.1.3 Generic Interface

a. This interface is used to hold all similar methods & signature in one

place & use them in all the necessary classes & codes where it needs

to be used

public interface GenericInterface<T> {

 T save(T val);

 T update(T val);

 boolean delete(T val);

 List<T> getAll();

 Optional<T> find(Long id);

}

© Daffodil international university
70

9.1.4 Exam Management

a. Exam Class

▪ This class is creating for creating an entity named exam and to save

exam details in database by following some methods, objects, variables

package ac.daffodil.model;

import javax.persistence.*;

import javax.validation.constraints.NotEmpty;

@Entity

@Table(name = "exam")

public class Exam {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "exam_id")

 private Long exam_id;

 @Column(name = "exam_type")

 @NotEmpty(message = "*please select an examtype")

 private String exam_type;

 @Column(name = "exam_name")

 @NotEmpty(message = "*please select exam name")

 private String exam_name;

▪ method for selecting exam type

 public Exam() {

 }

 public Exam(@NotEmpty(message = "*please select an examtype") String exam_type,

@NotEmpty(message = "*please select exam name") String exam_name) {

 this.exam_type = exam_type;

 this.exam_name = exam_name;

 }

© Daffodil international university
71

▪ taking inputs for exam files

 public Long getExam_id() {

 return exam_id;

 }

 public void setExam_id(Long exam_id) {

 this.exam_id = exam_id;

 }

 public String getExam_type() {

 return exam_type;

 }

 public void setExam_type(String exam_type) {

 this.exam_type = exam_type;

 }

 public String getExam_name() {

 return exam_name;

 }

 public void setExam_name(String exam_name) {

 this.exam_name = exam_name;

 }

▪ Showing exam details

 @Override

 public String toString() {

 return "Exam{" +

 "exam_id=" + exam_id +

 ", exam_type='" + exam_type + '\'' +

 ", exam_name='" + exam_name + '\'' +

 '}';

 }

}

b. Exam Repository

▪ Exam JPA dependency repository inheritance

© Daffodil international university
72

package ac.daffodil.repository;

import ac.daffodil.model.Exam;

import org.springframework.data.jpa.repository.JpaRepository;

public interface ExamRepository extends JpaRepository<Exam, Long> {

}

c. Exam Dao

@Repository

@Transactional

public class ExamDao implements GenericInterface<Exam> {

 @Autowired

 private ExamRepository examRepository;

▪ Save exam information method

 @Override

 public Exam save(Exam exam) {

 examRepository.save(exam);

 return exam;

 }

▪ Update exam information method

 @Override

 public Exam update(Exam exam) {

 examRepository.save(exam);

 return exam;

 }

▪ Delete exam information method

 @Override

 public boolean delete(Exam exam) {

 examRepository.delete(exam);

 return true;

 }

© Daffodil international university
73

▪ Fetch all exam information method

 @Override

 public List<Exam> getAll() {

 return examRepository.findAll();

 }

▪ Search exam information method

 @Override

 public Optional<Exam> find(Long id) {

 return examRepository.findById(id);

 }

}

d. Exam Controller

▪ Imported examDao Class to access methods from it

@Controller

public class ExamController {

 @Autowired

 ExamDao examDao;

▪ Exam details representation method

 @RequestMapping(value = {"/exam"}, method = RequestMethod.GET)

 public ModelAndView index() {

 ModelAndView modelAndView = new ModelAndView();

 Exam newExam = new Exam();

 modelAndView.addObject("newExam", newExam);

 modelAndView.addObject("exams", examDao.getAll());

 modelAndView.setViewName("admin/adminExam");

 return modelAndView;

 }

▪ Save Exam details method

 @RequestMapping(value = {"/exam/save"}, method = RequestMethod.POST)

 public String saveExam(Exam exam) {

 examDao.save(exam);

 return "redirect:/exam";

 }

© Daffodil international university
74

▪ Editing exam information method

 @RequestMapping(value = {"/exam/find/{exam_id}"}, method = RequestMethod.GET)

 public ModelAndView findForEditExam(@PathVariable(required = true, name =

"exam_id") Long exam_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Exam> exam = examDao.find(exam_id);

 modelAndView.addObject("newExam", exam.get());

 modelAndView.addObject("exams", examDao.getAll());

 modelAndView.setViewName("admin/adminExam");

 return modelAndView;

 }

▪ Deleting exam information method

 @RequestMapping(value = "/exam/delete/{exam_id}", method = RequestMethod.GET)

 public String deleteExam(@PathVariable(required = true, name = "exam_id") Long

exam_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Exam> exam = examDao.find(exam_id);

 examDao.delete(exam.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/exam";

 }

}

© Daffodil international university
75

e. Comments

▪ Comment Class is for taking comments upon files & Exam

@Entity

@Table(name = "comments")

public class Comments {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long comment_id;

 @Column(nullable = false)

 private String user_email;

 @NotEmpty

 private String comment_text;

 @CreationTimestamp

 private LocalDateTime date_time;

 @UpdateTimestamp

 private LocalDateTime updated_date_time;

 @ManyToOne

 private File file;

 @OneToMany(mappedBy = "comments")

 private List<ChildComments> childComments = new ArrayList<>();

© Daffodil international university
76

▪ Taking comments as input

 public Comments() {

 }

 public Comments(String user_email, String comment_text, LocalDateTime date_time,

LocalDateTime updated_date_time, File file) {

 this.user_email = user_email;

 this.comment_text = comment_text;

 this.date_time = date_time;

 this.updated_date_time = updated_date_time;

 this.file = file;

 }

 public Long getComment_id() {

 return comment_id;

 }

 public void setComment_id(Long comment_id) {

 this.comment_id = comment_id;

 }

 public String getComment_text() {

 return comment_text;

 }

 public void setComment_text(String comment_text) {

 this.comment_text = comment_text;

 }

 public LocalDateTime getDate_time() {

 return date_time;

 }

 public void setDate_time(LocalDateTime date_time) {

 this.date_time = date_time;

 }

 public LocalDateTime getUpdated_date_time() {

 return updated_date_time;

 }

 public File getFile() {

 return file;

 }

 public void setFile(File file) {

 this.file = file;

 }

 public String getUser_email() {

© Daffodil international university
77

▪ Showing Comments method

 @Override

 public String toString() {

 return "Comments{" +

 "comment_id=" + comment_id +

 ", user_email='" + user_email + '\'' +

 ", comment_text='" + comment_text + '\'' +

 ", date_time=" + date_time +

 ", updated_date_time=" + updated_date_time +

 ", file=" + file +

 ", childComments=" + childComments +

 '}';

 }

}

f. Child Comments

▪ Child Comment Class is for taking Child comments or comments of

comments upon files & Exam

▪ Taking Child comments as input

package ac.daffodil.model;

import javax.persistence.*;

@Entity

public class ChildComments {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long ccomments_id;

 private String sub_comments;

 private String user_name

 @ManyToOne

 private Comments comments;

 public ChildComments() {

 }

© Daffodil international university
78

 public ChildComments(String sub_comments) {

 this.sub_comments = sub_comments;

 }

 public ChildComments(String sub_comments, String user_name) {

 this.sub_comments = sub_comments;

 this.user_name = user_name;

 }

 public Long getCcomments_id() {

 return ccomments_id;

 }

 public void setCcomments_id(Long ccomments_id) {

 this.ccomments_id = ccomments_id;

 }

 public String getSub_comments() {

 return sub_comments;

 }

 public void setSub_comments(String sub_comments) {

 this.sub_comments = sub_comments;

 }

 public Comments getComments() {

 return comments;

 }

 public void setComments(Comments comments) {

 this.comments = comments;

 }

 public String getUser_name() {

 return user_name;

 }

 public void setUser_name(String user_name) {

 this.user_name = user_name;

 }

© Daffodil international university
79

▪ Showing child comments method

 @Override

 public String toString() {

 return "ChildComments{" +

 "ccomments_id=" + ccomments_id +

 ", sub_comments='" + sub_comments + '\'' +

 ", user_name='" + user_name + '\'' +

 ", comments=" + comments +

 '}';

 }

}

g. Comment Repository

▪ SpringBoot JPA repository

package ac.daffodil.repository;

import ac.daffodil.model.Comments;

import org.springframework.data.jpa.repository.JpaRepository;

public interface CommentRepository extends JpaRepository<Comments, Long> {

}

h. Child Comments Repository

▪ SpringBoot JPA repository

package ac.daffodil.repository;

import ac.daffodil.model.ChildComments;

import org.springframework.data.jpa.repository.JpaRepository;

public interface ChildCommentRepository extends JpaRepository<ChildComments, Long> {

}

▪ Comments Dao

@Repository

@Transactional

public class CommentDao implements GenericInterface<Comments> {

 @Autowired

 CommentRepository commentRepository;

© Daffodil international university
80

▪ Saving Comments into database method

 @Override

 public Comments save(Comments comments) {

 commentRepository.save(comments);

 return comments;

 }

▪ updating Comments into database method

 @Override

 public Comments update(Comments comments) {

 commentRepository.save(comments);

 return comments;

 }

▪ Deleting Comments from database method

 @Override

 public boolean delete(Comments comments) {

 commentRepository.delete(comments);

 return true;

 }

▪ Showing Comments from database method

 @Override

 public List<Comments> getAll() {

 return commentRepository.findAll();

 }

▪ Finding Comments from database method

 @Override

 public Optional<Comments> find(Long id) {

 return commentRepository.findById(id);

 }

}

© Daffodil international university
81

i. Child Comments Dao

@Repository

public class ChildCommentDao implements GenericInterface<ChildComments> {

 @Autowired

 ChildCommentRepository childCommentRepository;

