

INTERNSHIP REPORT ON

Online Academic information HUB

 Submitted By

Md Sabbir Mehmud

ID: 181-16-273

This Report Presented in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in Computing and Information System

Supervised By

Ms. Nayeema Rahman

Assistant Professor

Department of CIS

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

Spring 2020

© Daffodil International University i | P a g e

APPROVAL

This Project titled “Online Academic Information Hub”, Submitted by Md Sabbir Mehmud,

ID No: 181-16-273 to the Department of Computing & Information Systems, Daffodil

International University has been accepted as satisfactory for the partial fulfillment of the

requirements for the degree of B.Sc. in Computing & Information Systems and approved as to its

style and contents. The presentation has been held on 19-07-2020.

BOARD OF EXAMINERS

Mr. Md Sarwar Hossain Mollah Chairman

Assistant Professor and Head

Department of Computing & Information Systems

Faculty of Science & Information Technology

Daffodil International University

Ms. Nayeema Rahman Internal Examiner

Sr. Lecturer

Department of Computing & Information Systems

Faculty of Science & Information Technology

Daffodil International University

Mr. Minhaj Hosen Internal Examiner

Lecturer

Department of Computing & Information Systems

Faculty of Science & Information Technology

Daffodil International University

Dr. Saifuddin Md. Tareeq External Examiner
Professor

Department of Computer Science and Engineering

Dhaka University, Dhaka

© Daffodil International University ii | P a g e

Acknowledgement

“First and foremost, honor and thanks to the Almighty Allah for His gifts of blessings

during our study work in order to successfully complete the project.

To our Project Supervisor, Miss Nayeema Rahama Senior Lecturer, Daffodil

International University and partially Md. Mazharul Islam, Lecturer, Programmer,

Daffodil International University, Dhaka, I would like to convey my profound and sincere

appreciation for giving me the opportunity to do research and provide valuable guidance

throughout this research. During the conversation I had with them on research work and

project planning, I extend my heartfelt thanks to them, family for their support, and

patience.

I am very much grateful to my family members for their devotion, prayer, consideration,

and sacrifice to train and prepare me for my future. I am very much grateful to my other

teachers and teammates for their devotion, understanding, prayers and continued

support in completing this project work.”

© Daffodil International University iii | P a g e

Executive summary

The project is practically based on the total packaged information about education sector.

In our country people cannot find proper information anywhere to let their child get

admitted to an affordable institution which will both be good for their child and easy cost

handler for the parents. Nobody is able to find any detailed information about any

institution unless the specific institution is giving their information personally. And we don’t

know if the information is wrong or right as for business purpose everyone can talk loudly

for better revenue, you know what I mean. However, this particular web application I’m

working in, is going to have all specific information a guardian and student needs to decide

which will be the best for him/her. So, now what exactly is in this web application.

Information of every single schools, colleges, universities are included. For example,

admission cost, tution fees, and all other stuffs which are needed. All the institution will

have to give their information to get themselves known to people of Bangladesh. A very

special discussion forum has built to discuss every aspects of educational topics of

Bangladesh. All education board all times question and answer bank will be available in

the web application rather than finding them into various places or books to practice for

next board exam. Almost every kind of job application deadline and the information about

it and the examination date can be found here. People for mock test or model test can

give online exams by giving a very affordable cost for best preparation to a specific field.

The answer sheet will be monitored by best teachers of specific sectors. People can judge

their position of knowledge before giving their specific examination and take better

preparation ahead. All kinds of questions, answers will be available on the website, almost

all exam results will be published maintaining field position throughout the whole country.

In one-word Students will get their every specific information from the website as the

name of the web system is Online academic information hub.

My six-month internship program work was with Daffodil international academy. I was

involved in this as a software developer intern with their intern team name

“DIAINTERNTEAM”. This report will cover some background information on the projects

was involved in as well as details on how the project was developed. The report also

© Daffodil International University iv | P a g e

states that which academic courses and projects helped me in overall in internship

experience so far.

At the very beginning of the internship work I prepared several learning goals, which I

wanted to learn about:

• How to understand the functioning and working conditions of the organization.

• How to explore working in a professional environment.

• How to explore the work environment for the possibility of a future career.

• How to utilize my gained skills and knowledge.

• How to find skills and knowledge I still need to work in a professional environment.

• How to acquire knowledge about software development life cycle.

• How to acquire knowledge about the development methodologies.

• How to gain fieldwork experience/collect data in an environment unknown for me.

• How to acquire experience working in multicultural and diverse environment.

• How to improve my interpersonal and technical skills.

• How to create network with professionals in the industry.

Soo many projects they are developing at that time when I was joined there as an intern.

I have worked in OAIHUB (online academic information HUB) which is one of their major

projects and I had a significant role in this project.my task was to do following:

• Understand and working with spring boot framework.

• Understand and working with ThymeLeaf.

• Understanding Rest API.

• Understand and working with GIT.

I obtain so many new technical skills though my work. I acquire new knowledge in front

end development using ThymeLeaf. I also brushed my HTML5, CSS3, BOOTSTRAP3,

JavaScript, java skills while working there. This internship work also helps me to develop

© Daffodil International University v | P a g e

research and analysis skills. That work helps me to enrich my code documentation

knowledge too. This report shows advantages of using spring boot framework and my

working capabilities and detailed overview of that project where I was involved.

© Daffodil International University vi | P a g e

Table of Contents
Chapter 1 - Introduction ... 1

Purpose ... 1

Overview ... 1

Chapter 2 – Initial Study .. 3

• Background of the project .. 3

• Problem Area .. 3

• Possible solution ... 3

Chapter 3 – Literature Review .. 5

• Discussion on problem domain based on published articles. ... 5

• Discussion on problem solutions based on published articles. .. 6

• Comparison of three/four leading solutions- ... 6

• Recommended approach .. 7

Chapter 4 – Methodology ... 8

• What to use ... 8

• Why to use .. 10

• Sections of methodology .. 10

• Implementation plans ... 12

Chapter 5 - Planning .. 13

• Project plan ... 13

• Work Breakdown Structure (WBS) ... 13

• Gantt Chart.. 14

• Test plan .. 14

Functional testing: .. 15

Non-functional: ... 15

Test case: ... 16

User acceptance test plan: .. 17

Chapter 6 – Foundation .. 18

• Overall Requirement List .. 18

• What Technology to be implemented (Client/Web/Standalone) .. 19

Chapter 7 - Exploration ... 21

© Daffodil International University vii | P a g e

➢ Old Full System Use Case .. 21

Description: ... 22

➢ Old Full System Activity Diagram .. 23

Description: ... 24

➢ Prototype of new system .. 25

Description: ... 25

Chapter 8 - Engineering .. 27

➢ New System Modules ... 27

➢ New Use Case .. 28

Description: ... 29

➢ New Class Diagram .. 30

Description: ... 35

➢ New Entity Relationship Diagram ... 36

Description: ... 36

➢ New Sequence Diagram .. 38

Sequence diagram: As an admin ... 38

Description: ... 39

As a moderator: .. 40

Description: ... 40

As a user: ... 41

Description: ... 41

Chapter 9 - Deployment / Development .. 43

➢ Core Module Coding Samples ... 43

➢ User Management .. 43

➢ Exam Management ... 64

➢ Forum Code sample .. 79

➢ Voting code samples ... 96

Chapter 10 - Testing .. 109

11.1 Unit Testing ... 109

Forum Section ... 109

User Management Section ... 113

11.2 Integration Testing .. 115

Forum Section ... 115

© Daffodil International University viii | P a g e

User Management Section ... 119

Chapter 11 – Implementation ... 121

• Training ... 121

• Assess training needs .. 121

• Set organizational training objectives ... 121

• Create training action plan ... 122

• Implement training initiatives ... 122

• Evaluate & revise training ... 122

• Big Bang ... 122

Chapter 12 - Critical Appraisal and Evaluation ... 124

• Objective that could be met ... 124

• Success rate against each objective .. 125

• How much better it could be done ... 125

• How better are the features of the solution? ... 125

• Objectives totally not met / touched .. 126

• Why it could not be touched .. 126

• What could have been done ... 126

Chapter 13 - Conclusion .. 127

• Conclusion ... 127

Summary of the project .. 127

• Goal of the project .. 127

• Success of the project ... 128

• Value of the project .. 128

• My experience... 129

Bibliography .. 130

© Daffodil International University 1 | P a g e

Chapter 1 - Introduction
Purpose

The documentation below contains a detailed discussion about the workflow of the

project. The purpose of the documentation is to clear the procedure of the project to any

new developer who will be working with this system. As there will be a number of

functionalities in this system which might be tough to understand for some developers.

This documentation will help them to adopt the system with proper knowledge about the

system. There will be some detailed diagrams about the system which will help the user

to understand the workflow of the system. The interfaces of different functionalities will be

provided here for a better understanding of the developers. As we need to run some

testing to find out if the system is running properly, the testing details with the result will

the documented here for the reference. This documentation will clarify the design of the

system and also the reason behind the way the system is designed. This document

contains the algorithm used for the system with proper justification. It also contains the

uses of the database. It clarifies the design of the database, the entity-relationship model

and how the relations are working here. We can consider this documentation as a clear

view of the system. The documentation part is one of the most important parts of the

project. As the system will be developed for public uses so the user interface and the

functionalities must be explained here so that the system remains understandable to all.

With the documentation, the functionalities and designing of the system may not be

understood by the users of the system. For the reason, proper documentation is always

needed for the project.

Overview

At present, people are usually depending on modern technology for their daily activities.

But the education system in Bangladesh has not been digitized with modern technology

yet. Education is one of the most important parts where we need to improve ourselves.

There is a lot of gaps in our education system. There is no site where people can get the

initial information for their children’s admission or anything else. People are suffering

© Daffodil International University 2 | P a g e

many problems for the information gap from the institution. The guardians and students

don’t know about the procedure for their admission to any school, college or university.

So, we want to develop a system where students can get their necessary educational

information. The system will contain all the information of all the educational institutions

from school to university. They can know about the cost of the individual school, college

or university and the procedure for admission to the specific institute. They can know

about the facility of the institute, ranking of their desired institute. Each and everything

information will be uploaded in this system so that students and guardians can be

benefitted. The system will also contain all the public exam questions and answers.

Students can share any questions and answer in this system and there are an admin and

moderator who moderate the user activity, give them access to share questions or any

other. There is a forum where they can discuss the questions or any queries. Any abusive

post will be moderated by the moderator. Students can get any update information by this

system. So, this system will be helpful for the students.

© Daffodil International University 3 | P a g e

Chapter 2 – Initial Study

 Background of the project

In our country admission coaching business plays a significant role when a time periods

comes to our students to get admission in school, college and university. They are facing

so many problems at that moment. At first, they are suffering from information lacking

about that institutions. So many students are unable to collect information from their

preferred institutions by visiting that institutions. Sometimes they missed their admission

test due to lack of valid information. Students can’t decide that moment which educational

institute is good for them. Most students don’t know about payment scheme of an

educational institutions. OAIHUB web application will capable to reduce all of these

problems in future. It allows user to found all information from remote home.

 Problem Area

Every year in our country students are facing so many problems when they are going to

get admitted into a school, college, university, and national university. The student doesn’t

know which school, college, university and the national university is good for him. which

documents are needed if they want to get admitted to their favorite institution? They also

don’t know about their payment system and payment amount. They also don’t have any

concept about their admission test exam questions and so many important information

about their preferred institutions. Sometimes lack of proper information they missed their

admission test exam.

 Possible solution

After analyzing all problems, I saw in our country students are facing so many problems

when they are going to take admission to any educational institute. To reduce all these

problems OAIHUB web application is the best possible solution. This system brings all

academic information to its users. User also can discuss about their academic problems

by creating post with other users. A user also can judge or provide a solution to a post via

creating a comment. User can view previous admission test question of various year.

They also can participate in those old admission test exams to improve their skills. User

never miss any notification of any admission test what user wants to participate. In this

system user also can view their educational institute rank and other important information

© Daffodil International University 4 | P a g e

also. OAIHUB also a great feature for pro users only which is a paid feature of this system.

By using this feature user will get IELTS, GRE, SAT, etc. questions and answer for that

questions and they also participate in online mock test exams.

© Daffodil International University 5 | P a g e

Chapter 3 – Literature Review

 Discussion on problem domain based on published articles.

In our country people suffer from various kinds of problems in education sector.

• Most of the people does not know how to accommodate with the education system

for their child.

• A father doesn’t know which school will be suitable for his child and cost friendly

for him and also well facilitated for both of them based on their situation.

• Sometimes people don’t even know how much money to take out for admission

fees.

• Sometimes some institution may show people that they’re offering very affordable

cost for people but later with time they demand too much high price for completion

of their child’s study. Which creates a heavy pressure on parents.

• When it comes to the question which college will be good and what type of study

a student has to go through nobody knows the proper one.

• Nobody can answer what kind of specific preparation a student should take as

there are thousands of coaching centers and book publishers offering their own

methodologies which only leads to their own business purposes. Students are

greatly suffered there.

• Students cannot find or have to buy previous question banks for high prices for

taking preparation in the exams.

• Model test costs are very much high depending on coaching centers

advertisements “Getting A+ in God Speed” or “Getting admitted into desired

institution with zero study” which is not affordable for all of the students.

• Students who have just graduated don’t know which companies to apply based on

their skills.

• New graduates can’t give proper model tests for their specific job exams or

interviews.

• Students cannot find answers of question banks, cannot take suggestion or

teachings sometime to have the best answer for his problem.

© Daffodil International University 6 | P a g e

• We do not have a discussion hub of our country for educational discussion or

working purpose.

 Discussion on problem solutions based on published articles.

Depending on all these problems various people came up with various solutions.

• Institutes started their own terms of marketing with benefits. Giving various offers

to the students.

• A lot of mini coaching centers for school, college, university admission has created.

• Each and individual coaching centers had specified a specific publication of books

to read.

• People started using various social media sites to find information about

institutions and resources to study for giving exams.

• No specific Solutions has made to solve all the above-mentioned problems.

• Students with low lost budgets are missing thousands of chances and facilities to

shine their life.

• With the digital technology people started learning accordingly how to cope up with

all of this term by term.

 Comparison of three/four leading solutions-

o Best features

• Digitization has made people’s life easier. People can easily access to their

required information though they have to surf for it too much.

• People can rely on specific institutes for getting admitted into them.

• Various information can be found on various places on internet about the

institutions, course curriculum, cost and a lot more.

• Some question answer sheets of various years can be found on internet.

o Limitations

• Information are lack of accuracy. Proper information cannot be found.

• Different sources tell different information. Questions and answers are not found

with accurate guideline or answers.

• Job applications or advertisements are not accurate.

© Daffodil International University 7 | P a g e

• People do not have the ability to speak with the specialists for better solutions.

 Recommended approach

✓ All the educational information and related things should be brought together.

✓ All students should be treated equally.

✓ Parents should know what they are doing. Where their children are getting

admitted, is it affordable and maintaining for the parents.

✓ Students must have the ability to decide where they want to study and grow their

future career.

✓ All educational equipment should be very much affordable so that no one misses

their rights.

✓ Students can give their model test for very much affordable cost for getting

prepared for the exams or jobs.

✓ A place where all the legal information will be found about each and every

educational institution to make decisions for the children. Where People can

compere between the institutions and decide which will be better for their children

and affordable for the parents.

✓ Nothing should be compromised when it’s the question of education and the future

of our country.

✓ Whenever any student is asking a question or in a problem will have the ability to

share it in somewhere where all kinds of specialists will be available to give

solutions.

✓ Nobody will miss their education rights to study and brighten their future.

© Daffodil International University 8 | P a g e

Chapter 4 – Methodology

Methodology is a set of procedures or a particular procedure. It helps to provide

appropriate guideline principle for developing an application or system.

 What to use

In software development site, there are so many methodologies for developing an

application. Agile is one of them. Actually, agile is an evolutionary project management

approach under which requirements and solution evolve through the collaborative effort

of self-organizing/ cross-functional teams and their customer/end users.

it is a project management methodology what uses small development cycles name

“sprints” to attention on continues improvement in the development of an application or a

system.

© Daffodil International University 9 | P a g e

In this project development our team has been conducted with scrum framework of agile.

This framework within which people can address complex adaptive problems, while

productively and creatively delivering products of the highest possible value. Scrum is

lightweight, simple to understand and difficult to master.

© Daffodil International University 10 | P a g e

 Why to use

The reason of using Scrum framework is given below:

• Higher productivity.

• Better-quality products.

• Reduced time to market.

• Improved stakeholder satisfaction.

• Better team dynamics.

• Happier employees.

 Sections of methodology

There are three pillars of Scrum.

• Transparency.

• Inspection.

• Adaption.

© Daffodil International University 11 | P a g e

Transparency

Significant aspects of the process must be visible to those responsible for the outcome.

Transparency requires those aspects be defined by a common standard so observers

share a common understanding of what is being seen.

Inspection

Scrum users must frequently inspect Scrum artifacts and progress toward a Sprint Goal

to detect undesirable variances. Their inspection should not be so frequent that inspection

gets in the way of the work. Inspections are most beneficial when diligently performed by

skilled inspectors at the point of work.

Adaptation

If an inspector determines that one or more aspects of a process deviate outside

acceptable limits, and that the resulting product will be unacceptable, the process or the

material being processed must be adjusted. An adjustment must be made as soon as

possible to minimize further deviation.

© Daffodil International University 12 | P a g e

 Implementation plans

Agile implementation is a form of project management that works in small increments and

well suited to projects that could be become irreverent once delivered, especially useful

in software development. The key to the agile plan is that it provides flexibility for changes

to the product as it continues to be developed. Scrum is a framework of agile what

delivering product iteratively and incrementally in a timebox fashion. This is simple

illustration of what the scrum implementors and others define it, moving with it.

© Daffodil International University 13 | P a g e

Chapter 5 - Planning

 Project plan

The project manager would have to develop a project plan in order to bring the project to

completion. The project plan outlines the project cost, magnitude and timetable. It

describes exactly which activities and tasks are required and where they can be obtained,

and also what resources are required from staff, equipment, and financing. Good project

planning will also help to keep all stakeholders up-to - date and integrated in risk and how

it should be managed, including contingency plans and a communication strategy.

• Work Breakdown Structure (WBS)

Here I’m going to show the entire internship work planning in a way that the internship

work is being done by me. The whole work is divided in small pieces and those are done

within the fixed period of time. In this phase a specific task when will be started and when

will be end those things are defined.

Work breakdown structure:

SL Task title Start date End date Durations

 (Days)

1 Introductions 01.01.20 02.01.20 2

2 Initial study 03.01.20 09.01.20 7

3 Literature review 10.01.20 14.01.20 5

4 Methodology 15.01.20 18.01.20 4

5 Planning 19.01.20 24.01.20 5

6 Foundation 25.01.20 30.01.20 6

7 Exploration 01.02.20 04.02.20 5

8 Engineering 05.02.20 09.02.20 5

9 Deployment 10.02.20 01.03.20 20

© Daffodil International University 14 | P a g e

10 Testing 02.03.20 11.03.20 12

11 Implementation 12.03.20 21.03.20 12

12 Critical Appraisal and

Evaluation

 22.03.20 28.03.20 7

13 Conclusion 29.03.20 30.03.20 2

Totals 90 days

• Gantt Chart

This is chart of our total activity timeline of our whole project. In this Gantt chart all of the

specific individual tasks with a timeframe is presented here.

 Test plan

Testing planning, the most important activity to ensure a list of tasks and milestones for

monitoring project progress is initially included in the baseline plan. The size of the test

effort is also defined.

© Daffodil International University 15 | P a g e

It is the central document sometimes referred to as the Master Test Plan (MIT) or the

project evaluation plan.

There are two types of test. Functional & nonfunctional. (Tutorials Point, p. 2019)

Functional testing:

Functional tests provide the guidance, confirmation and inspiration required by QA teams

to deliver excellent software products. That is why functional testing is a practice of most

successful QA teams. There are several sub types of functional testing. (Simsform, 2019)

Unit testing:

It is a software evaluating method for testing individual software units or components. The

goal is to validate the output of every unit of software code. Unit Testing is carried out

during a software application creation (coding phase). Tests unit isolates and tests for

correctness of a segment of code. A single unit can be a process, method, procedure,

module or entity. (2019, p. Guru99)

Integration Testing:

Integration tests determine if software units that have been developed independently work

properly when connected. Even diffuse software industry standards have broken up the

term, and I was reluctant to use it in my writing. In particular, many people assume that

integration testing is of necessity widely spread, while in a smaller scope it can be done

more effectively. (fowler, 2018)

Module Testing:

The lower unit of each application is a component. The Testing Component is therefore

a technique that allows the smallest or lowest unit of any application to be tested. A

synthesis and integration of several small individual modules may be considered as an

application. It is imperious that every component OR the smallest unit of the application

is thoroughly tested before we test the entire system. (help, 2018)

Non-functional:

Non-functional testing is a kind of software testing term which encompasses several

production testing techniques for the evaluation and evaluation of non-functional

characteristics of a software application. The main purpose of this evaluation method is

to determine, in varying and improvised circumstances, the competence and efficacy of

© Daffodil International University 16 | P a g e

an application. This kind of software test can be seen as a stop solution for different

software issues, such as:

Performance testing:

Performance testing is a method to determine how the device responds with a specific

workload in terms of reactivity and stability. Typically, performance testing is performed

to check speed, robustness, reliability and size. (Neotyz, p. 2019)

Security testing:

Standard functional testing ensures that the software works accordingly. This allows our

customers to assure that their software complies with a list of specifications and

requirements. Security tests are a logical extension of negative tests: they concentrate

on undesirable inputs and the likelihood of substantial failure of these inputs in relation to

the particular specifications of the product being evaluated.

Test case:

A Test case is a series of conditions or variables under which a test system is expected

to satisfy or operate correctly. The method of designing test cases can also help to identify

issues with program specifications or design. (2019)

 Test: 1 Test Class: Designed By

Data Source: Objective: Tester:

Test

Case

Description Tasks Expected Result Actual

Result

1.1 :

Figure: A test case template

© Daffodil International University 17 | P a g e

User acceptance test plan:

One of the last steps in software development is to test user acceptance. Once it is

released, it's the big check. Sometimes the testing for user acceptance is called "beta

testing." You probably know there is more than beta testing for UAT, as we showed you

in this article on the 5 types of UAT. All in all, UAT concerns the user and whether the

user is working on a certain product or service.

Test Priority: Test Execute by:

Unit test No: 01 Test Execute Date:

Test case

Objective:

Data Source:

Case

No.

Description Tasks Result Status

(Pass/Fail)
Actual

result

Expected

result

1

Figure: User acceptance test plan template.

© Daffodil International University 18 | P a g e

Chapter 6 – Foundation

 Overall Requirement List

To Build the preliminary system we need following things to be implemented for

constructing the project. The basic requirements will probably able to cut out the edge of

the project which has been planned out. The requirements which has been analyzed for

so long to develop this system will going to be cover maximum objective requirements of

the proposed system. Here is all the overall requirement list given below:

✓ To register & save new user

✓ To register & save new moderator

✓ To register & save new university moderator

✓ To give control of the whole system in one hand (Admin)

✓ To register & save pro user

✓ To upload and download files via specific users

✓ To upload verified question & answer sheet by moderators

✓ To Upload & view institute details

✓ Compare between institutes details

✓ View & edit user profile

✓ View & edit moderator profile

✓ View & edit pro user profile

✓ View & edit university moderator profile

✓ To register normal registered user as pro user through payment

✓ Pro user has access to most of the things

✓ Pro user can view & download question – answer sheets

✓ Pro user can give model tests

✓ Pro user can apply for model tests

✓ Pro user can apply for specific institutes online

✓ Education board’s various types of exam routines will be shown in the notice board

✓ UGC notices will be shown through moderators.

✓ Institute’s over all details like cost, facilities, study quality, admission details

everything will be shown

© Daffodil International University 19 | P a g e

✓ A discussion forum or system is needed

✓ Every user, requirement-based moderators, pro users, will be able to post the

discussion topics as threads

✓ Other users can comment under those post.

✓ Important threads can be upvoted via rating system

✓ Threads will be attached with tags to make it retable to specific topics

✓ Model tests will be examined and moderated via top notch teachers.

✓ Specific thread publisher names will be visual individually

✓ Specific comment publisher names will be viewed

✓ Every thread will be viewed by time and date.

✓ Comments under a thread will be viewed by date and time. Important file will be

able to uploaded through users, pro users in the threads e.g. snapshots, code

snippets, word docks, images, and many more.

✓ A strong secure database system is needed to store all these information part by

part and sequentially

✓ All specific details will be analyzed and saved via the system.

 What Technology to be implemented (Client/Web/Standalone)

The technologies and languages which are going to be implemented in this system to

develop the proposed system are given below:

Technical Languages

Java, JavaScript, AJAX, XHTML, CSS, Json, JSP, JSTL, HTML, Codemix, NodeJS,

Bootstrap, jQuery,

Databases Systems

MySQL, Tomcat, JDBC,

Technologies

ORM (Object Relational Model) tool, Hibernate, REST API, Restful API, Data JPA, Spring

Boot, Spring Security, Spring Boot Dev tools,

Framework

© Daffodil International University 20 | P a g e

Spring, Thyme Leaf

Build tool

Maven, Gradle

Server Platforms

Daffodil Web Server Storage

© Daffodil International University 21 | P a g e

Chapter 7 - Exploration

➢ Old Full System Use Case

© Daffodil International University 22 | P a g e

Description:

In this information hub there are total 5 types of user. Every user has their own rule to use

this system. They have various type of data access in this system such as:

1. Admin: He/she can register themselves into the system and can login by their personal

information. They can make and modify role in the system, can add user, display all user

role. Modify user, block user, delete user, update user data those also can be accessible

by admin. All type of University, College and Department related data can be display,

blocked, modify or delete by the admin. They also have some pro feature such as control,

provide permission and attend mock test (tester). All necessary file can be handle by the

admin panel, modifying files, delete files, make thread, download file and view file are the

admin panels task. Contain manage like modify, delete, make thread, add and view

contain.

2. Moderator: This panel has less power and access then the admin. Modify user, block

user, delete user, update user data those also can be accessible by moderator panel.

Necessary file can be also handled by the moderator panel. Modifying files, delete files,

make thread, download file and view file are the admin panels task. Contain manage like

modify, delete, make thread, add and view contain.

3. Register user: This panel they can login and register in the beginning. They can see

university, college and department data. From this panel they can also attend mock test.

They will have access to view file and download them. They can able to add content and

also view others.

4. Pro-user: This panel members are the special then register member. This panel

member can login and register in the beginning. They can view university, college and

department all data. From this panel they can attend mock test. They will have access to

view file and download them. They can also able to add content and also view others.

5. General user/visitor: They have the less ability in this system. Visitor can register

themselves. Then they can do many things. Without registration they can only view can

view university, college, department data and some content.

© Daffodil International University 23 | P a g e

➢ Old Full System Activity Diagram

© Daffodil International University 24 | P a g e

Description:

In the activity diagram above the whole procedure that can be undertaken by a user are

shown. If the user is registered, he will go the login page and log into the system providing

valid user ID and password. If he is not registered, he will go to the registration or sign up

page. He has to input some information like name, password and other relevant

information. After signing up he will be able to go to the sign in page to enter the system.

After signing in there will be three type of access. Those are admin, moderator and

general user. Admin can create, delete, update and retrieve any data or account. Admin

will also have to access to block any user. Moderator will have the access to the content

management and file management. For general visitor there will be a view access where

the user can only view the system and its contents. But if they want to download or

download any content, they have to sign in there. After signing in they will have the access

to pro features. In pro feature they can attend the mock tests from the question bank we

have in our database. The admin will have the access to all the features like content, file

management, University management, College management, department management,

User management, role management and pro features. After using the system all kind of

user will be able to log out from the system using a logout function.

© Daffodil International University 25 | P a g e

➢ Prototype of new system

Architectural Design – MVC Architectural

Description:

It’s a system architecture diagram. We followed the design pattern of MVC for our system

design. When a user make request our system through webpage then the webpage make

a http request to the controller as a first step. Controller then process the http request and

generate result in the model. Model gets data from the database. Here model is acting

like a bridge between database and controller. Model does the definition and validation

those data which age coming from the database. Then model send data to the controller.

Controllers then pass those arrange data to view. View shows those data with a nice user

interface through the modern webpage. User interface which is usually seen by the end

© Daffodil International University 26 | P a g e

user. That request and processing are the backend task. If any user make interaction with

UI or make some input then the UI send those inputted data to the controller and controller

send them to the model for analysis and arrange and check validation of those data then

model send them to database to store those user data safely and securely. Then data

base store those data and use shows on the UI that his or her data are securely store in

the system database.

© Daffodil International University 27 | P a g e

Chapter 8 - Engineering

➢ New System Modules

In this Web Application The newly proposed and under developed modules are

fascinating. A total discussion hub, the forum is going to be added and implemented in

this system. Some pro features are going to be introduced for which user will have to pay

to use. Forum discussion will be much like stack overflow. People can discuss about

study, question answers, talk about institutions, post and share job articles and exams,

give mock test, find all kinds of resources every student need in every exam, as it will also

going to be connected with Education boards of Bangladesh & UGC. So, Students, users

will find almost every facility to accommodate.