▪ Saving Child Comments into database method

 @Override

 public ChildComments save(ChildComments childComments) {

 childCommentRepository.save(childComments);

 return childComments;

 }

▪ Updating Child Comments into database method

 @Override

 public ChildComments update(ChildComments childComments) {

 childCommentRepository.save(childComments);

 return childComments;

 }

▪ Deleting Child Comments from database method

 @Override

 public boolean delete(ChildComments childComments) {

 childCommentRepository.delete(childComments);

 return true;

 }

▪ Showing Child Comments from database method

 @Override

 public List<ChildComments> getAll() {

 return childCommentRepository.findAll();

 }

© Daffodil international university
82

▪ Finding Child Comments from database method

@Override

 public Optional<ChildComments> find(Long id) {

 return childCommentRepository.findById(id);

 }

}

j. Comment Controller

@Controller

public class CommentController {

 Logger logger = LoggerFactory.getLogger(getClass());

 @Autowired

 CommentDao commentDao;

 @Autowired

 FileDao fileDao;

 @Autowired

 ChildCommentDao childCommentDao;

 Comments comments = new Comments();

 List<Comments> comments1 = new LinkedList<>();

 ChildComments childComments = new ChildComments();

© Daffodil international university
83

▪ Comment Representation method

 @RequestMapping(value = {"/comment"}, method = RequestMethod.GET)

 public ModelAndView commentPage() {

 ModelAndView modelAndView = new ModelAndView();

 Comments newComment = new Comments();

 comments1 = new LinkedList<>();

 for (Comments cmt : commentDao.getAll()) {

 if (cmt.getFile().getFile_id() == comments.getFile().getFile_id()) {

 comments1.add(cmt);

 }

 }

 modelAndView.addObject("newComment", comments);

 modelAndView.addObject("commentList", comments1);

 modelAndView.setViewName("user/userDashComment");

 return modelAndView;

 }

© Daffodil international university
84

▪ Find & Get Comment & File ID for resolving problems

 @RequestMapping(value = {"/comment/findForFile/{file_id}"}, method =

RequestMethod.GET)

 public ModelAndView findForSetFileId(@PathVariable(required = true, name =

"file_id") Long file_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<File> file = fileDao.find(file_id);

 comments.setFile(file.get());

 Object principal =

SecurityContextHolder.getContext().getAuthentication().getPrincipal();

 if (principal instanceof User) {

 String email = ((User) principal).getEmail();

 comments.setUser_email(email);

 }

 comments1 = new LinkedList<>();

 for (Comments cmt : commentDao.getAll()) {

 if (cmt.getFile().getFile_id() == file_id) {

 comments1.add(cmt);

 }

 }

 modelAndView.addObject("commentList", comments1);

 modelAndView.addObject("newComment", comments);

 modelAndView.setViewName("user/userDashComment");

 return modelAndView;

 }

© Daffodil international university
85

▪ Saving Comments into database method

 @RequestMapping(value = {"/comment/saveComment"}, method = RequestMethod.POST)

 public String saveComment(Comments comments, RedirectAttributes

redirectAttributes) {

 commentDao.save(comments);

 redirectAttributes.addFlashAttribute("message", "You Comment is= " +

comments.getComment_text());

 redirectAttributes.addFlashAttribute("alertClass", "alert-success");

 return "redirect:/comment";

 }

▪ Child Comment through Id

 @RequestMapping(value = {"/comment/find/{comment_id}"}, method =

RequestMethod.GET)

 public ModelAndView findForEditComment(@PathVariable(required = true, name =

"comment_id") Long comment_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Comments> comments = commentDao.find(comment_id);

 modelAndView.addObject("newComment", comments.get());

 modelAndView.addObject("commentList", comments1);

 modelAndView.setViewName("user/userDashComment");

 return modelAndView;

 }

▪ Deleting Child Comments from database method

 @RequestMapping(value = "/comment/delete/{comment_id}", method =

RequestMethod.GET)

 public String deleteExam(@PathVariable(required = true, name =

"comment_id") Long comment_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Comments> comments = commentDao.find(comment_id);

 commentDao.delete(comments.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/comment";

 }

© Daffodil international university
86

▪ Child Comment through sequential id by finding comment id

 @RequestMapping(value = {"/findForComment/{comment_id}"}, method =

RequestMethod.GET)

 public ModelAndView findForSetCommentId(@PathVariable(required = true, name =

"comment_id") Long comment_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Comments> comment = commentDao.find(comment_id);

 ChildComments childComments = new ChildComments();

 childComments.setComments(comment.get());

 modelAndView.addObject("newComment", childComments);

 System.out.println(childComments.getComments().getComment_id());

 modelAndView.setViewName("user/childComment");

 return modelAndView;

 }

▪ Saving Child Comment

 @RequestMapping(value = {"/comment/saveChildComment"}, method =

RequestMethod.POST)

 public String saveChildComment(ChildComments childComments,

RedirectAttributes redirectAttributes) {

 Object principal =

SecurityContextHolder.getContext().getAuthentication().getPrincipal();

 if (principal instanceof User) {

 String name = ((User) principal).getFirstName();

 childComments.setUser_name(name);

 childCommentDao.save(childComments);

 redirectAttributes.addFlashAttribute("message", "Your Comment is=

" + comments.getComment_text());

 redirectAttributes.addFlashAttribute("alertClass", "alert-

success");

 return "redirect:/comment";

 }

 return "redirect:/comment";

 }

}

© Daffodil international university
87

9.1.5 Forum Code sample

a. Post Controller

@Controller

@RequestMapping("/forum")

public class PostsController {

 @Autowired

 PostsDao postsDao;

▪ To view all the threads / post on the forum home page

 @RequestMapping (value = {"/posts"}, method = RequestMethod.GET)

 public ModelAndView index(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 Posts Post = new Posts();

 modelAndView.addObject("Post", Post);

 modelAndView.addObject("posts", postsDao.getAll());

 modelAndView.setViewName("Body/forum");

 return modelAndView;

 }

▪ Submit a post or ask a question and press submit

@RequestMapping (value = {"/posts/submitPost"}, method = RequestMethod.GET)

 public ModelAndView submitPost() {

 ModelAndView modelAndView = new ModelAndView();

 Posts newPost = new Posts();

 modelAndView.addObject("newPost", newPost);

 modelAndView.addObject("posts", postsDao.getAll());

 modelAndView.setViewName("Body/askQuestion");

 return modelAndView;

 }

▪ Saving the post into database

 @RequestMapping(value = {"/posts/savePost"}, method = RequestMethod.POST)
 public String savePost(Posts posts){
 ModelAndView modelAndView = new ModelAndView();
 postsDao.save(posts);
 modelAndView.addObject("message","Data Has been saved");
 return "redirect:/forum/posts";
 }

© Daffodil international university
88

▪ Searching all threads by user

 @RequestMapping(value = {"/posts/findAll"}, method = RequestMethod.GET)

 public ModelAndView findPosts(){

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("posts",postsDao.getAll());

 modelAndView.setViewName("Body/postDetails");

 return modelAndView;

 }

 Optional<Posts> posts = Optional.of(new Posts());

▪ Searching a single thread

 @RequestMapping(value = {"/posts/find/{PostId}"}, method = RequestMethod.GET)

 public ModelAndView findForShowingPost(@PathVariable(required = true, name = "PostId")Long PostId){

 ModelAndView modelAndView = new ModelAndView();

 posts = postsDao.find(PostId);

 modelAndView.addObject("posts",posts.get());

 List<Posts> allPosts = new LinkedList<>();

 for (Posts askPost : postsDao.getAll()) {

 if (askPost.getPostId() != posts.get().getPostId()){

 allPosts.add(askPost);

 }

 }

 modelAndView.addObject("newPost", allPosts);

 modelAndView.setViewName("Body/postDetails");

 return modelAndView;

 }

▪ Delete a thread

 @RequestMapping(value = {"/posts/delete/{PostId}"}, method = RequestMethod.GET)

 public String findForDeletingPost(@PathVariable(required = true,name = "PostId")Long PostId){

 ModelAndView modelAndView = new ModelAndView();

 Optional<Posts> posts = postsDao.find(PostId);

 postsDao.delete(posts.get());

 modelAndView.addObject("message", "Post has been deleted");

 return "redirect:/forum/posts";

 }

}

© Daffodil international university
89

b. Feedback of threads controller

@Controller

@RequestMapping("/PostFeedback")

public class PostFeedbackController {

 @Autowired

 PostFeedbackDao postFeedbackDao;

▪ Viewing feedbacks

 @RequestMapping(value = { "/postFeedback" }, method = RequestMethod.GET)
 public ModelAndView index() {
 ModelAndView modelAndView = new ModelAndView();
 PostFeedback postFeedback = new PostFeedback();
 modelAndView.addObject("newPostFeedback", postFeedback);
 modelAndView.addObject("postFeedback", postFeedbackDao.getAll());
 modelAndView.setViewName("admin/adminPostFeedback");
 modelAndView.setViewName("user/userPostFeedback");
 return modelAndView;
 }

▪ Writing feedback

 @RequestMapping(value = { "/postFeedback/save" }, method = RequestMethod.POST)

 public String savePostFeedback(PostFeedback postFeedback) {

 postFeedbackDao.save(postFeedback);

 return "redirect:/postFeedback";

 }

▪ Find feedback by id

 @RequestMapping(value={"/postFeedback/find/{PostFeedbackId}"}, method = RequestMethod.GET)

 public ModelAndView findForEditPostFeedback(@PathVariable(required = true, name =