© Daffodil International University 28 | P a g e

➢ New Use Case

© Daffodil International University 29 | P a g e

Description:

In this information hub there are total 5 types of user. Every user has their own rule to use

this system. They have various type of data access in this system such as:

1. Admin: He/she can register themselves into the system and can login by their personal

information. They can make and modify role in the system, can add user, display all user

role. Modify user, block user, delete user, update user data those also can be accessible

by admin. All type of University, College and Department related data can be display,

blocked, modify or delete by the admin. They also have some pro feature such as control,

provide permission and attend mock test (tester). All necessary file can be handled by the

admin panel, modifying files, delete files, make thread, download file and view file are the

admin panels task. Contain manage like modify, delete, make thread, add and view

contain.

2. Moderator: This panel has less power and access then the admin. Modify user, block

user, delete user, update user data those also can be accessible by moderator panel.

Necessary file can be also handled by the moderator panel. Modifying files, delete files,

make thread, download file and view file are the admin panels task. Contain manage like

modify, delete, make thread, add and view contain.

3. Register user: This panel they can login and register in the beginning. They can see

university, college and department data. From this panel they can also attend mock test.

They will have access to view file and download them. They can able to add content and

also view others.

4. Pro-user: This panel members are the special then register member. This panel

member can login and register in the beginning. They can view university, college and

department all data. From this panel they can attend mock test. They will have access to

view file and download them. They can also able to add content and also view others.

5. General user/visitor: They have the less ability in this system. Visitor can register

themselves. Then they can do many things. Without registration they can only view can

view university, college, department data and some content.

© Daffodil International University 30 | P a g e

➢ New Class Diagram

© Daffodil International University 31 | P a g e

© Daffodil International University 32 | P a g e

© Daffodil International University 33 | P a g e

© Daffodil International University 34 | P a g e

© Daffodil International University 35 | P a g e

Description:

Class diagram is that which contains variables, methods, classes, functions, working

structure and shows the relationship between each one of them. It has a set of classes,

interfaces, collaborations and their relationships. It shows the interactions between the

classes that is used in this system. It represents the whole system in a diagram. This

class diagram contains many classes like, university, department, user, user detail, files,

exam, role etc. and all these class has so many attributes, methods.

Such as, university has university id, university name, location, total student, academic

staff etc. Which shows the all information about a university. Department has, department

id, department name, course duration, amount and also university id which act as a

foreign key here. Department will represent the information of each university’s

information. User has user id, name, password, email, roles, role id etc. Role has role id,

role name. Exam has exam type, exam name. All these classes with their attributes have

relationships between them. By using this UML class diagram, we can show the whole

system relationship how each of the table interact with each other.

User management system has the accessibility and security layer for every type of user.

Admin, moderator, university moderator, user, pro user. All these users have different

part of accessibility in the system. Admin has control over the whole system, moderator

has access to the part which university and institution is going to be registered in the web

application and show their details, they will manage all types of previous questions and

answers of all education boards, and all university module information. There will be

individual university moderator who will be managing specific university ‘s information

which will be modified based on priority time and demand.

Users can see discussions on the forum, question bank on the forum, talk with people,

rate discussion topics, give answers, post job articles, post job exams, and many more.

Users who are going to take part in these things will have to register without only seeing

things posted in the forum. Everyone can post article in the forum and talk about.

Moderators will be monitoring 24 hrs which post will going to be allowed or not in the

forum, if there any bad comments are given or not, later which will be put into the AI to

monitor each and every second if any bad comments are coming or not, which comments

© Daffodil International University 36 | P a g e

should be given priority or permitted to post. Their will be a pro feature item in this web

application. In this feature there will be thousand types of model tests to be given for

getting prepared for the desired destination. Various types of exams, time duration, exam

time schedule, school-college-university admission tests and many more can be given

online. Various types of respective teachers from different institutions will be moderating

the answer sheets. Pro features will be accessible after paying a short amount of cost.

➢ New Entity Relationship Diagram

The ERD Diagram of the whole system is given below:

Description:

An entity relationship diagram (ERD) shows the relationships of entity sets stored in a

database. An entity in this context is an object, a component of data. An entity set is a

collection of similar entities. These entities can have attributes that define its properties.

By defining the entities, their attributes, and showing the relationships between them, an

ER diagram illustrates the logical structure of databases.ER diagrams are used to sketch

out the design of a database. Entity user has user_id BIGINT(20) primary key.

Child_comments has comments id BIGINT(20) primary key.user role hase two primary

key as user id and role id BIGINT(20).persistent logins has series primary key. university

has university id. Department, user organization and finance all have their individual id as

primary key. Role has role id as primary key. File has file id. Exam has exam id as primary

© Daffodil International University 37 | P a g e

id. Password reset token has also id has primarily. Organization entity has org id as

primery key. Here entity User has many to 1 relation between entity user_role. Entity user

has many to 1 relation between entity role. Entity user role has many to 1 relation to entity

password_reset_token. Entity hibernate_sequence hase many to 1 relation between

persistent_login. Child_comments entity has also many to 1 relation between entity

comment.entity comment has 1 to many relation to entity files. Entity files has 1 to many

relation to exams. Entity University has 1 to many relationship between entity department.

Financial entity has 1 to many relation between organization.. entity organization has 1 to

many relation with entity user_organization

Now here comes the forum part. There are different and a bunch of entities are utilized in

this system. Badge id from badge entity is settled as foreign field in user section. Votes

are going to take place through the posts of the forum. People can give an upvote or a

downvote to individual post. One user one vote system has designed. Votes are also

systemized with the type of vote people can give. The system will show suggestion about

editing votes and a result of edited votes. People can give feedback about the post. Its

different from comment section. There will be a trash systemization of closed thing topics,

post, and more. The ‘Close as off topic reason types” will hold the details of users

registered and blocked or deleted/banned with specific time calculation and the typical

reason the user’s banned for. And a post with deleted section where all kinds of specific

details of the post/post will be captured. How the post was, post type, comments and

everything about it. Posts can be flagged or reposted by users based on some flag types

or custom flagging types. When posts are flagged a review section as created for

moderators and admins. Posts will be reviewed and a date will be stored for it. The flagged

post will be reviewed by a systematic way which will follow some rules. After review a

detailed information about the review will be stored for future consultation. Furthermore,

a Post History section will be stored and monetized. Every post will be categorized by

post history types. Well now a very important part is Tagging posts with specific keywords

for making it relevant with the discussion topics. Tags will be connected by post id. A

synonym section of tags is also available for posts. Last but not the least the most

important part is Post / Threads by which the Forum term is stablished. All the posts are

© Daffodil International University 38 | P a g e

utilized by user ids, post types, comments, post links, post notice, post notice types. All

the Entities are very much connected to each other in the system.

➢ New Sequence Diagram

Sequence diagram: As an admin

© Daffodil International University 39 | P a g e

Description:

This diagram shows that the admin request for login to the admin portal. It fetches the

data which stored on the database server. Database stored the information of the school,

college and university. Admin can view the detail information of the institution that are

stored on the database server. Admin can manage the university, college, and

department. And he can also remove any user from the system. The files which are

uploaded by the user are managed by admin and he can manage or remove any files

from the database server.

© Daffodil International University 40 | P a g e

As a moderator:

Description:

Moderator request to login into the system. It fetches data from database and give them

login onto the system. Moderator can manage the files, remove any files from the server

and he also manage the user. He can approve any user to use the system or block them

from the system if any abusive is occurred by them.

© Daffodil International University 41 | P a g e

As a user:

Description:

To login into the system as a user first they have to sign up. After that, the user information

will be stored on the database. Every time when user request to login it fetch the data

© Daffodil International University 42 | P a g e

from the database server and give them approval to login. User can view the detail

information of university, school or college. They can upload any file which are approved

by the moderator. User can request for any test to participate on that. All these

information, question bank and answer are store on database server. After any request it

fetch the data from database and show the detail information to user. In the forum section

All users are permitted to throw discussions individually and others are permitted to

comment on those.

© Daffodil International University 43 | P a g e

Chapter 9 - Deployment / Development

➢ Core Module Coding Samples

➢ User Management

In this section the user, Admin & Moderator management section Has been coded. The

code architecture of user management is given bellow.

1.1 User Class

Here the Class is created to take user information in the system.

• Libraries are Imported here

package ac.daffodil.model;

import org.hibernate.validator.constraints.Length;

import javax.persistence.*;

import javax.validation.constraints.Email;

import javax.validation.constraints.NotEmpty;

import java.util.Set;

© Daffodil International University 44 | P a g e

• User Entity is Created

@Entity

@Table(name = "user")

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "user_id")

 private Long id;

 @Column(name = "email")

 @Email(message = "*Please provide a valid Email")

 @NotEmpty(message = "*Please provide an email")

 private String email;

 @Column(name = "password")

 @Length(min = 4, message = "*Your password must have at least 4 characters")

 private String password;

 @Column(name = "firstName")

 @NotEmpty(message = "*Please provide your first name")

 private String firstName;

 @Column(name = "last_name")

 @NotEmpty(message = "*Please provide your last name")

 private String lastName;

 @Column(name = "mobile")

 @NotEmpty(message = "*Please provide your mobile number")

 private String mobileNumber;

 @Column(name = "active")

 private int active;

 @Column(name = "roleId")

 private long roleId;

 @ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)

 @JoinTable(name = "user_role", joinColumns = @JoinColumn(name = "user_id",

 referencedColumnName = "user_id"), inverseJoinColumns = @JoinColumn(name

= "role_id",

 referencedColumnName = "role_id"))

 private Set<Role> roles;

 public User() {

 }

© Daffodil International University 45 | P a g e

• Variables or Field Data of Entity

 public User(User user) {

 this.id = user.getId();

 this.email = user.getEmail();

 this.firstName = user.getFirstName();

 this.active = user.getActive();

 this.roleId = user.getRoleId();

 this.roles = user.getRoles();

 this.mobileNumber = user.getMobileNumber();

 this.lastName = user.getLastName();

 this.password = user.getPassword();

 }

© Daffodil International University 46 | P a g e

• Getter Setters for taking Data & Saving them into Database

 public Long getId() {
 return id;

 }

 public void setId(Long id) {
 this.id = id;

 }

 public String getEmail() {
 return email;

 }

 public void setEmail(String email) {
 this.email = email;

 }

 public String getPassword() {

 return password;
}

 public void setPassword(String password) {

 this.password = password;

 }

 public String getFirstName() {

 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;

 }

 public String getMobileNumber() {
 return mobileNumber;

 }

 public void setMobileNumber(String mobileNumber) {
 this.mobileNumber = mobileNumber;
 }

 public int getActive() {
 return active;

 }

 public void setActive(int active) {

© Daffodil International University 47 | P a g e

• A Method is created to Show all those data

 @Override

 public String toString() {

 return "User{" +

 "id=" + id +

 ", email='" + email + '\'' +

 ", password='" + password + '\'' +

 ", firstName='" + firstName + '\'' +

 ", lastName='" + lastName + '\'' +

 ", mobileNumber='" + mobileNumber + '\'' +

 ", active=" + active +

 ", roleId=" + roleId +

 ", roles=" + roles +

 '}';

 }

}

1.2 User Dao Class

• The Data Access object is to fetch data from database of user and modify

them.

• This Class implements the generic class where all the method signatures

remain same to call upon all the class.

© Daffodil International University 48 | P a g e

@Service

public class UserDao implements GenericInterface<User> {

 @Qualifier("userRepository")

 @Autowired

 private UserRepository userRepository;

 @Override

 public User save(User user) {

 userRepository.save(user);

 return user;

 }

 @Override

 public User update(User user) {

 userRepository.save(user);

 return user;

 }

 @Override

 public boolean delete(User user) {

 userRepository.delete(user);

 return true;

 }

 @Override

 public List<User> getAll() {

 return userRepository.findAll();

 }

 @Override

 public Optional<User> find(Long id) {

 return userRepository.findById(id);

 }

 public Optional<User> findByUsername(String userName) {

 return userRepository.findByFirstName(userName);

© Daffodil International University 49 | P a g e

1.3 User Repository Class

• The JPA Repository dependency class is inherited

package ac.daffodil.repository;

import ac.daffodil.model.University;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

@Repository("universityRepository")

public interface UniversityRepository extends JpaRepository<University, Long> {

}

1.4 Role Class

• Role will be added by this class code objects

© Daffodil International University 50 | P a g e

package ac.daffodil.model;

import javax.persistence.*;

@Entity

@Table(name = "role")

public class Role {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "role_id")

 private long id;

 @Column(name = "roleName")

 private String roleName;

 public Role() {

 }

 public long getId() {

 return id;

 }

 public void setId(long id) {

 this.id = id;

 }

 public String getRoleName() {

 return roleName;

 }

 public void setRoleName(String roleName) {

 this.roleName = roleName;

 }

 @Override

 public String toString() {

 return "Role{" +

© Daffodil International University 51 | P a g e

1.5 Role Dao Class

Here Libraries, role class & role repository has been imported to call in action

package ac.daffodil.dao;

import ac.daffodil.model.Role;

import ac.daffodil.repository.RoleRepository;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.stereotype.Service;

import java.util.List;

import java.util.Optional;

@Service

public class RoleDao implements GenericInterface<Role> {

 @Qualifier("roleRepository")

 @Autowired

 private RoleRepository roleRepository;

 @Override

 public Role save(Role role) {

 roleRepository.save(role);

 return role;

 }

 @Override

 public Role update(Role role) {

 roleRepository.save(role);

 return role;

 }

© Daffodil International University 52 | P a g e

 @Override

 public boolean delete(Role role) {

 roleRepository.delete(role);

 return true;

 }

 @Override

 public List<Role> getAll() {

 return roleRepository.findAll();

 }

 @Override

 public Optional<Role> find(Long id) {

 return roleRepository.findById(id);

 }

}

1.6 Role Repository Class

• The JPA Repository dependency class is inherited

package ac.daffodil.repository;

import ac.daffodil.model.Role;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.data.jpa.repository.Query;

import org.springframework.stereotype.Repository;

@Repository("roleRepository")

public interface RoleRepository extends JpaRepository<Role, Long> {

 @Query(value = "SELECT MAX(ROLE_ID) FROM ROLE", nativeQuery = true)

 long countForMaxId();

}

© Daffodil International University 53 | P a g e

1.7 Customer User Details Service Class

• This class fetches all the emails and search for existing emails to login or

signup process

@Service
public class CustomUsersDetailsService implements UserDetailsService {

 @Autowired
 @Qualifier("userRepository")

 private UserRepository userRepository;

 @Override
 public UserDetails loadUserByUsername(String email) throws

UsernameNotFoundException {
 Optional<User> optionalUsers = userRepository.findByEmail(email);

 optionalUsers

 .orElseThrow(() -> new UsernameNotFoundException("Username not
found"));
 return optionalUsers

 .map(CustomUsersDetails::new).get();
 }
}

1.8 User Dash Controller Class

• All information is fetched and shown through this program in the user

dashboard

@Controller

@RequestMapping("/user")

public class userDashController {

 @RequestMapping(value = {"/userDashPage"}, method = RequestMethod.GET)

 public ModelAndView index(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.setViewName("user/userDash");

 return modelAndView;

 }

}

1.9 User Controller Class

• This class is for moderator & admin to control user system

© Daffodil International University 54 | P a g e

@Controller
@RequestMapping("/user")

public class UserController {
 @Autowired

 BCryptPasswordEncoder passwordEncoder;

 @Autowired
 UserDao userDao;

 @Autowired

 RoleDao roleDao;

• method for fetching user & role information

 @RequestMapping(value = {"/userPage"}, method = RequestMethod.GET)
 public ModelAndView index(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();
 modelAndView.addObject("users", userDao.getAll());
 modelAndView.addObject("roles", roleDao.getAll());
// for (Role role : roleDao.getAll()) {

// System.out.println(role.getRoleName());
// }
 modelAndView.addObject("message", request.getParameter("message"));
 modelAndView.addObject("newUser", new User());

 modelAndView.addObject("newRole", new Role());
 modelAndView.setViewName("admin/adminUser");
 return modelAndView;
 }

• Method for Saving a user & his/her role

 @RequestMapping(value = "/saveUser", method = RequestMethod.POST)
 public String saveUser(User user) {

 ModelAndView modelAndView = new ModelAndView();
 Optional<Role> role = roleDao.find(user.getRoleId());
 Set<Role> roles = new HashSet<Role>();
 roles.add(role.get());

 user.setRoles(roles);
 user.setPassword(passwordEncoder.encode(user.getPassword()));
 userDao.save(user);
 modelAndView.addObject("message", " Data Has Been Saved...");

 return "redirect:/user/userPage";
 }

© Daffodil International University 55 | P a g e

• Method for editing a user information

 @RequestMapping(value = {"/findForEditUser/{id}"}, method = RequestMethod.GET)
 public ModelAndView findForEditUser(@PathVariable(required = true, name = "id")

Long id) {
 ModelAndView modelAndView = new ModelAndView();
 Optional<User> user = userDao.find(id);
 modelAndView.addObject("newUser", user.get());

 modelAndView.addObject("users", userDao.getAll());
 modelAndView.addObject("roles", roleDao.getAll());
 modelAndView.setViewName("admin/adminUser");
 return modelAndView;

 }

• Method for deleting a user completely

 @RequestMapping(value = "/deleteUser/{id}", method = RequestMethod.GET)
 public String deleteUser(@PathVariable(required = true, name = "id") Long id) {
 ModelAndView modelAndView = new ModelAndView();
 Optional<User> user = userDao.find(id);
 userDao.delete(user.get());
 modelAndView.addObject("message", " Data Has Been Deleted...");
 return "redirect:/user/userPage";
 }
}

1.10 Signup Controller Class

• Here all the user classes have been imported

• All the Data Access Object Classes are imported

• All the information is processed to assign a new user information

package ac.daffodil.controller;

import ac.daffodil.dao.RoleDao;
import ac.daffodil.dao.UserDao;
import ac.daffodil.model.Role;
import ac.daffodil.model.User;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.support.RedirectAttributes;

import javax.servlet.http.HttpServletRequest;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

© Daffodil International University 56 | P a g e

@Controller
public class signupController {

 @Autowired
 BCryptPasswordEncoder passwordEncoder;

 @Autowired
 UserDao userDao;

 @Autowired
 RoleDao roleDao;

• Login Page & backend Operation method Attached

 @RequestMapping(value = {"/login"}, method = RequestMethod.GET)

 public ModelAndView loginPage(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.setViewName("fragments/login");

 return modelAndView;

 }

• Redirecting to login method

 @GetMapping("/loginFailure")
 public String loginFailure(RedirectAttributes redirectAttributes) {
 redirectAttributes.addFlashAttribute("message", "Invalid Username or
Password...");
 redirectAttributes.addFlashAttribute("alertClass", "alert-danger");
 return "redirect:/login";
 }

• Signup Method

 @RequestMapping(value = {"/signup"}, method = RequestMethod.GET)

 public ModelAndView signup(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("newUser", new User());

 modelAndView.addObject("roles", roleDao.getAll());

 modelAndView.setViewName("fragments/signup");

 return modelAndView;

 }

© Daffodil International University 57 | P a g e

• Save the newly signed up user in database

 @RequestMapping(value = "/saveUser", method = RequestMethod.POST)

 public String saveUser(User user, RedirectAttributes redirectAttributes,

HttpServletRequest request) {

 try {

 user.setActive(1);

 List<Role> roles = roleDao.getAll();

 for (Role role : roles) {

 if (role.getRoleName().equals("user")) {

 user.setRoleId(role.getId());

 Set<Role> roleSet = new HashSet<Role>();

 roleSet.add(role);

 user.setRoles(roleSet);

 }

 }

 user.setPassword(passwordEncoder.encode(user.getPassword()));

 userDao.save(user);

 redirectAttributes.addFlashAttribute("message", "User Saved

SuccessFully... ");

 redirectAttributes.addFlashAttribute("alertClass", "alert-success");

 return "redirect:/signup";

 } catch (Exception e) {

 redirectAttributes.addFlashAttribute("message", "Error... Please Cheack

and input Correct Data.");

 redirectAttributes.addFlashAttribute("alertClass", "alert-danger");

 return "redirect:/signup";

 }

 }

}

© Daffodil International University 58 | P a g e

1.11 Role Controller Class

• Role management methods are written here

@Controller
@RequestMapping("/role")

public class RoleController {

 @Autowired
 RoleDao roleDao;

 @RequestMapping(value = {"/rolePage"}, method = RequestMethod.GET)
 public ModelAndView index(HttpServletRequest request) {
 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("roles", roleDao.getAll());
 modelAndView.addObject("message", request.getParameter("message"));
 modelAndView.addObject("newRole", new Role());
 modelAndView.setViewName("admin/adminRole");

 return modelAndView;
 }

• Save new role

 @RequestMapping(value = "/saveRole", method = RequestMethod.POST)
 public String saveRole(Role newRole) {

 ModelAndView modelAndView = new ModelAndView();
 roleDao.save(newRole);
 modelAndView.addObject("message", " Data Has Been Saved...");
 return "redirect:/role/rolePage";

 }

• Edit role

 @RequestMapping(value = {"/findForEditRole/{id}"}, method = RequestMethod.GET)
 public ModelAndView findForEditRole(@PathVariable(required = true, name = "id")

Long id) {
 ModelAndView modelAndView = new ModelAndView();
 Optional<Role> role = roleDao.find(id);
 modelAndView.addObject("newRole", role.get());

 modelAndView.addObject("roles", roleDao.getAll());
 modelAndView.setViewName("admin/adminRole");
 return modelAndView;
 }

© Daffodil International University 59 | P a g e

• Delete role

 @RequestMapping(value = "/deleteRole/{id}", method = RequestMethod.GET)
 public String deleteRole(@PathVariable(required = true, name = "id") Long id) {

 ModelAndView modelAndView = new ModelAndView();
 Optional<Role> role = roleDao.find(id);
 roleDao.delete(role.get());
 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/role/rolePage";
 }
}

1.12 Home Controller Class

• This class controls, models & shows the homepage / dashboard in a

designed way

@Controller
public class HomeController {

 @RequestMapping(value = {"/"}, method = RequestMethod.GET)
 public ModelAndView index() {
 ModelAndView modelAndView = new ModelAndView();

 modelAndView.setViewName("fragments/layout");
 return modelAndView;
 }

• Admin & user login controller

 @RequestMapping(value = {"/defaultLogin"}, method = RequestMethod.GET)

 public String defaultLogin(HttpServletRequest request) {

 if (request.isUserInRole("admin")) {

 return "redirect:/admin/adminDashPage";

 }

 return "redirect:/user/userDashPage";

 }

}

© Daffodil International University 60 | P a g e

1.13 Admin Dash Controller class

• This class controls how the admin dashboard will show up

@Controller
@RequestMapping("/admin")

public class adminDashController {
 @RequestMapping(value = {"/adminDashPage"}, method = RequestMethod.GET)
 public ModelAndView index(HttpServletRequest request) {
 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("message", request.getParameter("message"));
 modelAndView.setViewName("admin/adminDash");
 return modelAndView;
 }

}

Configuration

1.14 Login Security Class

@EnableJpaRepositories(basePackageClasses = UserRepository.class)
@Configuration

@EnableWebSecurity
public class LoginSecurity extends WebSecurityConfigurerAdapter {

 @Autowired
 CustomUsersDetailsService userDetailsService;

 @Autowired

 BCryptPasswordEncoder passwordEncoder;

 @Bean
 public BCryptPasswordEncoder passwordEncoder() {

 BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();
 return bCryptPasswordEncoder;
 }

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth.userDetailsService(userDetailsService).passwordEncoder(passwordEncoder);
 }

© Daffodil International University 61 | P a g e

• Security & Authorization method for users

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .csrf()
 .disable().authorizeRequests()
 .antMatchers("/", "/login").permitAll()

.antMatchers("/admin/**").hasAnyRole("admin").and().authorizeRequests()
 .antMatchers("/user/**").hasAnyRole("admin", "user")

.and().authorizeRequests().and().exceptionHandling().accessDeniedPage("/403")
 .and().formLogin()
 .loginPage("/login")
 .defaultSuccessUrl("/defaultLogin")
 .failureUrl("/loginFailure")
 .usernameParameter("username")
 .passwordParameter("password")
 .and().logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/");

 }

• Password encryption Method & Algorithm imported from java library

• If password matches with the stored password in the database, user will be

logged in

© Daffodil International University 62 | P a g e

 private PasswordEncoder getPasswordEncoder() {

 return new PasswordEncoder() {

 @Override

 public String encode(CharSequence charSequence) {

 return charSequence.toString();

 }

 @Override

 public boolean matches(CharSequence charSequence, String s) {

 return true;

 }

 };

 }

}

1.15 Web MVC Config Class

• Ensures security by using this design pattern

@Configuration

public class WebMvcConfig extends WebMvcConfigurerAdapter {

 @Bean

 public BCryptPasswordEncoder passwordEncoder() {

 BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();

 return bCryptPasswordEncoder;

 }

 public static void main(String[] args) {

 BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();

 System.out.println(bCryptPasswordEncoder.encode("1234"));

 }

}

© Daffodil International University 63 | P a g e

Generic Interface

• This interface is used to hold all similar methods & signature in one place &

use them in all the necessary classes & codes where it needs to be used

public interface GenericInterface<T> {

 T save(T val);

 T update(T val);

 boolean delete(T val);

 List<T> getAll();

 Optional<T> find(Long id);

}

© Daffodil International University 64 | P a g e

➢ Exam Management

2.1 Exam Class

• This class is creating for creating an entity named exam and to save exam

details in database by following some methods, objects, variables

package ac.daffodil.model;

import javax.persistence.*;

import javax.validation.constraints.NotEmpty;

@Entity

@Table(name = "exam")

public class Exam {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "exam_id")

 private Long exam_id;

 @Column(name = "exam_type")

 @NotEmpty(message = "*please select an examtype")

 private String exam_type;

 @Column(name = "exam_name")

 @NotEmpty(message = "*please select exam name")

 private String exam_name;

• method for selecting exam type

 public Exam() {

 }

 public Exam(@NotEmpty(message = "*please select an examtype") String exam_type,

@NotEmpty(message = "*please select exam name") String exam_name) {

 this.exam_type = exam_type;

 this.exam_name = exam_name;

 }

© Daffodil International University 65 | P a g e

• taking inputs for exam files

 public Long getExam_id() {

 return exam_id;

 }

 public void setExam_id(Long exam_id) {

 this.exam_id = exam_id;

 }

 public String getExam_type() {

 return exam_type;

 }

 public void setExam_type(String exam_type) {

 this.exam_type = exam_type;

 }

 public String getExam_name() {

 return exam_name;

 }

 public void setExam_name(String exam_name) {

 this.exam_name = exam_name;

 }

• Showing exam details

 @Override

 public String toString() {

 return "Exam{" +

 "exam_id=" + exam_id +

 ", exam_type='" + exam_type + '\'' +

 ", exam_name='" + exam_name + '\'' +

 '}';

 }

}

© Daffodil International University 66 | P a g e

Exam Repository

• Exam JPA dependency repository inheritance

package ac.daffodil.repository;

import ac.daffodil.model.Exam;

import org.springframework.data.jpa.repository.JpaRepository;

public interface ExamRepository extends JpaRepository<Exam, Long> {

}

2.2 Exam Dao

@Repository

@Transactional

public class ExamDao implements GenericInterface<Exam> {

 @Autowired

 private ExamRepository examRepository;

• Save exam information method

 @Override

 public Exam save(Exam exam) {

 examRepository.save(exam);

 return exam;

 }

• Update exam information method

 @Override

 public Exam update(Exam exam) {

 examRepository.save(exam);

 return exam;

 }

• Delete exam information method

 @Override

 public boolean delete(Exam exam) {

 examRepository.delete(exam);

 return true;

 }

• Fetch all exam information method

 @Override

 public List<Exam> getAll() {

 return examRepository.findAll();

 }

© Daffodil International University 67 | P a g e

• Search exam information method

 @Override

 public Optional<Exam> find(Long id) {

 return examRepository.findById(id);

 }

}

Exam Controller

• Imported examDao Class to access methods from it

@Controller

public class ExamController {

 @Autowired

 ExamDao examDao;

• Exam details representation method

 @RequestMapping(value = {"/exam"}, method = RequestMethod.GET)

 public ModelAndView index() {

 ModelAndView modelAndView = new ModelAndView();

 Exam newExam = new Exam();

 modelAndView.addObject("newExam", newExam);

 modelAndView.addObject("exams", examDao.getAll());

 modelAndView.setViewName("admin/adminExam");

 return modelAndView;

 }

• Save Exam details method

 @RequestMapping(value = {"/exam/save"}, method = RequestMethod.POST)

 public String saveExam(Exam exam) {

 examDao.save(exam);

 return "redirect:/exam";

 }

• Editing exam information method

 @RequestMapping(value = {"/exam/find/{exam_id}"}, method = RequestMethod.GET)

 public ModelAndView findForEditExam(@PathVariable(required = true, name =

"exam_id") Long exam_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Exam> exam = examDao.find(exam_id);

 modelAndView.addObject("newExam", exam.get());

 modelAndView.addObject("exams", examDao.getAll());

 modelAndView.setViewName("admin/adminExam");

 return modelAndView;

 }

© Daffodil International University 68 | P a g e

• Deleting exam information method

 @RequestMapping(value = "/exam/delete/{exam_id}", method = RequestMethod.GET)

 public String deleteExam(@PathVariable(required = true, name = "exam_id") Long

exam_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Exam> exam = examDao.find(exam_id);

 examDao.delete(exam.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/exam";

 }

}

2.3 Comments

• Comment Class is for taking comments upon files & Exam

@Entity

@Table(name = "comments")

public class Comments {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long comment_id;

 @Column(nullable = false)

 private String user_email;

 @NotEmpty

 private String comment_text;

 @CreationTimestamp

 private LocalDateTime date_time;