"PostFeedbackId") Long PostFeedbackId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<PostFeedback> postFeedback= postFeedbackDao.find(PostFeedbackId);

 modelAndView.addObject("newPostFeedback", postFeedback.get());

 modelAndView.addObject("postFeedback", postFeedbackDao.getAll());

 modelAndView.setViewName("admin/adminPostFeedback");

 modelAndView.setViewName("user/userPostFeedback");

 return modelAndView;

 }

© Daffodil international university
90

▪ Delete feedback by id

 @RequestMapping(value="/postFeedback/delete/{PostFeedbackId}", method = RequestMethod.GET)

 public String deletePostFeedback(@PathVariable(required = true, name = "PostFeedbackId") Long

PostFeedbackId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<PostFeedback> postFeedback= postFeedbackDao.find(PostFeedbackId);

 postFeedbackDao.delete(postFeedback.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/postFeedback";

 }

}

c. Thread comments Controller

@Controller

@RequestMapping("/postComment")

public class PostsCommentsController {

 @Autowired

 PostsCommentsDao postsCommentsDao;

▪ Viewing all comments by post id

 @RequestMapping(value = {"/postComments"},method = RequestMethod.GET)

 public ModelAndView index(){

 ModelAndView modelAndView = new ModelAndView();

 PostsComments newPostsComment = new PostsComments();

 modelAndView.addObject("newPostsComment",newPostsComment);

 modelAndView.addObject("postsComment",postsCommentsDao.getAll());

 modelAndView.setViewName("admin/adminPendingFlags");

 return modelAndView;

 }

▪ Saving a comment of thread / post

 @RequestMapping(value = {"/postComments/save"},method = RequestMethod.POST)

 public String savePostComments(PostsComments postsComments){

 postsCommentsDao.save(postsComments);

 return "redirect:/postComments";

 }

© Daffodil international university
91

▪ Searching a comment or editing

 @RequestMapping(value = {"/postComments/find/{postComments_id}"},method = RequestMethod.GET)

 public ModelAndView findForEditingPostComments(@PathVariable(required = true,name =

"postComments_id")Long postComments_id){

 ModelAndView modelAndView =new ModelAndView();

 Optional<PostsComments> postsComments = postsCommentsDao.find(postComments_id);

 modelAndView.addObject("newPostComments", postsComments.get());

 modelAndView.addObject("postComments", postsCommentsDao.getAll());

 modelAndView.setViewName("admin/adminPendingFlags");

 return modelAndView;

 }

▪ Deleting a comment

 @RequestMapping(value = {"/postComments/delete/{postComments_id}"},method = RequestMethod.GET)

 public String findForDeletingPendingFlags(@PathVariable(required = true,name =

"postComments_id")Long postComments_id){

 ModelAndView modelAndView = new ModelAndView();

 Optional<PostsComments> postsComments = postsCommentsDao.find(postComments_id);

 postsCommentsDao.delete(postsComments.get());

 modelAndView.addObject("message","data has been deleted");

 return "redirect:/postComments";

 }

}

d. Post / thread DAO class

▪ Imported repository of post

@Repository
@Transactional
public class PostsDao implements GenericInterface<Posts> {
 @Autowired
 private PostsRepository postsRepository;

© Daffodil international university
92

▪ All necessary methods to handle posts in controller to view them

accurately

 @Override
 public Posts save(Posts posts) {
 postsRepository.save(posts);
 return posts;
 }

 @Override
 public Posts update(Posts posts) {
 postsRepository.save(posts);
 return posts;
 }

 @Override
 public boolean delete(Posts posts) {
 postsRepository.delete(posts);
 return true;
 }

 @Override
 public List<Posts> getAll() {
 return postsRepository.findAll();
 }

 @Override
 public Optional<Posts> find(Long id) {
 return postsRepository.findById(id);
 }
}

e. Feedback of posts

▪ Post feedback & repository has imported

@Repository
@Transactional
public class PostFeedbackDao implements GenericInterface<PostFeedback> {
 @Autowired
 private PostFeedbackRepository postFeedbackRepository;

© Daffodil international university
93

▪ All necessary methods

 @Override
 public PostFeedback save(PostFeedback postFeedback) {
 postFeedbackRepository.save(postFeedback);

return postFeedback;
 }

 @Override
 public PostFeedback update(PostFeedback postFeedback) {
 postFeedbackRepository.save(postFeedback);
 return postFeedback;
 }

 @Override
 public boolean delete(PostFeedback postFeedback) {
 postFeedbackRepository.save(postFeedback);
 return true;
 }

 @Override
 public List<PostFeedback> getAll() {
 return postFeedbackRepository.findAll();
 }

 @Override
 public Optional<PostFeedback> find(Long id) {
 return postFeedbackRepository.findById(id);
 }
}

f. post comment Dao

▪ Post comment model and repository classes are imported

@Repository
@Transactional
public class PostsCommentsDao implements GenericInterface<PostsComments>{

 @Qualifier("postsCommentsRepository")
 @Autowired
 PostsCommentsRepository postsCommentsRepository;

© Daffodil international university
94

▪ All necessary methods are written

 @Override
 public PostsComments save(PostsComments postsComments) {
 postsCommentsRepository.save(postsComments);
 return postsComments;
 }

 @Override

 public PostsComments update(PostsComments postsComments) {

 postsCommentsRepository.save(postsComments);

 return postsComments;

 }

 @Override

 public boolean delete(PostsComments postsComments) {

 postsCommentsRepository.delete(postsComments);

 return true;

 }

 @Override

 public List<PostsComments> getAll() {

 return postsCommentsRepository.findAll();

 }

 @Override

 public Optional<PostsComments> find(Long id) {

 return postsCommentsRepository.findById(id);

 }

}

© Daffodil international university
95

g. Post Class

package ac.daffodil.model;

import javax.persistence.*;

import java.util.*;

@Entity

@Table(name="posts")

public class Posts {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name= "PostId")

 private long PostId;

 @Column(name = "PostTypeId")

 private long PostTypeId;

 @Column(name = "AcceptedAnsId")

 private long AcceptedAnsId;

 @Column(name = "ParentId")

 private long ParentId;

 @Column(name = "CreationDate")

 private Date CreationDate;

 @Column(name = "DeletionDate")

 private Date DeletionDate;

 @Column(name = "Score")

 private Float Score;

 @Column(name = "ViewCount")

 private int ViewCount;

 @Column(name = "Body")

 private String Body;

© Daffodil international university
96

 @Column(name = "OwnerUserId")

 private long OwnerUserId;

 @Column(name = "OwnerDisplayName")

 private String OwnerDisplayName;

 @Column(name = "LastEditorUserId")

 private long LastEditorUserId;

 @Column(name = "LastEditorDisplayName")

 private String LastEditorDisplayName;

 @Column(name = "LastEditDate")

 private Date LastEditDate;

 @Column(name = "LastActivityDate")

 private Date LastActivityDate;

 @Column(name = "Title")

 private String Title;

 @Column(name = "Tags")

 private String Tags;

 @Column(name = "AnsCount")

 private int AnsCount;

 @Column(name = "CommentCount")

 private int CommentCount;

 @Column(name = "FavoriteCount")

 private int FavoriteCount;

 @Column(name = "ClosedDate")

 private Date ClosedDate;

 @Column(name = "CommunityOwnedDate")

 private Date CommunityOwnedDate;

 public Posts() {

 }

 public Posts(long postTypeId, long acceptedAnsId, long parentId, Date creationDate, Date deletionDate,

Float score, int viewCount, String body, long ownerUserId, String ownerDisplayName, long lastEditorUserId,

String lastEditorDisplayName, Date lastEditDate, Date lastActivityDate, String title, String tags, int ansCount,

int commentCount, int favoriteCount, Date closedDate, Date communityOwnedDate) {

 PostTypeId = postTypeId;

 AcceptedAnsId = acceptedAnsId;

 ParentId = parentId;

 CreationDate = creationDate;

 DeletionDate = deletionDate;

© Daffodil international university
97

 Score = score;
 ViewCount = viewCount;
 Body = body;
 OwnerUserId = ownerUserId;
 OwnerDisplayName = ownerDisplayName;
 LastEditorUserId = lastEditorUserId;
 LastEditorDisplayName = lastEditorDisplayName;
 LastEditDate = lastEditDate;
 LastActivityDate = lastActivityDate;
 Title = title;
 Tags = tags;
 AnsCount = ansCount;
 CommentCount = commentCount;
 FavoriteCount = favoriteCount;
 ClosedDate = closedDate;
 CommunityOwnedDate = communityOwnedDate;
 }

 public long getPostId() {
 return PostId;
 }

 public void setPostId(long postId) {
 PostId = postId;
 }

 public long getPostTypeId() {
 return PostTypeId;
 }

 public void setPostTypeId(long postTypeId) {
 PostTypeId = postTypeId;
 }

 public long getAcceptedAnsId() {
 return AcceptedAnsId;
 }

 public void setAcceptedAnsId(long acceptedAnsId) {
 AcceptedAnsId = acceptedAnsId;
 }

 public long getParentId() {
 return ParentId;
 }

 public void setParentId(long parentId) {
 ParentId = parentId;
 }

 public Date getCreationDate() {
 return CreationDate;
 }

© Daffodil international university
98

 public void setCreationDate(Date creationDate) {
 CreationDate = creationDate;
 }
 public Date getDeletionDate() {
 return DeletionDate;
 }

 public void setDeletionDate(Date deletionDate) {
 DeletionDate = deletionDate;
 }