 @UpdateTimestamp

 private LocalDateTime updated_date_time;

 @ManyToOne

 private File file;

 @OneToMany(mappedBy = "comments")

 private List<ChildComments> childComments = new ArrayList<>();

© Daffodil International University 69 | P a g e

• Taking comments as input

 public Comments() {

 }

 public Comments(String user_email, String comment_text, LocalDateTime date_time,

LocalDateTime updated_date_time, File file) {

 this.user_email = user_email;

 this.comment_text = comment_text;

 this.date_time = date_time;

 this.updated_date_time = updated_date_time;

 this.file = file;

 }

 public Long getComment_id() {

 return comment_id;

 }

 public void setComment_id(Long comment_id) {

 this.comment_id = comment_id;

 }

 public String getComment_text() {

 return comment_text;

 }

 public void setComment_text(String comment_text) {

 this.comment_text = comment_text;

 }

 public LocalDateTime getDate_time() {

 return date_time;

 }

 public void setDate_time(LocalDateTime date_time) {

 this.date_time = date_time;

 }

 public LocalDateTime getUpdated_date_time() {

 return updated_date_time;

 }

 public File getFile() {

 return file;

 }

 public void setFile(File file) {

 this.file = file;

 }

 public String getUser_email() {

© Daffodil International University 70 | P a g e

• Showing Comments method

 @Override

 public String toString() {

 return "Comments{" +

 "comment_id=" + comment_id +

 ", user_email='" + user_email + '\'' +

 ", comment_text='" + comment_text + '\'' +

 ", date_time=" + date_time +

 ", updated_date_time=" + updated_date_time +

 ", file=" + file +

 ", childComments=" + childComments +

 '}';

 }

}

2.4 Child Comments

• Child Comment Class is for taking Child comments or comments of

comments upon files & Exam

• Taking Child comments as input

package ac.daffodil.model;

import javax.persistence.*;

@Entity

public class ChildComments {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long ccomments_id;

 private String sub_comments;

 private String user_name

 @ManyToOne

 private Comments comments;

 public ChildComments() {

 }

© Daffodil International University 71 | P a g e

 public ChildComments(String sub_comments) {

 this.sub_comments = sub_comments;

 }

 public ChildComments(String sub_comments, String user_name) {

 this.sub_comments = sub_comments;

 this.user_name = user_name;

 }

 public Long getCcomments_id() {

 return ccomments_id;

 }

 public void setCcomments_id(Long ccomments_id) {

 this.ccomments_id = ccomments_id;

 }

 public String getSub_comments() {

 return sub_comments;

 }

 public void setSub_comments(String sub_comments) {

 this.sub_comments = sub_comments;

 }

 public Comments getComments() {

 return comments;

 }

 public void setComments(Comments comments) {

 this.comments = comments;

 }

 public String getUser_name() {

 return user_name;

 }

 public void setUser_name(String user_name) {

 this.user_name = user_name;

 }

© Daffodil International University 72 | P a g e

Showing child comments method

 @Override

 public String toString() {

 return "ChildComments{" +

 "ccomments_id=" + ccomments_id +

 ", sub_comments='" + sub_comments + '\'' +

 ", user_name='" + user_name + '\'' +

 ", comments=" + comments +

 '}';

 }

}

2.5 Comment Repository

• Spring Boot JPA repository

package ac.daffodil.repository;

import ac.daffodil.model.Comments;

import org.springframework.data.jpa.repository.JpaRepository;

public interface CommentRepository extends JpaRepository<Comments, Long> {

}

2.6 Child Comments Repository

• Spring Boot JPA repository

package ac.daffodil.repository;

import ac.daffodil.model.ChildComments;

import org.springframework.data.jpa.repository.JpaRepository;

public interface ChildCommentRepository extends JpaRepository<ChildComments, Long> {

}

2.7 Comments Dao

@Repository

@Transactional

public class CommentDao implements GenericInterface<Comments> {

 @Autowired

 CommentRepository commentRepository;

• Saving Comments into database method

 @Override

 public Comments save(Comments comments) {

 commentRepository.save(comments);

 return comments;

 }

© Daffodil International University 73 | P a g e

• Updating Comments into database method

 @Override

 public Comments update(Comments comments) {

 commentRepository.save(comments);

 return comments;

 }

• Deleting Comments from database method

 @Override

 public boolean delete(Comments comments) {

 commentRepository.delete(comments);

 return true;

 }

• Showing Comments from database method

 @Override

 public List<Comments> getAll() {

 return commentRepository.findAll();

 }

• Finding Comments from database method

 @Override

 public Optional<Comments> find(Long id) {

 return commentRepository.findById(id);

 }

}

2.8 Child Comments Dao

@Repository

public class ChildCommentDao implements GenericInterface<ChildComments> {

 @Autowired

 ChildCommentRepository childCommentRepository;

• Saving Child Comments into database method

 @Override

 public ChildComments save(ChildComments childComments) {

 childCommentRepository.save(childComments);

 return childComments;

 }

© Daffodil International University 74 | P a g e

• Updating Child Comments into database method

 @Override

 public ChildComments update(ChildComments childComments) {

 childCommentRepository.save(childComments);

 return childComments;

 }

• Deleting Child Comments from database method

 @Override

 public boolean delete(ChildComments childComments) {

 childCommentRepository.delete(childComments);

 return true;

 }

• Showing Child Comments from database method

 @Override

 public List<ChildComments> getAll() {

 return childCommentRepository.findAll();

 }

• Finding Child Comments from database method

@Override

 public Optional<ChildComments> find(Long id) {

 return childCommentRepository.findById(id);

 }

}

© Daffodil International University 75 | P a g e

2.9 Comment Controller

@Controller

public class CommentController {

 Logger logger = LoggerFactory.getLogger(getClass());

 @Autowired

 CommentDao commentDao;

 @Autowired

 FileDao fileDao;

 @Autowired

 ChildCommentDao childCommentDao;

 Comments comments = new Comments();

 List<Comments> comments1 = new LinkedList<>();

 ChildComments childComments = new ChildComments();

• Comment Representation method

 @RequestMapping(value = {"/comment"}, method = RequestMethod.GET)

 public ModelAndView commentPage() {

 ModelAndView modelAndView = new ModelAndView();

 Comments newComment = new Comments();

 comments1 = new LinkedList<>();

 for (Comments cmt : commentDao.getAll()) {

 if (cmt.getFile().getFile_id() == comments.getFile().getFile_id()) {

 comments1.add(cmt);

 }

 }

 modelAndView.addObject("newComment", comments);

 modelAndView.addObject("commentList", comments1);

 modelAndView.setViewName("user/userDashComment");

 return modelAndView;

 }

© Daffodil International University 76 | P a g e

• Find & Get Comment & File ID for resolving problems

 @RequestMapping(value = {"/comment/findForFile/{file_id}"}, method =

RequestMethod.GET)

 public ModelAndView findForSetFileId(@PathVariable(required = true, name =

"file_id") Long file_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<File> file = fileDao.find(file_id);

 comments.setFile(file.get());

 Object principal =

SecurityContextHolder.getContext().getAuthentication().getPrincipal();

 if (principal instanceof User) {

 String email = ((User) principal).getEmail();

 comments.setUser_email(email);

 }

 comments1 = new LinkedList<>();

 for (Comments cmt : commentDao.getAll()) {

 if (cmt.getFile().getFile_id() == file_id) {

 comments1.add(cmt);

 }

 }

 modelAndView.addObject("commentList", comments1);

 modelAndView.addObject("newComment", comments);

 modelAndView.setViewName("user/userDashComment");

 return modelAndView;

 }

© Daffodil International University 77 | P a g e

• Saving Comments into database method

 @RequestMapping(value = {"/comment/saveComment"}, method = RequestMethod.POST)

 public String saveComment(Comments comments, RedirectAttributes

redirectAttributes) {

 commentDao.save(comments);

 redirectAttributes.addFlashAttribute("message", "You Comment is= " +

comments.getComment_text());

 redirectAttributes.addFlashAttribute("alertClass", "alert-success");

 return "redirect:/comment";

 }

• Child Comment through Id

 @RequestMapping(value = {"/comment/find/{comment_id}"}, method =

RequestMethod.GET)

 public ModelAndView findForEditComment(@PathVariable(required = true, name =

"comment_id") Long comment_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Comments> comments = commentDao.find(comment_id);

 modelAndView.addObject("newComment", comments.get());

 modelAndView.addObject("commentList", comments1);

 modelAndView.setViewName("user/userDashComment");

 return modelAndView;

 }

• Deleting Child Comments from database method

 @RequestMapping(value = "/comment/delete/{comment_id}", method =

RequestMethod.GET)

 public String deleteExam(@PathVariable(required = true, name =

"comment_id") Long comment_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Comments> comments = commentDao.find(comment_id);

 commentDao.delete(comments.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/comment";

 }

© Daffodil International University 78 | P a g e

• Child Comment through sequential id by finding comment id

 @RequestMapping(value = {"/findForComment/{comment_id}"}, method =

RequestMethod.GET)

 public ModelAndView findForSetCommentId(@PathVariable(required = true, name =

"comment_id") Long comment_id) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Comments> comment = commentDao.find(comment_id);

 ChildComments childComments = new ChildComments();

 childComments.setComments(comment.get());

 modelAndView.addObject("newComment", childComments);

 System.out.println(childComments.getComments().getComment_id());

 modelAndView.setViewName("user/childComment");

 return modelAndView;

 }

• Saving Child Comment

 @RequestMapping(value = {"/comment/saveChildComment"}, method =

RequestMethod.POST)

 public String saveChildComment(ChildComments childComments,

RedirectAttributes redirectAttributes) {

 Object principal =

SecurityContextHolder.getContext().getAuthentication().getPrincipal();

 if (principal instanceof User) {

 String name = ((User) principal).getFirstName();

 childComments.setUser_name(name);

 childCommentDao.save(childComments);

 redirectAttributes.addFlashAttribute("message", "Your Comment is= " +

comments.getComment_text());

 redirectAttributes.addFlashAttribute("alertClass", "alert-success");

 return "redirect:/comment";

 }

 return "redirect:/comment";

 }

}

© Daffodil International University 79 | P a g e

➢ Forum Code sample

a) Post Controller

@Controller

@RequestMapping("/forum")

public class PostsController {

 @Autowired

 PostsDao postsDao;

 To view all the threads / post on the forum home page

 @RequestMapping (value = {"/posts"}, method = RequestMethod.GET)

 public ModelAndView index(HttpServletRequest request) {

 ModelAndView modelAndView = new ModelAndView();

 Posts Post = new Posts();

 modelAndView.addObject("Post", Post);

 modelAndView.addObject("posts", postsDao.getAll());

 modelAndView.setViewName("Body/forum");

 return modelAndView;

 }

 Submit a post or ask a question and press submit

@RequestMapping (value = {"/posts/submitPost"}, method = RequestMethod.GET)

 public ModelAndView submitPost() {

 ModelAndView modelAndView = new ModelAndView();

 Posts newPost = new Posts();

 modelAndView.addObject("newPost", newPost);

 modelAndView.addObject("posts", postsDao.getAll());

 modelAndView.setViewName("Body/askQuestion");

 return modelAndView;

 }

 Saving the post into database

 @RequestMapping(value = {"/posts/savePost"}, method = RequestMethod.POST)
 public String savePost(Posts posts){
 ModelAndView modelAndView = new ModelAndView();
 postsDao.save(posts);
 modelAndView.addObject("message","Data Has been saved");
 return "redirect:/forum/posts";
 }

© Daffodil International University 80 | P a g e

 Searching all threads by user

 @RequestMapping(value = {"/posts/findAll"}, method = RequestMethod.GET)

 public ModelAndView findPosts(){

 ModelAndView modelAndView = new ModelAndView();

 modelAndView.addObject("posts",postsDao.getAll());

 modelAndView.setViewName("Body/postDetails");

 return modelAndView;

 }

 Optional<Posts> posts = Optional.of(new Posts());

 Searching a single thread

 @RequestMapping(value = {"/posts/find/{PostId}"}, method = RequestMethod.GET)

 public ModelAndView findForShowingPost(@PathVariable(required = true, name = "PostId")Long PostId){

 ModelAndView modelAndView = new ModelAndView();

 posts = postsDao.find(PostId);

 modelAndView.addObject("posts",posts.get());

 List<Posts> allPosts = new LinkedList<>();

 for (Posts askPost : postsDao.getAll()) {

 if (askPost.getPostId() != posts.get().getPostId()){

 allPosts.add(askPost);

 }

 }

 modelAndView.addObject("newPost", allPosts);

 modelAndView.setViewName("Body/postDetails");

 return modelAndView;

 }

 Delete a thread

 @RequestMapping(value = {"/posts/delete/{PostId}"}, method = RequestMethod.GET)

 public String findForDeletingPost(@PathVariable(required = true,name = "PostId")Long PostId){

 ModelAndView modelAndView = new ModelAndView();

 Optional<Posts> posts = postsDao.find(PostId);

 postsDao.delete(posts.get());

 modelAndView.addObject("message", "Post has been deleted");

 return "redirect:/forum/posts";

 }

}

b) Feedback of threads controller

@Controller

@RequestMapping("/PostFeedback")

public class PostFeedbackController {

 @Autowired

 PostFeedbackDao postFeedbackDao;

© Daffodil International University 81 | P a g e

 Viewing feedbacks

 @RequestMapping(value = { "/postFeedback" }, method = RequestMethod.GET)
 public ModelAndView index() {
 ModelAndView modelAndView = new ModelAndView();
 PostFeedback postFeedback = new PostFeedback();
 modelAndView.addObject("newPostFeedback", postFeedback);
 modelAndView.addObject("postFeedback", postFeedbackDao.getAll());
 modelAndView.setViewName("admin/adminPostFeedback");
 modelAndView.setViewName("user/userPostFeedback");
 return modelAndView;
 }

 Writing feedback

 @RequestMapping(value = { "/postFeedback/save" }, method = RequestMethod.POST)

 public String savePostFeedback(PostFeedback postFeedback) {

 postFeedbackDao.save(postFeedback);

 return "redirect:/postFeedback";

 }

 Find feedback by id

 @RequestMapping(value={"/postFeedback/find/{PostFeedbackId}"}, method = RequestMethod.GET)

 public ModelAndView findForEditPostFeedback(@PathVariable(required = true, name =

"PostFeedbackId") Long PostFeedbackId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<PostFeedback> postFeedback= postFeedbackDao.find(PostFeedbackId);

 modelAndView.addObject("newPostFeedback", postFeedback.get());

 modelAndView.addObject("postFeedback", postFeedbackDao.getAll());

 modelAndView.setViewName("admin/adminPostFeedback");

 modelAndView.setViewName("user/userPostFeedback");

 return modelAndView;

 }

 Delete feedback by id

 @RequestMapping(value="/postFeedback/delete/{PostFeedbackId}", method = RequestMethod.GET)

 public String deletePostFeedback(@PathVariable(required = true, name = "PostFeedbackId") Long