 public Float getScore() {
 return Score;
 }

 public void setScore(Float score) {
 Score = score;
 }

 public int getViewCount() {
 return ViewCount;
 }

 public void setViewCount(int viewCount) {
 ViewCount = viewCount;
 }

 public String getBody() {
 return Body;
 }

 public void setBody(String body) {
 Body = body;
 }

 public long getOwnerUserId() {
 return OwnerUserId;
 }

 public void setOwnerUserId(long ownerUserId) {
 OwnerUserId = ownerUserId;
 }

 public String getOwnerDisplayName() {
 return OwnerDisplayName;
 }

 public void setOwnerDisplayName(String ownerDisplayName) {
 OwnerDisplayName = ownerDisplayName;
 }

 public long getLastEditorUserId() {
 return LastEditorUserId;
 }

© Daffodil international university
99

 public void setLastEditorUserId(long lastEditorUserId) {
 LastEditorUserId = lastEditorUserId;
 }

 public String getLastEditorDisplayName() {
 return LastEditorDisplayName;
 }

 public void setLastEditorDisplayName(String lastEditorDisplayName) {
 LastEditorDisplayName = lastEditorDisplayName;
 }

 public Date getLastEditDate() {
 return LastEditDate;
 }

 public void setLastEditDate(Date lastEditDate) {
 LastEditDate = lastEditDate;
 }

 public Date getLastActivityDate() {
 return LastActivityDate;
 }

 public void setLastActivityDate(Date lastActivityDate) {
 LastActivityDate = lastActivityDate;
 }

 public String getTitle() {
 return Title;
 }

 public void setTitle(String title) {
 Title = title;
 }

 public String getTags() {
 return Tags;
 }

 public void setTags(String tags) {
 Tags = tags;
 }

 public int getAnsCount() {
 return AnsCount;
 }

 public void setAnsCount(int ansCount) {
 AnsCount = ansCount;
 }

 public int getCommentCount() {
 return CommentCount;
 }

© Daffodil international university
100

 public void setCommentCount(int commentCount) {
 CommentCount = commentCount;
 }
 public int getFavoriteCount() {
 return FavoriteCount;
 }
 public void setFavoriteCount(int favoriteCount) {
 FavoriteCount = favoriteCount;
 }
 public Date getClosedDate() {
 return ClosedDate;
 }
 public void setClosedDate(Date closedDate) {
 ClosedDate = closedDate;
 }
 public Date getCommunityOwnedDate() {
 return CommunityOwnedDate;
 }
 public void setCommunityOwnedDate(Date communityOwnedDate) {
 CommunityOwnedDate = communityOwnedDate;
 }

▪ To view all fields

 @Override
 public String toString() {
 return "Posts{" +
 "PostId=" + PostId +
 ", PostTypeId=" + PostTypeId +
 ", AcceptedAnsId=" + AcceptedAnsId +
 ", ParentId=" + ParentId +
 ", CreationDate=" + CreationDate +
 ", DeletionDate=" + DeletionDate +
 ", Score=" + Score +
 ", ViewCount=" + ViewCount +
 ", Body='" + Body + '\'' +
 ", OwnerUserId=" + OwnerUserId +
 ", OwnerDisplayName='" + OwnerDisplayName + '\'' +
 ", LastEditorUserId=" + LastEditorUserId +
 ", LastEditorDispalyName='" + LastEditorDisplayName + '\'' +
 ", LastEditDate=" + LastEditDate +
 ", LastActivityDate=" + LastActivityDate +
 ", Title='" + Title + '\'' +
 ", Tags='" + Tags + '\'' +
 ", AnsCount=" + AnsCount +
 ", CommentCount=" + CommentCount +
 ", FavoriteCount=" + FavoriteCount +
 ", ClosedDate=" + ClosedDate +
 ", CommunityOwnedDate=" + CommunityOwnedDate +
 '}';
 }
}

© Daffodil international university
101

h. Post Comment Model Class

package ac.daffodil.model;

import org.springframework.data.annotation.CreatedDate;

import javax.persistence.*;
import java.time.LocalDate;

@Entity
@Table(name = "postsComments")
public class PostsComments {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private long postComments_id;

 @Column(name = "Post_Id")
 private long post_id;

 @Column(name = "Score")
 private long score;

 @Column(name = "Text")
 private String text;

 @CreatedDate
 private LocalDate creationDate;

 @Column(name = "UserDisplayName")
 private String userDisplayName;

 @Column(name = "user_id")
 private long user_id;

 public PostsComments() {
 }

 public long getPostComments_id() {
 return postComments_id;
 }

 public void setPostComments_id(long postComments_id) {
 this.postComments_id = postComments_id;
 }

 public long getPost_id() {
 return post_id;
 }
 public void setPost_id(long post_id) {
 this.post_id = post_id;
 }
 public long getScore() {
 return score;

}

© Daffodil international university
102

 public void setScore(long score) {
 this.score = score;
 }

 public String getText() {
 return text;
 }

 public void setText(String text) {
 this.text = text;
 }

 public LocalDate getCreationDate() {
 return creationDate;
 }

 public void setCreationDate(LocalDate creationDate) {
 this.creationDate = creationDate;
 }

 public String getUserDisplayName() {
 return userDisplayName;
 }

 public void setUserDisplayName(String userDisplayName) {
 this.userDisplayName = userDisplayName;
 }

 public long getUser_id() {
 return user_id;
 }

 public void setUser_id(long user_id) {
 this.user_id = user_id;
 }

▪ To view all required fields which have taken

 @Override
 public String toString() {
 return "PostsComments{" +
 "postComments_id=" + postComments_id +
 ", post_id=" + post_id +
 ", score=" + score +
 ", text='" + text + '\'' +
 ", creationDate=" + creationDate +
 ", userDisplayName='" + userDisplayName + '\'' +
 ", user_id=" + user_id +
 '}';
 }
}

© Daffodil international university
103

i. Post feedback model class

package ac.daffodil.model;

import javax.persistence.*;
import java.util.BitSet;
import java.util.Date;

@Entity
@Table(name = "PostFeedback")

▪ Required input fields

public class PostFeedback {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "PostFeedbackId")
 private Long PostFeedbackId;

 @Column(name = "PostId")
 private Long PostId;

 @Column(name = "IsAnonymous")
 private BitSet IsAnonymous;

 @Column(name = "CreationDate")
 private Date CreationDate;

© Daffodil international university
104

▪ Building constructors of fields

 public PostFeedback() {
 }

 public PostFeedback(Long postFeedbackId, Long postId, BitSet isAnonymous, Date creationDate) {
 PostFeedbackId = postFeedbackId;
 PostId = postId;
 IsAnonymous = isAnonymous;
 CreationDate = creationDate;
 }

 public Long getId() {
 return PostFeedbackId;
 }

 public void setId(Long id) {
 this.PostFeedbackId = id;
 }

 public Long getPostId() {
 return PostId;
 }

 public void setPostId(Long postId) {
 PostId = postId;
 }

 public BitSet getIsAnonymous() {
 return IsAnonymous;
 }

 public void setIsAnonymous(BitSet isAnonymous) {
 IsAnonymous = isAnonymous;
 }

 public Date getCreationDate() {
 return CreationDate;
 }

 public void setCreationDate(Date creationDate) {
 CreationDate = creationDate;
 }

▪ To view all the fields specified

 @Override
 public String toString() {
 return "PostFeedback{" +
 "id=" + PostFeedbackId +
 ", PostId=" + PostId +
 ", IsAnonymous=" + IsAnonymous +
 ", CreationDate=" + CreationDate +
 '}';
 }
}

© Daffodil international university
105

j. Post feedback repository

package ac.daffodil.repository;

import ac.daffodil.model.PostFeedback;
import org.springframework.data.jpa.repository.JpaRepository;

public interface PostFeedbackRepository extends JpaRepository<PostFeedback, Long> {
}

k. Post repository

package ac.daffodil.repository;

import ac.daffodil.model.Posts;
import org.springframework.data.jpa.repository.JpaRepository;

public interface PostsRepository extends JpaRepository<Posts, Long> {
}

l. Post comment

package ac.daffodil.repository;

import ac.daffodil.model.PostsComments;
import org.springframework.data.jpa.repository.JpaRepository;

public interface PostsCommentsRepository extends JpaRepository<PostsComments,Long> {
}

9.1.6 Voting code samples

a. Votes Controller

▪ Request mapper & Controller assigned

@Controller
@RequestMapping("/vote")
public class votesController {
 @Autowired
 VotesDao votesDao;

© Daffodil international university
106

▪ All votes will be viewed here

 @RequestMapping(value = { "/votes" }, method = RequestMethod.GET)

 public ModelAndView index() {

 ModelAndView modelAndView = new ModelAndView();

 Votes votes = new Votes();

 modelAndView.addObject("newVotes", votes);

 modelAndView.addObject("votes", votesDao.getAll());

 modelAndView.setViewName("admin/adminVotes");

 return modelAndView;

 }

▪ Saving a vote of a user

 @RequestMapping(value = { "/votes/save" }, method = RequestMethod.POST)

 public String saveVotes(Votes votes) {

 votesDao.save(votes);

 return "redirect:/votes";

 }

▪ Finding a vote of a user (will not be required in later development)

 @RequestMapping(value={"/votes/find/{VoteId}"}, method = RequestMethod.GET)

 public ModelAndView findForEditVotes(@PathVariable(required = true, name = "VoteId") Long VoteId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Votes> votes= votesDao.find(VoteId);

 modelAndView.addObject("newVotes", votes.get());

 modelAndView.addObject("votes", votesDao.getAll());

 modelAndView.setViewName("admin/adminVotes");

 return modelAndView;

 }

▪ Removing vote for the post

 @RequestMapping(value="/votes/delete/{VoteId}", method = RequestMethod.GET)

 public String deleteVotes(@PathVariable(required = true, name = "VoteId") Long VoteId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Votes> votes= votesDao.find(VoteId);

 votesDao.delete(votes.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/votes";

 }

}

© Daffodil international university
107

b. Vote Types Controller

▪ Request mapper & Controller assigned

@Controller

@RequestMapping("/voteType")

public class voteTypesController {

 @Autowired

 VoteTypesDao voteTypesDao;

▪ Type of the votes are viewed

 @RequestMapping(value = { "/voteTypes" }, method = RequestMethod.GET)
 public ModelAndView index() {
 ModelAndView modelAndView = new ModelAndView();
 VoteTypes voteTypes = new VoteTypes();
 modelAndView.addObject("newVoteTypes", voteTypes);
 modelAndView.addObject("voteTypes", voteTypesDao.getAll());
 modelAndView.setViewName("admin/adminVoteTypes");
 return modelAndView;
 }

▪ A new vote type is saved

 @RequestMapping(value = { "/voteTypes/save" }, method = RequestMethod.POST)

 public String saveExam(VoteTypes voteTypes) {

 voteTypesDao.save(voteTypes);

 return "redirect:/voteTypes";

 }

▪ Finding a saved vote type

 @RequestMapping(value={"/voteTypes/find/{VoteTypeId}"}, method = RequestMethod.GET)

 public ModelAndView findForEditVoteTypes(@PathVariable(required = true, name = "VoteTypeId") Long

VoteTypeId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<VoteTypes> voteTypes= voteTypesDao.find(VoteTypeId);

 modelAndView.addObject("newVoteTypes", voteTypes.get());

 modelAndView.addObject("voteTypes", voteTypesDao.getAll());

 modelAndView.setViewName("admin/adminVoteTypes");

 return modelAndView;

 }

© Daffodil international university
108

▪ Deleting a vote type

 @RequestMapping(value="/voteTypes/delete/{VoteTypeId}", method = RequestMethod.GET)

 public String deleteVoteTypes(@PathVariable(required = true, name = "VoteTypeId") Long VoteTypeId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<VoteTypes> voteTypes= voteTypesDao.find(VoteTypeId);

 voteTypesDao.delete(voteTypes.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/voteTypes";

 }

}

c. Suggested Edit Votes

▪ Controller & Request mapper assigned

@Controller

@RequestMapping("/suggestedEditVote")

public class SuggestedEditVotesController {

 @Autowired

 SuggestedEditVotesDao suggestedEditVotesDao;

▪ Viewing suggestion for votes

 @RequestMapping(value = { "/suggestedEditVotes" }, method = RequestMethod.GET)

 public ModelAndView index() {

 ModelAndView modelAndView = new ModelAndView();

 SuggestedEditVotes suggestedEditVotes = new SuggestedEditVotes();

 modelAndView.addObject("newSuggestedEditVotes", suggestedEditVotes);

 modelAndView.addObject("suggestedEditVotes", suggestedEditVotesDao.getAll());

 modelAndView.setViewName("admin/adminSuggestedEditVotes");

 modelAndView.setViewName("user/userSuggestedEditVotes");

 return modelAndView;

 }

▪ Saving a vote

 @RequestMapping(value = { "/suggestedEditVotes/save" }, method = RequestMethod.POST)

 public String saveSuggestedEditVotes(SuggestedEditVotes suggestedEditVotes) {

 suggestedEditVotesDao.save(suggestedEditVotes);

 return "redirect:/suggestedEditVotes";

 }

© Daffodil international university
109

▪ Editing a vote

 @RequestMapping(value={"/suggestedEditVotes/find/{SuggestedEditVotesID}"}, method =

RequestMethod.GET)

 public ModelAndView findForEditSuggestedEditVotes(@PathVariable(required = true, name =

"SuggestedEditVotesID") Long SuggestedEditVotesID) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<SuggestedEditVotes> suggestedEditVotes=

suggestedEditVotesDao.find(SuggestedEditVotesID);

 modelAndView.addObject("newSuggestedEditVotes", suggestedEditVotes.get());

 modelAndView.addObject("suggestedEditVotes", suggestedEditVotesDao.getAll());

 modelAndView.setViewName("admin/adminSuggestedEditVotes");

 modelAndView.setViewName("user/userSuggestedEditVotes");

 return modelAndView;

 }

▪ Deleting a vote

 @RequestMapping(value="/suggestedEditVotes/delete/{SuggestedEditVotesID}", method =

RequestMethod.GET)

 public String deleteSuggestedEditVotes(@PathVariable(required = true, name = "SuggestedEditVotesID")

Long SuggestedEditVotesID) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<SuggestedEditVotes> suggestedEditVotes=

suggestedEditVotesDao.find(SuggestedEditVotesID);

 suggestedEditVotesDao.delete(suggestedEditVotes.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/suggestedEditVotes";

 }

}

d. Suggested edit votes Dao

▪ Repository & model class imported

@Repository

@Transactional

public class SuggestedEditVotesDao implements GenericInterface<SuggestedEditVotes> {

© Daffodil international university
110

▪ All necessary methods from repository is used

 @Autowired
 private SuggestedEditVotesRepository suggestedEditVotesRepository;
 @Override
 public SuggestedEditVotes save(SuggestedEditVotes suggestedEditVotes) {
 suggestedEditVotesRepository.save(suggestedEditVotes);
 return suggestedEditVotes;
 }

 @Override
 public SuggestedEditVotes update(SuggestedEditVotes suggestedEditVotes) {
 suggestedEditVotesRepository.save(suggestedEditVotes);
 return suggestedEditVotes;
 }

 @Override
 public boolean delete(SuggestedEditVotes suggestedEditVotes) {
 suggestedEditVotesRepository.delete(suggestedEditVotes);
 return true;
 }

 @Override
 public List<SuggestedEditVotes> getAll() {
 return suggestedEditVotesRepository.findAll();
 }

 @Override
 public Optional<SuggestedEditVotes> find(Long id) {
 return suggestedEditVotesRepository.findById(id);
 }
}

e. Votes Dao

▪ Repository & Model class imported

@Repository

@Transactional

public class VotesDao implements GenericInterface<Votes> {

© Daffodil international university
111

▪ All necessary methods from repository is used

 @Autowired
 private VotesRepository votesRepository;

 @Override
 public Votes save(Votes votes) {
 votesRepository.save(votes);
 return votes;
 }

 @Override
 public Votes update(Votes votes) {
 votesRepository.save(votes);
 return votes;
 }

 @Override
 public boolean delete(Votes votes) {
 votesRepository.delete(votes);
 return true;
 }

 @Override
 public List<Votes> getAll() {
 return votesRepository.findAll();
 }

 @Override
 public Optional<Votes> find(Long id) {
 return votesRepository.findById(id);
 }
}

f. Vote types Dao

▪ Repository & Model class imported

@Repository

@Transactional

public class VoteTypesDao implements GenericInterface<VoteTypes> {

© Daffodil international university
112

▪ All necessary methods from repository is used

 @Autowired

 private VoteTypesRepository voteTypesRepository;

 @Override

 public VoteTypes save(VoteTypes voteTypes) {

 voteTypesRepository.save(voteTypes);

 return voteTypes;

 }

 @Override

 public VoteTypes update(VoteTypes voteTypes) {

 voteTypesRepository.save(voteTypes);

 return voteTypes;

 }

 @Override

 public boolean delete(VoteTypes voteTypes) {

 voteTypesRepository.delete(voteTypes);

 return true;

 }

 @Override

 public List<VoteTypes> getAll() {

 return voteTypesRepository.findAll();

 }

 @Override

 public Optional<VoteTypes> find(Long id) {

 return voteTypesRepository.findById(id);

 }

}

g. Suggested edit model class

▪ Entity created

@Entity

@Table(name = "SuggestedEditVotes")

© Daffodil international university
113

▪ Necessary fields are taken

public class SuggestedEditVotes {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "SuggestedEditVotesID")
 private Long SuggestedEditVotesID;

 @Column(name = "SuggestedEditId")
 private Long SuggestedEditId;

 @Column(name = "UserId")
 private Long id;

 @Column(name = "CreationDate")
 private Date CreationDate;

 @Column(name = "TargetUserId")
 private Long TargetUserId;

 @Column(name = "TargetRepChange")
 private Long TargetRepChange;

 public SuggestedEditVotes() {
 }

© Daffodil international university
114

▪ Constructors created

 public SuggestedEditVotes(Long suggestedEditVotesID, Long suggestedEditId, Long id, Date creationDate,
Long targetUserId, Long targetRepChange) {

 SuggestedEditVotesID = suggestedEditVotesID;
 SuggestedEditId = suggestedEditId;

 this.id = id;
 CreationDate = creationDate;
 TargetUserId = targetUserId;

 TargetRepChange = targetRepChange;
 }

 public Long getSuggestedEditVotesID() {
 return SuggestedEditVotesID;

 }

 public void setSuggestedEditVotesID(Long suggestedEditVotesID) {
 SuggestedEditVotesID = suggestedEditVotesID;
 }

 public Long getSuggestedEditId() {

 return SuggestedEditId;
 }

 public void setSuggestedEditId(Long suggestedEditId) {
 SuggestedEditId = suggestedEditId;
 }

 public Long getId() {

 return id;
 }

 public void setId(Long id) {
 this.id = id;

 }

 public Date getCreationDate() {

 return CreationDate;
 }

 public void setCreationDate(Date creationDate) {
 CreationDate = creationDate;

 }

 public Long getTargetUserId() {
 return TargetUserId;
 }

 public void setTargetUserId(Long targetUserId) {

 TargetUserId = targetUserId;
 }

© Daffodil international university
115

 public Long getTargetRepChange() {

 return TargetRepChange;

 }

 public void setTargetRepChange(Long targetRepChange) {

 TargetRepChange = targetRepChange;