PostFeedbackId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<PostFeedback> postFeedback= postFeedbackDao.find(PostFeedbackId);

 postFeedbackDao.delete(postFeedback.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/postFeedback";

 }

}

© Daffodil International University 82 | P a g e

c) Thread comments Controller

@Controller

@RequestMapping("/postComment")

public class PostsCommentsController {

 @Autowired

 PostsCommentsDao postsCommentsDao;

 Viewing all comments by post id

 @RequestMapping(value = {"/postComments"},method = RequestMethod.GET)

 public ModelAndView index(){

 ModelAndView modelAndView = new ModelAndView();

 PostsComments newPostsComment = new PostsComments();

 modelAndView.addObject("newPostsComment",newPostsComment);

 modelAndView.addObject("postsComment",postsCommentsDao.getAll());

 modelAndView.setViewName("admin/adminPendingFlags");

 return modelAndView;

 }

 Saving a comment of thread / post

 @RequestMapping(value = {"/postComments/save"},method = RequestMethod.POST)

 public String savePostComments(PostsComments postsComments){

 postsCommentsDao.save(postsComments);

 return "redirect:/postComments";

 }

 Searching a comment or editing

 @RequestMapping(value = {"/postComments/find/{postComments_id}"},method = RequestMethod.GET)

 public ModelAndView findForEditingPostComments(@PathVariable(required = true,name =

"postComments_id")Long postComments_id){

 ModelAndView modelAndView =new ModelAndView();

 Optional<PostsComments> postsComments = postsCommentsDao.find(postComments_id);

 modelAndView.addObject("newPostComments", postsComments.get());

 modelAndView.addObject("postComments", postsCommentsDao.getAll());

 modelAndView.setViewName("admin/adminPendingFlags");

 return modelAndView;

 }

© Daffodil International University 83 | P a g e

 Deleting a comment

 @RequestMapping(value = {"/postComments/delete/{postComments_id}"},method = RequestMethod.GET)

 public String findForDeletingPendingFlags(@PathVariable(required = true,name =

"postComments_id")Long postComments_id){

 ModelAndView modelAndView = new ModelAndView();

 Optional<PostsComments> postsComments = postsCommentsDao.find(postComments_id);

 postsCommentsDao.delete(postsComments.get());

 modelAndView.addObject("message","data has been deleted");

 return "redirect:/postComments";

 }

}

d) Post / thread DAO class

 Imported repository of post

@Repository
@Transactional
public class PostsDao implements GenericInterface<Posts> {
 @Autowired
 private PostsRepository postsRepository;

 All necessary methods to handle posts in controller

 @Override
 public Posts save(Posts posts) {
 postsRepository.save(posts);
 return posts;
 }

 @Override
 public Posts update(Posts posts) {
 postsRepository.save(posts);
 return posts;
 }

 @Override
 public boolean delete(Posts posts) {
 postsRepository.delete(posts);
 return true;
 }

 @Override
 public List<Posts> getAll() {
 return postsRepository.findAll();
 }

 @Override
 public Optional<Posts> find(Long id) {
 return postsRepository.findById(id);
 }
}

© Daffodil International University 84 | P a g e

e) Feedback of posts

 Post feedback & repository has imported

@Repository
@Transactional
public class PostFeedbackDao implements GenericInterface<PostFeedback> {
 @Autowired
 private PostFeedbackRepository postFeedbackRepository;

 All necessary methods

 @Override
 public PostFeedback save(PostFeedback postFeedback) {
 postFeedbackRepository.save(postFeedback);

return postFeedback;
 }

 @Override
 public PostFeedback update(PostFeedback postFeedback) {
 postFeedbackRepository.save(postFeedback);
 return postFeedback;
 }

 @Override
 public boolean delete(PostFeedback postFeedback) {
 postFeedbackRepository.save(postFeedback);
 return true;
 }

 @Override
 public List<PostFeedback> getAll() {
 return postFeedbackRepository.findAll();
 }

 @Override
 public Optional<PostFeedback> find(Long id) {
 return postFeedbackRepository.findById(id);
 }
}

f) Post comment Dao

 Post comment model and repository classes are imported

@Repository
@Transactional
public class PostsCommentsDao implements GenericInterface<PostsComments>{

 @Qualifier("postsCommentsRepository")
 @Autowired
 PostsCommentsRepository postsCommentsRepository;

© Daffodil International University 85 | P a g e

 All necessary methods are written

 @Override
 public PostsComments save(PostsComments postsComments) {
 postsCommentsRepository.save(postsComments);
 return postsComments;
 }

 @Override
 public PostsComments update(PostsComments postsComments) {

 postsCommentsRepository.save(postsComments);
 return postsComments;
 }

 @Override
 public boolean delete(PostsComments postsComments) {
 postsCommentsRepository.delete(postsComments);

 return true;
 }

 @Override
 public List<PostsComments> getAll() {
 return postsCommentsRepository.findAll();

 }

 @Override

 public Optional<PostsComments> find(Long id) {
 return postsCommentsRepository.findById(id);

 }
}

© Daffodil International University 86 | P a g e

g) Post Class

package ac.daffodil.model;

import javax.persistence.*;

import java.util.*;

@Entity

@Table(name="posts")

public class Posts {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name= "PostId")

 private long PostId;

 @Column(name = "PostTypeId")

 private long PostTypeId;

 @Column(name = "AcceptedAnsId")

 private long AcceptedAnsId;

 @Column(name = "ParentId")

 private long ParentId;

 @Column(name = "CreationDate")

 private Date CreationDate;

 @Column(name = "DeletionDate")

 private Date DeletionDate;

 @Column(name = "Score")

 private Float Score;

 @Column(name = "ViewCount")

 private int ViewCount;

 @Column(name = "Body")

 private String Body;

© Daffodil International University 87 | P a g e

 @Column(name = "OwnerUserId")

 private long OwnerUserId;

 @Column(name = "OwnerDisplayName")

 private String OwnerDisplayName;

 @Column(name = "LastEditorUserId")

 private long LastEditorUserId;

 @Column(name = "LastEditorDisplayName")

 private String LastEditorDisplayName;

 @Column(name = "LastEditDate")

 private Date LastEditDate;

 @Column(name = "LastActivityDate")

 private Date LastActivityDate;

 @Column(name = "Title")

 private String Title;

 @Column(name = "Tags")

 private String Tags;

 @Column(name = "AnsCount")

 private int AnsCount;

 @Column(name = "CommentCount")

 private int CommentCount;

 @Column(name = "FavoriteCount")

 private int FavoriteCount;

 @Column(name = "ClosedDate")

 private Date ClosedDate;

 @Column(name = "CommunityOwnedDate")

 private Date CommunityOwnedDate;

 public Posts() {

 }

 public Posts(long postTypeId, long acceptedAnsId, long parentId, Date creationDate, Date deletionDate,

Float score, int viewCount, String body, long ownerUserId, String ownerDisplayName, long lastEditorUserId,

String lastEditorDisplayName, Date lastEditDate, Date lastActivityDate, String title, String tags, int ansCount,

int commentCount, int favoriteCount, Date closedDate, Date communityOwnedDate) {

 PostTypeId = postTypeId;

 AcceptedAnsId = acceptedAnsId;

 ParentId = parentId;

 CreationDate = creationDate;

 DeletionDate = deletionDate;

© Daffodil International University 88 | P a g e

 Score = score;
 ViewCount = viewCount;
 Body = body;
 OwnerUserId = ownerUserId;
 OwnerDisplayName = ownerDisplayName;
 LastEditorUserId = lastEditorUserId;
 LastEditorDisplayName = lastEditorDisplayName;
 LastEditDate = lastEditDate;
 LastActivityDate = lastActivityDate;
 Title = title;
 Tags = tags;
 AnsCount = ansCount;
 CommentCount = commentCount;
 FavoriteCount = favoriteCount;
 ClosedDate = closedDate;
 CommunityOwnedDate = communityOwnedDate;
 }

 public long getPostId() {
 return PostId;
 }

 public void setPostId(long postId) {
 PostId = postId;
 }

 public long getPostTypeId() {
 return PostTypeId;
 }

 public void setPostTypeId(long postTypeId) {
 PostTypeId = postTypeId;
 }

 public long getAcceptedAnsId() {
 return AcceptedAnsId;
 }

 public void setAcceptedAnsId(long acceptedAnsId) {
 AcceptedAnsId = acceptedAnsId;
 }

 public long getParentId() {
 return ParentId;
 }

 public void setParentId(long parentId) {
 ParentId = parentId;
 }

 public Date getCreationDate() {
 return CreationDate;
 }

© Daffodil International University 89 | P a g e

 public void setCreationDate(Date creationDate) {
 CreationDate = creationDate;
 }
 public Date getDeletionDate() {
 return DeletionDate;
 }

 public void setDeletionDate(Date deletionDate) {
 DeletionDate = deletionDate;
 }

 public Float getScore() {
 return Score;
 }

 public void setScore(Float score) {
 Score = score;
 }

 public int getViewCount() {
 return ViewCount;
 }

 public void setViewCount(int viewCount) {
 ViewCount = viewCount;
 }

 public String getBody() {
 return Body;
 }

 public void setBody(String body) {
 Body = body;
 }

 public long getOwnerUserId() {
 return OwnerUserId;
 }

 public void setOwnerUserId(long ownerUserId) {
 OwnerUserId = ownerUserId;
 }

 public String getOwnerDisplayName() {
 return OwnerDisplayName;
 }

 public void setOwnerDisplayName(String ownerDisplayName) {
 OwnerDisplayName = ownerDisplayName;
 }

 public long getLastEditorUserId() {
 return LastEditorUserId;
 }

© Daffodil International University 90 | P a g e

 public void setLastEditorUserId(long lastEditorUserId) {
 LastEditorUserId = lastEditorUserId;
 }

 public String getLastEditorDisplayName() {
 return LastEditorDisplayName;
 }

 public void setLastEditorDisplayName(String lastEditorDisplayName) {
 LastEditorDisplayName = lastEditorDisplayName;
 }

 public Date getLastEditDate() {
 return LastEditDate;
 }

 public void setLastEditDate(Date lastEditDate) {
 LastEditDate = lastEditDate;
 }

 public Date getLastActivityDate() {
 return LastActivityDate;
 }

 public void setLastActivityDate(Date lastActivityDate) {
 LastActivityDate = lastActivityDate;
 }

 public String getTitle() {
 return Title;
 }

 public void setTitle(String title) {
 Title = title;
 }

 public String getTags() {
 return Tags;
 }

 public void setTags(String tags) {
 Tags = tags;
 }

 public int getAnsCount() {
 return AnsCount;
 }

 public void setAnsCount(int ansCount) {
 AnsCount = ansCount;
 }

 public int getCommentCount() {
 return CommentCount;
 }

© Daffodil International University 91 | P a g e

 public void setCommentCount(int commentCount) {
 CommentCount = commentCount;
 }
 public int getFavoriteCount() {
 return FavoriteCount;
 }
 public void setFavoriteCount(int favoriteCount) {
 FavoriteCount = favoriteCount;
 }
 public Date getClosedDate() {
 return ClosedDate;
 }
 public void setClosedDate(Date closedDate) {
 ClosedDate = closedDate;
 }
 public Date getCommunityOwnedDate() {
 return CommunityOwnedDate;
 }
 public void setCommunityOwnedDate(Date communityOwnedDate) {
 CommunityOwnedDate = communityOwnedDate;
 }

 To view all fields

 @Override
 public String toString() {
 return "Posts{" +
 "PostId=" + PostId +
 ", PostTypeId=" + PostTypeId +
 ", AcceptedAnsId=" + AcceptedAnsId +
 ", ParentId=" + ParentId +
 ", CreationDate=" + CreationDate +
 ", DeletionDate=" + DeletionDate +
 ", Score=" + Score +
 ", ViewCount=" + ViewCount +
 ", Body='" + Body + '\'' +
 ", OwnerUserId=" + OwnerUserId +
 ", OwnerDisplayName='" + OwnerDisplayName + '\'' +
 ", LastEditorUserId=" + LastEditorUserId +
 ", LastEditorDispalyName='" + LastEditorDisplayName + '\'' +
 ", LastEditDate=" + LastEditDate +
 ", LastActivityDate=" + LastActivityDate +
 ", Title='" + Title + '\'' +
 ", Tags='" + Tags + '\'' +
 ", AnsCount=" + AnsCount +
 ", CommentCount=" + CommentCount +
 ", FavoriteCount=" + FavoriteCount +
 ", ClosedDate=" + ClosedDate +
 ", CommunityOwnedDate=" + CommunityOwnedDate +
 '}';
 }
}

h) Post Comment Model Class

© Daffodil International University 92 | P a g e

package ac.daffodil.model;

import org.springframework.data.annotation.CreatedDate;

import javax.persistence.*;
import java.time.LocalDate;

@Entity
@Table(name = "postsComments")
public class PostsComments {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private long postComments_id;

 @Column(name = "Post_Id")
 private long post_id;

 @Column(name = "Score")
 private long score;

 @Column(name = "Text")
 private String text;

 @CreatedDate
 private LocalDate creationDate;

 @Column(name = "UserDisplayName")
 private String userDisplayName;

 @Column(name = "user_id")
 private long user_id;

 public PostsComments() {
 }

 public long getPostComments_id() {
 return postComments_id;
 }

 public void setPostComments_id(long postComments_id) {
 this.postComments_id = postComments_id;
 }

 public long getPost_id() {
 return post_id;
 }
 public void setPost_id(long post_id) {
 this.post_id = post_id;
 }
 public long getScore() {
 return score;

}

© Daffodil International University 93 | P a g e

 public void setScore(long score) {
 this.score = score;
 }

 public String getText() {
 return text;
 }

 public void setText(String text) {
 this.text = text;
 }

 public LocalDate getCreationDate() {
 return creationDate;
 }

 public void setCreationDate(LocalDate creationDate) {
 this.creationDate = creationDate;
 }

 public String getUserDisplayName() {
 return userDisplayName;
 }

 public void setUserDisplayName(String userDisplayName) {
 this.userDisplayName = userDisplayName;
 }

 public long getUser_id() {
 return user_id;
 }

 public void setUser_id(long user_id) {
 this.user_id = user_id;
 }

 To view all required fields which have taken

 @Override
 public String toString() {
 return "PostsComments{" +
 "postComments_id=" + postComments_id +
 ", post_id=" + post_id +
 ", score=" + score +
 ", text='" + text + '\'' +
 ", creationDate=" + creationDate +
 ", userDisplayName='" + userDisplayName + '\'' +
 ", user_id=" + user_id +
 '}';
 }
}

© Daffodil International University 94 | P a g e

i) Post feedback model class

package ac.daffodil.model;

import javax.persistence.*;
import java.util.BitSet;
import java.util.Date;

@Entity
@Table(name = "PostFeedback")

 Required input fields

public class PostFeedback {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "PostFeedbackId")
 private Long PostFeedbackId;

 @Column(name = "PostId")
 private Long PostId;

 @Column(name = "IsAnonymous")
 private BitSet IsAnonymous;

 @Column(name = "CreationDate")
 private Date CreationDate;

 Building constructors of fields

 public PostFeedback() {
 }

 public PostFeedback(Long postFeedbackId, Long postId, BitSet isAnonymous, Date creationDate) {

 PostFeedbackId = postFeedbackId;
 PostId = postId;
 IsAnonymous = isAnonymous;

 CreationDate = creationDate;
 }

 public Long getId() {
 return PostFeedbackId;

 }

 public void setId(Long id) {
 this.PostFeedbackId = id;
 }

© Daffodil International University 95 | P a g e

 public Long getPostId() {
 return PostId;
 }

 public void setPostId(Long postId) {
 PostId = postId;
 }

 public BitSet getIsAnonymous() {
 return IsAnonymous;
 }

 public void setIsAnonymous(BitSet isAnonymous) {
 IsAnonymous = isAnonymous;
 }

 public Date getCreationDate() {
 return CreationDate;
 }

 public void setCreationDate(Date creationDate) {
 CreationDate = creationDate;
 }

 To view all the fields specified

 @Override
 public String toString() {
 return "PostFeedback{" +
 "id=" + PostFeedbackId +
 ", PostId=" + PostId +
 ", IsAnonymous=" + IsAnonymous +
 ", CreationDate=" + CreationDate +
 '}';
 }
}

j) Post feedback repository

package ac.daffodil.repository;

import ac.daffodil.model.PostFeedback;
import org.springframework.data.jpa.repository.JpaRepository;

public interface PostFeedbackRepository extends JpaRepository<PostFeedback, Long> {
}

© Daffodil International University 96 | P a g e

k) Post repository

package ac.daffodil.repository;

import ac.daffodil.model.Posts;
import org.springframework.data.jpa.repository.JpaRepository;

public interface PostsRepository extends JpaRepository<Posts, Long> {
}

l) Post comment

package ac.daffodil.repository;

import ac.daffodil.model.PostsComments;
import org.springframework.data.jpa.repository.JpaRepository;

public interface PostsCommentsRepository extends JpaRepository<PostsComments,Long> {
}

➢ Voting code samples

a) Votes Controller

 Request mapper & Controller assigned

@Controller
@RequestMapping("/vote")
public class votesController {
 @Autowired
 VotesDao votesDao;

 All votes will be viewed here

 @RequestMapping(value = { "/votes" }, method = RequestMethod.GET)

 public ModelAndView index() {

 ModelAndView modelAndView = new ModelAndView();

 Votes votes = new Votes();

 modelAndView.addObject("newVotes", votes);

 modelAndView.addObject("votes", votesDao.getAll());

 modelAndView.setViewName("admin/adminVotes");

 return modelAndView;

 }

 Saving a vote of a user

 @RequestMapping(value = { "/votes/save" }, method = RequestMethod.POST)

 public String saveVotes(Votes votes) {

 votesDao.save(votes);

 return "redirect:/votes";

 }

© Daffodil International University 97 | P a g e

 Finding a vote of a user (will not be required in later development)

 @RequestMapping(value={"/votes/find/{VoteId}"}, method = RequestMethod.GET)

 public ModelAndView findForEditVotes(@PathVariable(required = true, name = "VoteId") Long VoteId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Votes> votes= votesDao.find(VoteId);

 modelAndView.addObject("newVotes", votes.get());

 modelAndView.addObject("votes", votesDao.getAll());

 modelAndView.setViewName("admin/adminVotes");

 return modelAndView;

 }

 Removing vote for the post

 @RequestMapping(value="/votes/delete/{VoteId}", method = RequestMethod.GET)

 public String deleteVotes(@PathVariable(required = true, name = "VoteId") Long VoteId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<Votes> votes= votesDao.find(VoteId);

 votesDao.delete(votes.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/votes";

 }

}

b) Vote Types Controller

Request mapper & Controller assigned

@Controller

@RequestMapping("/voteType")

public class voteTypesController {

 @Autowired

 VoteTypesDao voteTypesDao;

Type of the votes are viewed

 @RequestMapping(value = { "/voteTypes" }, method = RequestMethod.GET)
 public ModelAndView index() {
 ModelAndView modelAndView = new ModelAndView();
 VoteTypes voteTypes = new VoteTypes();
 modelAndView.addObject("newVoteTypes", voteTypes);
 modelAndView.addObject("voteTypes", voteTypesDao.getAll());
 modelAndView.setViewName("admin/adminVoteTypes");
 return modelAndView;
 }

© Daffodil International University 98 | P a g e

A new vote type is saved

 @RequestMapping(value = { "/voteTypes/save" }, method = RequestMethod.POST)

 public String saveExam(VoteTypes voteTypes) {

 voteTypesDao.save(voteTypes);

 return "redirect:/voteTypes";

 }

Finding a saved vote type

 @RequestMapping(value={"/voteTypes/find/{VoteTypeId}"}, method = RequestMethod.GET)

 public ModelAndView findForEditVoteTypes(@PathVariable(required = true, name = "VoteTypeId") Long

VoteTypeId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<VoteTypes> voteTypes= voteTypesDao.find(VoteTypeId);

 modelAndView.addObject("newVoteTypes", voteTypes.get());

 modelAndView.addObject("voteTypes", voteTypesDao.getAll());

 modelAndView.setViewName("admin/adminVoteTypes");

 return modelAndView;

 }

 Deleting a vote type

 @RequestMapping(value="/voteTypes/delete/{VoteTypeId}", method = RequestMethod.GET)

 public String deleteVoteTypes(@PathVariable(required = true, name = "VoteTypeId") Long VoteTypeId) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<VoteTypes> voteTypes= voteTypesDao.find(VoteTypeId);

 voteTypesDao.delete(voteTypes.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/voteTypes";

 }

}

c) Suggested Edit Votes

 Controller & Request mapper assigned

@Controller

@RequestMapping("/suggestedEditVote")

public class SuggestedEditVotesController {

 @Autowired

 SuggestedEditVotesDao suggestedEditVotesDao;

© Daffodil International University 99 | P a g e

 Viewing suggestion for votes

 @RequestMapping(value = { "/suggestedEditVotes" }, method = RequestMethod.GET)

 public ModelAndView index() {

 ModelAndView modelAndView = new ModelAndView();

 SuggestedEditVotes suggestedEditVotes = new SuggestedEditVotes();

 modelAndView.addObject("newSuggestedEditVotes", suggestedEditVotes);

 modelAndView.addObject("suggestedEditVotes", suggestedEditVotesDao.getAll());

 modelAndView.setViewName("admin/adminSuggestedEditVotes");

 modelAndView.setViewName("user/userSuggestedEditVotes");

 return modelAndView;

 }

 Saving a vote

 @RequestMapping(value = { "/suggestedEditVotes/save" }, method = RequestMethod.POST)

 public String saveSuggestedEditVotes(SuggestedEditVotes suggestedEditVotes) {

 suggestedEditVotesDao.save(suggestedEditVotes);

 return "redirect:/suggestedEditVotes";

 }

 Editing a vote

 @RequestMapping(value={"/suggestedEditVotes/find/{SuggestedEditVotesID}"}, method =

RequestMethod.GET)

 public ModelAndView findForEditSuggestedEditVotes(@PathVariable(required = true, name =

"SuggestedEditVotesID") Long SuggestedEditVotesID) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<SuggestedEditVotes> suggestedEditVotes=

suggestedEditVotesDao.find(SuggestedEditVotesID);

 modelAndView.addObject("newSuggestedEditVotes", suggestedEditVotes.get());

 modelAndView.addObject("suggestedEditVotes", suggestedEditVotesDao.getAll());

 modelAndView.setViewName("admin/adminSuggestedEditVotes");

 modelAndView.setViewName("user/userSuggestedEditVotes");

 return modelAndView;

 }

 Deleting a vote

 @RequestMapping(value="/suggestedEditVotes/delete/{SuggestedEditVotesID}", method =

RequestMethod.GET)

 public String deleteSuggestedEditVotes(@PathVariable(required = true, name = "SuggestedEditVotesID")

Long SuggestedEditVotesID) {

 ModelAndView modelAndView = new ModelAndView();

 Optional<SuggestedEditVotes> suggestedEditVotes=

suggestedEditVotesDao.find(SuggestedEditVotesID);

 suggestedEditVotesDao.delete(suggestedEditVotes.get());

 modelAndView.addObject("message", " Data Has Been Deleted...");

 return "redirect:/suggestedEditVotes";

 }

}

© Daffodil International University 100 | P a g e

d) Suggested edit votes Dao

 Repository & model class imported

@Repository

@Transactional

public class SuggestedEditVotesDao implements GenericInterface<SuggestedEditVotes> {

 All necessary methods from repository is used

 @Autowired
 private SuggestedEditVotesRepository suggestedEditVotesRepository;
 @Override
 public SuggestedEditVotes save(SuggestedEditVotes suggestedEditVotes) {
 suggestedEditVotesRepository.save(suggestedEditVotes);
 return suggestedEditVotes;
 }

 @Override
 public SuggestedEditVotes update(SuggestedEditVotes suggestedEditVotes) {
 suggestedEditVotesRepository.save(suggestedEditVotes);
 return suggestedEditVotes;
 }

 @Override
 public boolean delete(SuggestedEditVotes suggestedEditVotes) {
 suggestedEditVotesRepository.delete(suggestedEditVotes);
 return true;
 }

 @Override
 public List<SuggestedEditVotes> getAll() {
 return suggestedEditVotesRepository.findAll();
 }

 @Override
 public Optional<SuggestedEditVotes> find(Long id) {
 return suggestedEditVotesRepository.findById(id);
 }
}

e) Votes Dao

 Repository & Model class imported

@Repository

@Transactional

public class VotesDao implements GenericInterface<Votes> {

© Daffodil International University 101 | P a g e

 All necessary methods from repository is used

 @Autowired
 private VotesRepository votesRepository;

 @Override
 public Votes save(Votes votes) {
 votesRepository.save(votes);
 return votes;
 }

 @Override
 public Votes update(Votes votes) {
 votesRepository.save(votes);
 return votes;
 }

 @Override
 public boolean delete(Votes votes) {
 votesRepository.delete(votes);
 return true;
 }

 @Override
 public List<Votes> getAll() {
 return votesRepository.findAll();
 }

 @Override
 public Optional<Votes> find(Long id) {
 return votesRepository.findById(id);
 }
}

f) Vote types Dao

 Repository & Model class imported

@Repository

@Transactional

public class VoteTypesDao implements GenericInterface<VoteTypes> {

 All necessary methods from repository is used

© Daffodil International University 102 | P a g e

 @Autowired

 private VoteTypesRepository voteTypesRepository;

 @Override

 public VoteTypes save(VoteTypes voteTypes) {

 voteTypesRepository.save(voteTypes);

 return voteTypes;

 }

 @Override

 public VoteTypes update(VoteTypes voteTypes) {

 voteTypesRepository.save(voteTypes);

 return voteTypes;

 }

 @Override

 public boolean delete(VoteTypes voteTypes) {

 voteTypesRepository.delete(voteTypes);

 return true;

 }

 @Override

 public List<VoteTypes> getAll() {

 return voteTypesRepository.findAll();

 }

 @Override

 public Optional<VoteTypes> find(Long id) {

 return voteTypesRepository.findById(id);

 }

}

© Daffodil International University 103 | P a g e

g) Suggested edit model class

Entity created

@Entity

@Table(name = "SuggestedEditVotes")

 Necessary fields are taken

public class SuggestedEditVotes {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "SuggestedEditVotesID")
 private Long SuggestedEditVotesID;

 @Column(name = "SuggestedEditId")
 private Long SuggestedEditId;

 @Column(name = "UserId")
 private Long id;

 @Column(name = "CreationDate")
 private Date CreationDate;

 @Column(name = "TargetUserId")
 private Long TargetUserId;

 @Column(name = "TargetRepChange")
 private Long TargetRepChange;

 public SuggestedEditVotes() {
 }

© Daffodil International University 104 | P a g e

 Constructors created

 public SuggestedEditVotes(Long suggestedEditVotesID, Long suggestedEditId, Long id, Date creationDate,
Long targetUserId, Long targetRepChange) {

 SuggestedEditVotesID = suggestedEditVotesID;
 SuggestedEditId = suggestedEditId;

 this.id = id;
 CreationDate = creationDate;
 TargetUserId = targetUserId;

 TargetRepChange = targetRepChange;
 }

 public Long getSuggestedEditVotesID() {
 return SuggestedEditVotesID;

 }

 public void setSuggestedEditVotesID(Long suggestedEditVotesID) {
 SuggestedEditVotesID = suggestedEditVotesID;
 }

 public Long getSuggestedEditId() {

 return SuggestedEditId;
 }

 public void setSuggestedEditId(Long suggestedEditId) {
 SuggestedEditId = suggestedEditId;
 }

 public Long getId() {

 return id;
 }

 public void setId(Long id) {
 this.id = id;

 }

 public Date getCreationDate() {

 return CreationDate;
 }

 public void setCreationDate(Date creationDate) {
 CreationDate = creationDate;

 }

 public Long getTargetUserId() {
 return TargetUserId;
 }

 public void setTargetUserId(Long targetUserId) {

 TargetUserId = targetUserId;
 }

© Daffodil International University 105 | P a g e

 public Long getTargetRepChange() {

 return TargetRepChange;

 }

 public void setTargetRepChange(Long targetRepChange) {

 TargetRepChange = targetRepChange;

 }

 Method for viewing all fields

 @Override

 public String toString() {

 return "SuggestedEditVotes{" +

 "SuggestedEditVotesID=" + SuggestedEditVotesID +

 ", SuggestedEditId=" + SuggestedEditId +

 ", id=" + id +

 ", CreationDate=" + CreationDate +

 ", TargetUserId=" + TargetUserId +

 ", TargetRepChange=" + TargetRepChange +

 '}';

 }

}

© Daffodil International University 106 | P a g e

h) Votes Model class

 Entity created

@Entity

@Table(name ="Votes")

public class Votes {

 Necessary fields are taken

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "VoteId")

 private Long VoteId;

 @Column(name = "PostId")

 private Long PostId;

 @Column(name = "VoteTypeId")

 private Long VoteTypeId;

 @Column(name = "UserId")

 private Long id;

 @Column(name = "CreationDate")

 private Date CreationDate;

 @Column(name = "BountyAmount")

 private Long BountyAmount;

© Daffodil International University 107 | P a g e

 Constructors created

 public Votes() {

 }

 public Votes(Long postId, Long voteTypeId, Long id, Date creationDate, Long bountyAmount) {

 PostId = postId;

 VoteTypeId = voteTypeId;

 this.id = id;

 CreationDate = creationDate;

 BountyAmount = bountyAmount;