 }

▪ Method for viewing all fields

 @Override

 public String toString() {

 return "SuggestedEditVotes{" +

 "SuggestedEditVotesID=" + SuggestedEditVotesID +

 ", SuggestedEditId=" + SuggestedEditId +

 ", id=" + id +

 ", CreationDate=" + CreationDate +

 ", TargetUserId=" + TargetUserId +

 ", TargetRepChange=" + TargetRepChange +

 '}';

 }

}

h. Votes Model class

▪ Entity created

@Entity

@Table(name ="Votes")

public class Votes {

© Daffodil international university
116

▪ Necessary fields are taken

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "VoteId")

 private Long VoteId;

 @Column(name = "PostId")

 private Long PostId;

 @Column(name = "VoteTypeId")

 private Long VoteTypeId;

 @Column(name = "UserId")

 private Long id;

 @Column(name = "CreationDate")

 private Date CreationDate;

 @Column(name = "BountyAmount")

 private Long BountyAmount;

© Daffodil international university
117

▪ Constructors created

 public Votes() {

 }

 public Votes(Long postId, Long voteTypeId, Long id, Date creationDate, Long bountyAmount) {

 PostId = postId;

 VoteTypeId = voteTypeId;

 this.id = id;

 CreationDate = creationDate;

 BountyAmount = bountyAmount;

 }

 public Long getVoteId() {

 return VoteId;

 }

 public Long getVoteTypeId() {

 return VoteTypeId;

 }

 public void setVoteTypeId(Long voteTypeId) {

 VoteTypeId = voteTypeId;

 }

 public void setVoteId(Long voteId) {

 VoteId = voteId;

 }

 public Long getPostId() {

 return PostId;

 }

 public void setPostId(Long postId) {

 PostId = postId;

 }

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public Date getCreationDate() {

 return CreationDate;

 }

 public void setCreationDate(Date creationDate) {

 CreationDate = creationDate;

 }

 public Long getBountyAmount() {

 return BountyAmount;

 }

 public void setBountyAmount(Long bountyAmount) {

 BountyAmount = bountyAmount;

 }

© Daffodil international university
118

▪ Method for viewing all fields

 @Override

 public String toString() {

 return "Votes{" +

 "VoteId=" + VoteId +

 ", PostId=" + PostId +

 ", VoteTypeId=" + VoteTypeId +

 ", id=" + id +

 ", CreationDate=" + CreationDate +

 ", BountyAmount=" + BountyAmount +

 '}';

 }

}

i. Vote type model class

▪ Entity created

@Entity

@Table(name = "VoteTypes")

public class VoteTypes {

▪ Necessary fields are taken

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "VoteTypeId")

 private Long VoteTypeId;

 @Column(name = "VoteTypeName")

 private String VoteTypeName;

© Daffodil international university
119

▪ Constructors created

 public VoteTypes() {

 }

 public VoteTypes(String voteTypeName,Long voteTypeId) {

 VoteTypeName = voteTypeName;

 VoteTypeId = voteTypeId;

 }

 public Long getVoteTypeId() {

 return VoteTypeId;

 }

 public void setVoteTypeId(Long voteTypeId) {

 VoteTypeId = voteTypeId;

 }

 public String getVoteTypeName() {

 return VoteTypeName;

 }

 public void setVoteTypeName(String voteTypeName) {

 VoteTypeName = voteTypeName;

 }

▪ Method for viewing all fields

 @Override

 public String toString() {

 return "VoteTypes{" +

 "VoteTypeId=" + VoteTypeId +

 ", VoteTypeName='" + VoteTypeName + '\'' +

 '}';

 }

}

© Daffodil international university
120

9.2 DAFFODIL IDEA HUNT

9.2.1 The programming language and framework which I

choose and why

In this project I use PHP, it is a web programing language also it a scripting language

which is interprets at runtime. I am using PHP in my project in my project because

PHP runs in different platform like Linux, Unix etc. and it is simple and run efficiently

on the server. The main reason of using PHP of it executed without compiling.

Hypertext Preprocessor (PHP) code can embed into HTML code and it can use in

combine with various web content management system. In my project HTML is added

extra advantage for using PHP and I am showing the result or output to use HTML. I

am manipulating HTML tags by using PHP. I manage the database of my project by

using PHP. It makes an easy way for working hand to hand with database server e.g.

MySQL. I make my project dynamic as I can. I take data by using HTML and put this

data into the database through the PHP. Collect data from website and pass it through

the server with checking the validation of the data using PHP. I use PHP for sending

mail to the user. I encrypt the user data and easily can find the todays date and time

by using PHP. In this project I am creating a special area of the website for its member.

I create the login and registration with validation by using PHP. User can add any

member, create, write, delete, modify elements within the database through the PHP.

User can block or restrict users to access some pages of this system. In this project

PHP is handles all forms and its gather data and save data to a file and it can redirect

to user in different page.

9.2.2 Details paragraph about each working function

Login: I created a login page for all types of user with validation.

© Daffodil international university
121

Figure 23: This is the login page.

Figure 24: Temporary block user cannot login.

© Daffodil international university
122

Registration: There are two registration page one is for employee and another is

Student

Figure 25: Student registration.

Figure 26: Employee registration.

© Daffodil international university
123

Dashboard: User can view his/her information with the permission or rights is given.

It’s works dynamically.

Figure 27: Dashboard page.

Figure 28: View All user and student.

© Daffodil international university
124

Figure 29: Admin can view every user’s profile individually.

Figure 30: Admin can manage every user role and permission.

© Daffodil international university
125

Figure 31: Admin can add category of idea and sub category of idea.

Figure 32: User can share their idea.

© Daffodil international university
126

Figure 33: User can view his idea.

Figure 34: Admin can view all idea which was uploaded and have right to give
any kind of status.

© Daffodil international university
127

Chapter 10 - Testing

10.1 OAIHUB

10.1.1 Unit testing

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 01 Test Execute Date: 10/05/2020

Test case: Forum View

Objective: The post came up properly on this page

Data Source: What the user is posting

Case

No.
Description Tasks

Result
Status

(Pass/Fail)
Actual

result

Expected

result

1

We will check if the

post is coming to

this page properly

Post

some

question

All post

show in

the page

All post will

be show in

the page

Pass

The test result screenshot for Unit Test is given below

© Daffodil international university
128

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 02 Test Execute Date: 10/05/2020

Test case: Public post checking

Objective: The user can post properly

Data Source: User Input

Case

No.
Description Tasks

Result
Status

(Pass/Fail)
Actual

result

Expected

result

1

We will check

here whether

the user can

post using all

the inputs

Enter the

information

like title,

description

and tags

The post is

successfully

submitted

The post will

be

successfully

submitted

Pass

The test result screenshot for Unit Test is given below

© Daffodil international university
129

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 03 Test Execute Date: 10/05/2020

Test case: Text Editor text

Objective: Checking the text editor

Data Source: User Input

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

1

We will check the

functionality of the

text editor

Provide the

any king of

data

Text editor

work

properly

Text editor will

be work

properly

Pass

The test result screenshot for Unit Test is given below

© Daffodil international university
130

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 04 Test Execute Date: 10/05/2020

Test case: User Login Window

Objective: Password checking test.

Data Source: User input

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

1

Test for

checking wrong

password.

Enter login Info,

User Email:

Password:

An alert

message

Shown

An alert

message will

be Shown

Pass

The test result screenshot for Unit Test is given below

© Daffodil international university
131

10.1.2 Integration Testing:

Test Priority: High Test Execute by: DIA Intern Team

Integration test No: 01 Test Execute Date: 10/05/2020

Test case: Comment Testing

Objective: Check the comment part

Data Source: User Input

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

1

We will check the

comment function

here to see it is

working properly

Provide

the

data

The

comment is

successfully

submitted

The comment

will be

successfully

submitted

Pass

The test result screenshot for Integration Test is given below

© Daffodil international university
132

Test Priority: High Test Execute by: DIA Intern Team

Integration test No: 02 Test Execute Date: 10/05/2020

Test case: Submitted the Ans

Objective: Check the Ans submission

Data Source: User input

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

1

User is able to

submit the answer

properly. We will

check this function

Provide the

data

The Ans is

successfully

submitted

The Ans will be

is successfully

submitted

Pass

The test result screenshot for Integration Test is given below

© Daffodil international university
133

Test Priority: High Test Execute by: DIA Intern Team

Integration test No: 03 Test Execute Date: 10/05/2020

Test case: Bookmark and voting

Objective: Check bookmark and voting functionality

Data Source: User Input

Case

No.
Description Tasks

Result
Status

(Pass/Fail) Actual result
Expected

result

1

We will check

this functionality

of bookmarking

and voting here

Action

by user

click

Bookmark and

voting

successfully

happened

Bookmark and

voting will be

successfully

happened

Pass

The test result screenshot for Integration Test is given below

© Daffodil international university
134

10.2 DAFFODIL IDEA HUNT

10.2.1 Unit, System and module Testing outcome and errors

Testing is an important part for develop a defect free software. There are different

types of testing:

10.2.2 Interface Testing:

In this part we will checks this site whether all the transportations between the

application server and the web server run efficiently or not. We need to check not only

the communication methods but also check the showing of error message. That’s

means if the web server or database server returns an error message against any

query than application server will collect the message from those servers and display

the error message accordingly to the users.

We found few areas of interface testing those are given below:

• Application: In here we will test the request which are sent properly to the

database and fetch the correct data and display at the user side. If any errors

are found in the application it should be display in the admin side not display in

the user end.

• Web Server: The web server needs to be checked very well because the

application has many requests it must be handled those requests without any

service denial.

• Database Server: We need to test database properly and to be sure that the

queries are sent to the database correctly and execute the appropriate results.

10.2.3 Performance Testing:

In this part we will check the performance of this web application. We test the loading

time of the page, server response rate, application response time at different

connection speeds etc. This testing contains monitoring at several internet speeds and

with standard and peak loads. Some points are given below:

© Daffodil international university
135

Figure 35: In this graph we can see that overall performance report.

• Check the web application data transfer time rate under different connection

with different speeds.

• Test the loading time each of the web page for this web applications.

• If the site gets an interruption while loading, does it create any problems or not,

if the problem is occurring it should be preventing the problem.

• Stress testing is helpful for estimating the breakpoint of this web applications,

which includes placing this applications under-stress until it stops executing.

• Also check the style sheet files, script files to sure that they are minified. And

make sure the all images including all the files are optimizes and compressed

it reduce the loading time of this application.

10.2.4 Usability Testing:

Usability is what makes a web application more acceptable to a user. Day by day

usability testing is becoming an important part of a web base project. This testing can

© Daffodil international university
136

be accomplished by the external testers who represent the intended user base, or the

designers can do this testing internally. Usability test is not the same as the user

experience testing as the targets are entirely different and so are the phases of the

production of the device at which these assessments are carried out. We will also

check this website responsive and mobile friendly.

Figure 36: The usability test report of this site.

We can divide the usability test through a few processes those are given below:

• Menus, Navbar/Navigation bar, buttons or links to several pages on this website

would be simply accessible on all websites and consistent. Color schemes

should be user friendly.

• The content of this site should be appropriate. The web page cannot contain any

linguistic mistakes or misspellings and also, we have to check if there are any

grammatical mistakes exist or not.

• We also check the image alt attribute. The alt attribute helps those users who is

physically disable. By using this attribute, they can understand the image easily.

© Daffodil international university
137

10.2.5 Black Box Testing:

This testing is a testing where examine the functionality of a software without

exploratory its interior structure. This type of testing is not investigative by the tester.

10.2.6 White Box Testing:

In this testing is a testing where examine the interior structure of a software. This type

of testing is investigative by the tester.

10.2.7 Identify Possible Test Scenarios:

A test scenario is a document specifying the application's features to be tested. This

is mainly used to estimate a function end to end and is usually extracted from the use

cases. A single test scenario can concealment a single test case or many. An

examination scenario consequently has a one to many relationships with the test

cases.

© Daffodil international university
138

Scenario testing is a type of testing coordinately using scenarios that are derivative

from use cases. Complex application-logic can be checked using scenario testing

using informal to evaluate test scenarios.

a. Test Case for Registration

Test Priority: High Test Execute by: Jashim Uddin Ahmed

Module Name: Registration part Test Execute Date: 02/05/2020

Pre-requisite: Valid Data Post-requisite: NA

Test Title: Verify registration with valid email address and data.

Test Description: Test the Idea bank registration page.

Pre-condition: User has valid email address and data.

Case

No.

Test

scenario

Test

case
Test data

Result Status

(Pass/

Fail)

Actual

result

Expected

result

01

Registrati

on

Function

ality

Registrati

on:

Check

registrati

on button

action for

correct

data

User Name: Test

Email:

test@gmail.com

Phone:

+8801…56

Address: 1/A,

Dhaka

Password: 12345

Registr

ation

success

ful

Registrati

on will be

successf

ul

pass

02

Registrati

on

Function

ality

Registrati

on:

Check

registrati

User Name: 101

Email:

test/gmail.com

Phone: test

Registr

ation

unsucc

essful

Registrati

on will

not be

pass

mailto:test@gmail.com

© Daffodil international university
139

on button

action for

incorrect

data

Address: 0.16

Password:

123@321A

successf

ul

b. Test Case for login

Test Priority: High Test Execute by: Jashim Uddin Ahmed

Module Name: Login part Test Execute Date: 02/05/2020

Pre-requisite: A valid account Post-requisite: NA

Test Title: Verify login with valid email address and password.

Test Description: Test the Idea bank login page.

Pre-condition: User has valid email address and password.

Case

No.

Test

scenario

Test

case
Test data

Result Status

(Pass/

Fail)

Actual

result

Expected

result

01

Login

Function

ality

Check

login to

block this

site’s

cookie

Email Address:

jashimahmed@gm

ail.com

Password:

jashim12345

Login

unsucc

essful

Login will

not be

successf

ul

pass

02

Login

Function

ality

Check

login to

unblock

this site’s

cookie

Email Address:

jashimahmed@g

mail.com

Password:

jashim12345

Login

success

ful

Login will

be

successf

ul

pass

mailto:jashimahmed@gmail.com
mailto:jashimahmed@gmail.com

© Daffodil international university
140

03

Login

Function

ality

Check

login with

invalid

email &

password

Email Address:

jashimahme.com

Password:

jashim12345

Login

unsucc

essful

Login

must not

be

successf

ul

pass

04

Login

Function

ality

Check

login with

valid

email &

password

Email Address:

jashimahme@gmail

.com

Password:

jashim12345

Login

success

ful

Login

must be

successf

ul

pass

10.2.8 Quality Assurance technique

Quality Assurance is defined as an activity to ensure that users receive the best

service possible from an organization. First of all, I am trying to finish all the

requirement. Information is collected and categorized on software errors and defects.

Developing and testing systems and also "Do" system adjustments. Quality control's

main objective is to ensure that the goods follow the user’s expectations and

requirements.

mailto:jashimahmed@gmail.com
mailto:jashimahme@gmail.com
mailto:jashimahme@gmail.com

© Daffodil international university
141

Chapter 11 - Implementation

Actually, implementation designates the users process of the organization's or

institution’s workflow. User attempts to enhance the integrated work using structured

method. Implementation is a strategy, method, or any design, idea, model, description,

standard or policy for undertaking something. Implementation, as like, is the exploit

that must track any introductory thinking so that something actually happens. The

project team generates the actual invention during implementing. Implementation of

the invention can be an exciting phase for the user, because their project idea

becomes something tangible. The project developers start building the software and

coding it. In the section I will describe how I have implemented everything about this

process.

11.1 Training

Implementation includes a sequence of activities, through which training managers

bring the course according to the approved design to the learners. It necessitates

scheduling of courses, faculties, equipment and service providers aside from

arranging ongoing support for the classroom, and ensuring the smooth flow of

activities as per the plan. A systematic, step-by-step process is used to build an

effective training program. Training initiatives which are standing alone often fail to

meet organizational goals and expectations of the participants.

11.1.1 Assess training needs

Identifying and evaluating needs is the first step to developing a training program.

Training needs of employees may already be identified in strategic, human resources

or individual development plans of the organization.

11.1.2 Set organizational training objectives

Assessments of the training needs (administrative, task & separate) will identify any

gaps in your current training initiatives and skill sets for employees. These gaps should

be analyzed and prioritized, and transformed into the training goals of the organization.

© Daffodil international university
142

The ultimate aim is to bridge the gap between current performance and desired

performance by developing a training program.

11.1.3 Create training action plan

The next step is to create a comprehensive action plan which includes theories of

learning, instructional design, content, materials and any other elements of training.

Methods for delivering resources and training should be detailed as well. The level of

training and the learning styles of the participants also need to be considered when

developing the program.

11.1.4 Implement training initiatives

The phase of implementation is where the workout program comes to life.

Organizations need to choose whether in-house or outwardly coordinated training will

be provided. Implementation of the program includes scheduling training activities and

organizing any associated resources facilities, equipment, etc. Subsequently, the

training program is officially launched, promoted and run.

11.1.5 Evaluate & revise training

As mentioned in the last segment, there should be continuous monitoring of the

training program. Eventually, the entire program should be evaluated to regulate

whether it was successful and meeting the training goals. Feedback from all

stakeholders should be obtained in order to determine the effectiveness of the

program and instructor and also knowledge or skill acquisition. (training-program,

2020)

11.2 Big Bang

Big bang implementation on a single site is considerably easier to manage over

multiple sites than a simultaneous big bang. The usually held view is that

implementations with big bang have an inherently higher risk level. In one instance,

implementation happens. On a given date, all users move onto the new system. The

scope of a big bang implementation can also mean that it is problematic to accomplish

© Daffodil international university
143

complete end to end system testing and it is only when the system goes live that all

interdependencies are fully tested.

© Daffodil international university
144

Chapter 12 - Critical Appraisal and Evaluation

Within this chapter the project overview will be explained. In this topic both the success

and system failure will be discussed. What's more, what experience we gained

throughout the project will also be discussed. Likewise, it includes the success factor,

the amount of objective it met, and what features it could not have met and the reason

with the justification. In this section we will describe how I can meet my objective goal

despite various obstacles.

12.1 Objective that could be met

The project proposed has met some objectives outlined below,

a. Implementing a platform for all student and guardian can get any information about

any institution.

b. This application provides previous question bank with solutions, which can help the

students and they can find these easily.

c. This tis the mature platform for both students and the educational organization.

d. Fix a methodology suitable for implementing a system.

e. Make the project well documented with maintenance the standard.

f. The application has to error free as much as possible.

g. Messaging and commenting system were created for the user (student and

guardian) to organization communication.

h. We are making this application’s database which is based on this project

requirement.

i. This application is web-based application which is portable easy to use from

anywhere.

j. We are making this application with met the requirement which is given by our

moderator.

© Daffodil international university
145

k. We have made this system useful for different types of user and that will be very

helpful for the user.

12.1.1 Success rate against each objective

Success rate to this objective is relatively satisfactory. This rate is impartially alright of

this objective as both student/guardian and organizations can be able to get their own

expected outcome. The organizations or institutions can share their information and

student can view their descriptions and get their expected information’s this thing will

help reduce the hassle of the students also guardian. And it will help more students to

collect questions from different years. As a student and as a guardian they will get

exactly the information they need from here.