 }

 public Long getVoteId() {

 return VoteId;

 }

 public Long getVoteTypeId() {

 return VoteTypeId;

 }

 public void setVoteTypeId(Long voteTypeId) {

 VoteTypeId = voteTypeId;

 }

 public void setVoteId(Long voteId) {

 VoteId = voteId;

 }

 public Long getPostId() {

 return PostId;

 }

 public void setPostId(Long postId) {

 PostId = postId;

 }

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public Date getCreationDate() {

 return CreationDate;

 }

 public void setCreationDate(Date creationDate) {

 CreationDate = creationDate;

 }

 public Long getBountyAmount() {

 return BountyAmount;

 }

 public void setBountyAmount(Long bountyAmount) {

 BountyAmount = bountyAmount;

 }

© Daffodil International University 108 | P a g e

 Method for viewing all fields

 @Override

 public String toString() {

 return "Votes{" +

 "VoteId=" + VoteId +

 ", PostId=" + PostId +

 ", VoteTypeId=" + VoteTypeId +

 ", id=" + id +

 ", CreationDate=" + CreationDate +

 ", BountyAmount=" + BountyAmount +

 '}';

 }

}

i) Vote type model class

Entity created

@Entity

@Table(name = "VoteTypes")

public class VoteTypes {

Necessary fields are taken

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "VoteTypeId")

 private Long VoteTypeId;

 @Column(name = "VoteTypeName")

 private String VoteTypeName;

© Daffodil International University 109 | P a g e

Constructors created

 public VoteTypes() {

 }

 public VoteTypes(String voteTypeName,Long voteTypeId) {

 VoteTypeName = voteTypeName;

 VoteTypeId = voteTypeId;

 }

 public Long getVoteTypeId() {

 return VoteTypeId;

 }

 public void setVoteTypeId(Long voteTypeId) {

 VoteTypeId = voteTypeId;

 }

 public String getVoteTypeName() {

 return VoteTypeName;

 }

 public void setVoteTypeName(String voteTypeName) {

 VoteTypeName = voteTypeName;

 }

Method for viewing all fields

 @Override

 public String toString() {

 return "VoteTypes{" +

 "VoteTypeId=" + VoteTypeId +

 ", VoteTypeName='" + VoteTypeName + '\'' +

 '}';

 }

}

Chapter 10 - Testing

11.1 Unit Testing

Forum Section

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 01 Test Execute Date: 10/05/2020

Test case: Forum View

Objective: The post came up properly on this page

© Daffodil International University 110 | P a g e

Data Source: What the user is posting

Case

No.
Description Tasks

Result
Status

(Pass/Fail)
Actual

result

Expected

result

1

We will check if the

post is coming to

this page properly

Post

some

question

All post

show in

the page

All post will

be show in

the page

Pass

The test result screenshot for Unit Test is given below

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 02 Test Execute Date: 10/05/2020

Test case: Public post checking

© Daffodil International University 111 | P a g e

Objective: The user can post properly

Data Source: User Input

Case

No.
Description Tasks

Result
Status

(Pass/Fail)
Actual

result

Expected

result

1

We will check

here whether

the user can

post using all

the inputs

Enter the

information

like title,

description

and tags

The post is

successfully

submitted

The post will

be

successfully

submitted

Pass

The test result screenshot for Unit Test is given below

© Daffodil International University 112 | P a g e

Test Priority: High Test Execute by: DIA Intern Team

Unit test No: 03 Test Execute Date: 10/05/2020

Test case: Text Editor text

Objective: Checking the text editor

Data Source: User Input

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

1

We will check the

functionality of the

text editor

Provide the

any king of

data

Text editor

work

properly

Text editor will

be work

properly

Pass

The test result screenshot for Unit Test is given below

© Daffodil International University 113 | P a g e

User Management Section

Unit Test: 1
Test Class: User

Login Window
Designed By

Data Source: User input

Objective:

Password checking

test.

Tester: Diainternteam

Test

Case
Description Tasks Expected Result

Actual

Result

1.1

Test for checking

wrong password.

Enter login Info,

User Email:

Password:

Show message

“Invalid username

or Password”

Perfect

© Daffodil International University 114 | P a g e

The test result screenshot for Unit Test 1 is given below,

Unit Test: 2
Test Class: Admin

Login Window
Designed By

Data Source: Admin input
Objective: Password

checking test.
Tester: Diainternteam

Test Case Description Tasks
Expected

Result
Actual Result

1.1

Test for

checking

wrong

password.

Enter login Info,

Admin Email:

Password:

Show

message

“Invalid

username

or

Password”

Perfect

© Daffodil International University 115 | P a g e

The test result screenshot for Unit Test 2 is given below,

11.2 Integration Testing

Forum Section

Test Priority: High Test Execute by: DIA Intern Team

Integration test No: 01 Test Execute Date: 10/05/2020

Test case: Comment Testing

Objective: Check the comment part

Data Source: User Input

Case

No.
Description Tasks

Result Status

(Pass/

Fail)

Actual

result

Expected

result

© Daffodil International University 116 | P a g e

1

We will check the

comment function

here to see it is

working properly

Provide

the

data

The

comment is

successfully

submitted

The comment

will be

successfully

submitted

Pass

The test result screenshot for Integration Test is given below

Test Priority: High Test Execute by: DIA Intern Team

Integration test No: 02 Test Execute Date: 10/05/2020

Test case: Submitted the Ans

Objective: Check the Ans submission

Data Source: User input

Description Tasks Result

© Daffodil International University 117 | P a g e

Case

No.

Actual

result

Expected

result

Status

(Pass/

Fail)

1

User is able to

submit the answer

properly. We will

check this function

Provide the

data

The Ans is

successfully

submitted

The Ans will be

is successfully

submitted

Pass

The test result screenshot for Integration Test is given below

Test Priority: High Test Execute by: DIA Intern Team

Integration test No: 03 Test Execute Date: 10/05/2020

Test case: Bookmark and voting

Objective: Check bookmark and voting functionality

© Daffodil International University 118 | P a g e

Data Source: User Input

Case

No.
Description Tasks

Result
Status

(Pass/Fail) Actual result
Expected

result

1

We will check this

functionality of

bookmarking and

voting here

Action

by user

click

Bookmark and

voting

successfully

happened

Bookmark and

voting will be

successfully

happened

Pass

The test result screenshot for Integration Test is given below

© Daffodil International University 119 | P a g e

User Management Section

Integration Test: 1 Test Class: User Designed By

Data Source: User input
Objective: Test for

basic functionality.
Tester: Diainternteam

Test

Case
Description Tasks

Expected

Result

Actual

Result

1.1

Test for basic

function for user

login

Enter Email:

sabbir@g.com

Enter password:

12345678

Show the user

login page

Perfect

The test result screenshot for Integration Test 1 is given below,

Integration Test: 2 Test Class: Admin Designed By

Data Source: Admin

input

Objective: Test for basic

functionality.
Tester: Diainternteam

Test

Case
Description Tasks

Expected

Result

Actual

Result

© Daffodil International University 120 | P a g e

1.1

Test for basic

function for

admin login

Enter Email: dsa@dsa.ds

Enter password: 12345678

Show the

admin login

page

Perfect

The test result screenshot for Integration Test 1 is given below,

© Daffodil International University 121 | P a g e

Chapter 11 – Implementation

Actually, implementation designates the users process of the organization's or

institution’s workflow. User attempts to enhance the integrated work using structured

method. Implementation is a strategy, method, or any design, idea, model, description,

standard or policy for undertaking something. Implementation, as like, is the exploit that

must track any introductory thinking so that something actually happens. The project team

generates the actual invention during implementing. Implementation of the invention can

be an exciting phase for the user, because their project idea becomes something tangible.

The project developers start building the software and coding it. In the section I will

describe how I have implemented everything about this process.

 Training

Implementation includes a sequence of activities, through which training managers bring

the course according to the approved design to the learners. It necessitates scheduling

of courses, faculties, equipment and service providers aside from arranging ongoing

support for the classroom, and ensuring the smooth flow of activities as per the plan. A

systematic, step-by-step process is used to build an effective training program. Training

initiatives which are standing alone often fail to meet organizational goals and

expectations of the participants.

• Assess training needs

Identifying and evaluating needs is the first step to developing a training program. Training

needs of employees may already be identified in strategic, human resources or individual

development plans of the organization.

• Set organizational training objectives

Assessments of the training needs (administrative, task & separate) will identify any gaps

in your current training initiatives and skill sets for employees. These gaps should be

© Daffodil International University 122 | P a g e

analyzed and prioritized, and transformed into the training goals of the organization. The

ultimate aim is to bridge the gap between current performance and desired performance

by developing a training program.

• Create training action plan

The next step is to create a comprehensive action plan which includes theories of

learning, instructional design, content, materials and any other elements of training.

Methods for delivering resources and training should be detailed as well. The level of

training and the learning styles of the participants also need to be considered when

developing the program.

• Implement training initiatives

The phase of implementation is where the workout program comes to life. Organizations

need to choose whether in-house or outwardly coordinated training will be provided.

Implementation of the program includes scheduling training activities and organizing any

associated resources facilities, equipment, etc. Subsequently, the training program is

officially launched, promoted and run.

• Evaluate & revise training

As mentioned in the last segment, there should be continuous monitoring of the training

program. Eventually, the entire program should be evaluated to regulate whether it was

successful and meeting the training goals. Feedback from all stakeholders should be

obtained in order to determine the effectiveness of the program and instructor and also

knowledge or skill acquisition. (training-program, 2020)

 Big Bang

Big bang implementation on a single site is considerably easier to manage over multiple

sites than a simultaneous big bang. The usually held view is that implementations with

© Daffodil International University 123 | P a g e

big bang have an inherently higher risk level. In one instance, implementation happens.

On a given date, all users move onto the new system. The scope of a big bang

implementation can also mean that it is problematic to accomplish complete end to end

system testing and it is only when the system goes live that all interdependencies are fully

tested.

© Daffodil International University 124 | P a g e

Chapter 12 - Critical Appraisal and Evaluation

Within this chapter the project overview will be explained. In this topic both the success

and system failure will be discussed. What's more, what experience we gained throughout

the project will also be discussed. Likewise, it includes the success factor, the amount of

objective it met, and what features it could not have met and the reason with the

justification. In this section we will describe how I can meet my objective goal despite

various obstacles.

 Objective that could be met

The project proposed has met some objectives outlined below,

1. Implementing a platform for all student and guardian can get any information about

any institution.

2. This application provides previous question bank with solutions, which can help

the students and they can find these easily.

3. This tis the mature platform for both students and the educational organization.

4. Fix a methodology suitable for implementing a system.

5. Make the project well documented with maintenance the standard.

6. The application has to error free as much as possible.

7. Messaging and commenting system were created for the user (student and

guardian) to organization communication.

8. We are making this application’s database which is based on this project

requirement.

9. This application is web-based application which is portable easy to use from

anywhere.

10. We are making this application with met the requirement which is given by our

moderator.

11. We have made this system useful for different types of user and that will be very

helpful for the user.

© Daffodil International University 125 | P a g e

• Success rate against each objective

Success rate to this objective is relatively satisfactory. This rate is impartially alright of

this objective as both student/guardian and organizations can be able to get their own

expected outcome. The organizations or institutions can share their information and

student can view their descriptions and get their expected information’s this thing will help

reduce the hassle of the students also guardian. And it will help more students to collect

questions from different years. As a student and as a guardian they will get exactly the

information they need from here.

• How much better it could be done

We are following many structures to standardize this web application. There were many

diagrams in these diagrams that helped us a lot to maintain our sequence like as activity

diagram, sequence diagram, ERD diagram, use case diagram and class diagram etc. At

the same time, we have tried to do proper documentation of all the diagrams which will

help to do more with it in the future. There are some diagrams that we could not add to

this documentation because of the security of the organization. And there are a lot of

options here that have been made for the student or organizational user in a very

convenient way to understand.

• How better are the features of the solution?

This web application might be more friendly to the users. If we want to show as an

example then we will see that the forum part has been made very interactive. Any student

or user can ask his/her questions at any moment. And there is a facility to comment here,

if anyone knows the answer, it can be informed through comments which is very much

responsive. As a result, it can solve any types of problem very quickly and takes very

close to the solution. If the time of the project is extended a bit this system is better than

this. The workload was so high, though it was teamwork.

© Daffodil International University 126 | P a g e

 Objectives totally not met / touched

In this section we will discuss which things we have not been able to do properly and

which we have repeatedly failed to do. We have been able to identify some of the reasons

why we have not been able to properly deploy these items and have been discarded and

I will give some more reasons here in a specific way so that we can identify very easily. I

will write in this section about how we overcome this thing after repeated failures.

• Why it could not be touched

For implement this objective we needed proper planning for the work and skills to

increment strongly. The reason is that at the beginning of the work we did not get the

proper planning and at the same time we lacked some skills. That’s why we could not

able to meet some requirements in this web application. If we want to say, we will say

that we have not done the payment part of the pro feature yet. There are some other user

interface functions that are not interactive. And we want to do more with it in the future.

Hopefully we can do it all when the future version comes out.

• What could have been done

We have tried to reorder our plans properly, if we have to give an example, we have to

make a note of what we will do one day. We kept our notes in different box forms on

priority basis. What we have to do first, what we have to do later. We decorated those

boxes with these things and by doing this we have achieved a fairly good level of success.

Then if we want to say we will talk about our skills because we had a lot of lucking’s. We

used to do a session in between our work every day so that we could develop our skills

and that helped us a lot. Time maintenance is the process for properly implementing it

and properly overcoming it from the situation also done a lot of security related work in

this project.

© Daffodil International University 127 | P a g e

Chapter 13 - Conclusion

 Conclusion

We have tried our best to build this 'OAIHUB' project successfully. The full report

summary includes the goals and accomplishments in this section. The implementation

knowledge and project values are also specified in this section. Over the course of our

growth we have had many challenges and our mentor helps us solve this. For the short

period of time the project will continue to develop, many more features are not yet done.

I outlined here my summary of the total work, including the main objective, my

experience, the value of my project and many things. To the students, the whole project

is very helpful. There are so many descriptions below.

Summary of the project

I have adequately stimulated all the requirements of the project and its work. I have been

working on this project for nearly six months, I have done several things in this project

during this period. During this project, I worked in many places. I have had to collect many

in-depth data from different organizations and students and these core data work in our

system very well. We made an enormous survey of this.

We have done a very nice job of designing this device that is clear when analyzing our

papers. We have explained it in a wonderful way, such as software architecture design,

literature analysis, different processes, diagrams etc. We explained it. The project

standards are measured in this respect through various categories of evaluation

techniques. I can guarantee that all types of project material are included in this text. By

following these analyzes and attempting to make the system correct the real problem, I

have implemented this system. And this will benefit the future students as well as various

educational opportunities.

 Goal of the project

For various students and various educational institutions, we have created this web

application. We tried to meet all the requirements and I explain the target I set out below,

• The user can obtain some