12.1.2 How much better it could be done

We are following many structures to standardize this web application. There were

many diagrams in these diagrams that helped us a lot to maintain our sequence like

as activity diagram, sequence diagram, ERD diagram, use case diagram and class

diagram etc. At the same time, we have tried to do proper documentation of all the

diagrams which will help to do more with it in the future. There are some diagrams that

we could not add to this documentation because of the security of the organization.

And there are a lot of options here that have been made for the student or

organizational user in a very convenient way to understand.

12.1.3 How better are the features of the solution?

This web application might be more friendly to the users. If we want to show as an

example then we will see that the forum part has been made very interactive. Any

student or user can ask his/her questions at any moment. And there is a facility to

comment here, if anyone knows the answer, it can be informed through comments

which is very much responsive. As a result, it can solve any types of problem very

quickly and takes very close to the solution. If the time of the project is extended a bit

this system is better than this. The workload was so high, though it was teamwork.

© Daffodil international university
146

12.2 Objectives totally not met / touched

12.2.1 OAIHUB

In this section we will discuss which things we have not been able to do properly and

which we have repeatedly failed to do. We have been able to identify some of the

reasons why we have not been able to properly deploy these items and have been

discarded and I will give some more reasons here in a specific way so that we can

identify very easily. I will write in this section about how we overcome this thing after

repeated failures.

a. Why it could not be touched

For implement this objective we needed proper planning for the work and skills to

increment strongly. The reason is that at the beginning of the work we did not get the

proper planning and at the same time we lacked some skills. That’s why we could not

able to meet some requirements in this web application. If we want to say, we will say

that we have not done the payment part of the pro feature yet. There are some other

user interface functions that are not interactive. And we want to do more with it in the

future. Hopefully we can do it all when the future version comes out.

b. What could have been done

We have tried to reorder our plans properly, if we have to give an example, we have

to make a note of what we will do one day. We kept our notes in different box forms

on priority basis. What we have to do first, what we have to do later. We decorated

those boxes with these things and by doing this we have achieved a fairly good level

of success. Then if we want to say we will talk about our skills because we had a lot

of lucking’s. We used to do a session in between our work every day so that we could

develop our skills and that helped us a lot. Time maintenance is the process for

properly implementing it and properly overcoming it from the situation also done a lot

of security related work in this project.

© Daffodil international university
147

12.2.2 DAFFODIL IDEA HUNT

a. The requirements that cannot be implemented completely and how I

overcome them

In this project I cannot implement one thing that is “draft box”. In this fracture user can

save his or her idea as a draft. When the user wishes, he or she will write and he or

she can pause it if he or she wants. This feature I cannot implement for the reason

due to the shortness of time. This feature was important for this project.

© Daffodil international university
148

Chapter 13 - Conclusion

13.1 OAIHUB

13.1.1 Conclusion

To develop this project ‘OAIHUB’ successfully I have tried our best. The overview of

the entire documentation contains the goals and the success inside this section. This

section also defines implementing knowledges and project values. I have faced many

problems during the development and our mentor help us to overcome the situation.

Many more features are not done yet for the short time of the project that will be

developed in the next. Here I outlined my summary of the total work such as the main

goal, my experience, project value and lots of things. The full project will be very much

benefitted for the students. It has so many details those are given below,

13.1.2 Summary of the project

By following the task, I have appropriately instigated all the project requirements and

its works perfectly. I worked on this project for about six months, during this time I have

implemented many things in this project. I have worked in many fields while doing this

project. I had to collect a lot of in-depth data from various organizations and students

and this core data is working very well in our system. For this we did a very large

survey.

I have done the engineering part of this system very nicely which can be understood

by looking at our documents. I have described all kinds of things in a very stunning

way here such as software architecture design, literature analysis, using different

methodology, diagrams etc. Here the project standards are measured by means of

different categories of assessment techniques. I can say that this documentation does

all categories of project stuff. I have implemented this system by succeeding those

analyzes and trying to make the system which the fixe the real-world problem. And

which will be of great benefit to the students in the future as well as to the benefit of

various educational organizations.

© Daffodil international university
149

13.1.3 Goal of the project

I have created this web application for different students and different educational

institutions. I have tried to fulfill all the requirements and I am describing the goal which

I have identified in below,

• Using this system, the user can get any information about any institution.

• The previous online question bank can help the students. They can find these

easily.

• Students can know the admission procedure in any school, college or

university.

• Students will be able to attend various online exams like (IELTS) which they will

be able to attend through the pro feature.

• It is an educational web application that will help students in a variety of ways.

• With this we have created a communication system and a system for taking

feedback from the user.

• User can discuss anything in the user forum.

13.1.4 Success of the project

The success of each project depends on the acceptance of its respective users and

we've been very successful in bringing it to our users. I would like to say that we have

done all these fields to fulfill the requirements of this project. I have met all the

objectives with data from different students and educational institutions. I have

developed a forum through which any student and any user can find a solution to a

problem very quickly and this forum is very interactive and user friendly for users of

every level. Lastly, I can say that I have been able to fulfill all the objectives in a very

efficient way and that is the main success of our project.

13.1.5 Value of the project

The necessities of our life are increasing day by day, and our problems are increasing

day by day along with our needs. The students of A level and O level in our country

© Daffodil international university
150

need a lot of information to get admission in different universities at some stage of

their education life, not only do we have to talk to our students but the parents also

need a lot of information to enroll their children in different schools and colleges. I have

built-up this web application keeping their words in mind. All the information for

admission of a student and a parent through the application can be found here which

will be very easy for them. I have created a forum here through which any student can

gain knowledge by asking questions on any of his topics. Which will bring a lot of good

for our country.

13.2 DAFFODIL IDEA HUNT

13.3.1 Strengths and weakness

Strengths: My biggest strength is that my system is much more secure and it's much

more user-friendly. This system does responsive behavior, and so much interactive

with users.

Weakness: I miss out on some functions because I couldn't finish everything in a

timely manner.

13.3.2 Future extension scopes

This projector has a lot of potential in the future. I will be bringing many big updates

for users in the future. I will make the admin panel more beautiful so that admin can

maintain everything efficiently. I'll do a little bit better on the management system.

13.3.3 Restate contribution precisely

With this system, the organization will be profitable because the idea of innovation is

going to grow the organization. This will enhance the organization's market value. The

organization's staff and student will be able to generate new ideas every day.

13.3 My experience

I learned a lot during the internship that was new to me. I have worked on a total of

two projectors in my internship and both are web applications. One is “Daffodil Idea

© Daffodil international university
151

Hunt” and another is “OAIHUB”. I have been developed the “Daffodil Idea Hunt”

using PHP. When I work on it, I learn a lot about lots of things, such as database

design, database architecture also I've done a lot of work on how to connect the back-

end with the front-end. We developed “OAIHUB” web application using the java

Spring Boot Framework. I learn a lot of new topics, new skills I can add as my

experience. The biggest thing I have learned is that if I run into a problem, I will find a

way to solve it. I have become skilled at the problem solving very well. The thing that

I have learned very well from here is that one has to finish a job completely despite

the pressure. The requirements that I was able to fulfill in a very efficient way through

teamwork. From here I learned how to manage a team and work with the team and

how to solve problem by working together. I believe that this experience will be very

useful in my future life.

© Daffodil international university
152

References

guru99. (2020, 5 12). Retrieved from https://www.guru99.com/what-everybody-ought-to-know-

about-test-

planing.html#:~:text=A%20TEST%20PLAN%20is%20a,and%20resources%20required%20for%

20testing.&text=The%20test%20plan%20serves%20as,controlled%20by%20the%20test%20

manager.: https://www.guru99.com/what-everybody-ought-to-know-about-test-

planing.html#:~:text=A%20TEST%20PLAN%20is%20a,and%20resources%20required%20for%

20testing.&text=The%20test%20plan%20serves%20as,controlled%20by%20the%20test%20

manager.

keycdn. (2020, 5 12). Retrieved from https://www.keycdn.com/blog/performance-testing:

https://www.keycdn.com/blog/performance-testing

scruminc. (2019). Retrieved 2020, from https://www.scruminc.com/what-is-timeboxing/

security-testing. (2020, 5 12). Retrieved from https://www.guru99.com/what-is-security-

testing.html: https://www.guru99.com/what-is-security-testing.html

softwaretestingclass. (2020, 5 12). Retrieved from https://www.softwaretestingclass.com/what-is-

module-testing-definition-and-differences/: https://www.softwaretestingclass.com/what-is-

module-testing-definition-and-differences/

system-integration-testing. (2020, 5 12). Retrieved from https://www.guru99.com/system-

integration-testing.html: https://www.guru99.com/system-integration-

testing.html#:~:text=System%20Integration%20Testing%20is%20defined,behavior%20of%20

the%20complete%20system.&text=It%20also%20verifies%20a%20software,modules%20of%

20the%20software%20application.

test-plan. (2020, 05 12). Retrieved from softwaretestingfundamentals.com:

http://softwaretestingfundamentals.com/test-plan/

training-program. (2020, 5 7). https://explorance.com/. Retrieved from

https://explorance.com/blog/5-steps-to-creating-effective-training-programs/:

https://explorance.com/blog/5-steps-to-creating-effective-training-programs/

unit-testing-guide. (2020, 5 12). Retrieved from https://www.guru99.com/unit-testing-guide.html:

https://www.guru99.com/unit-testing-

guide.html#:~:text=UNIT%20TESTING%20is%20a%20type,an%20application%20by%20the%

20developers.

© Daffodil international university
153

Plagiarism Report:

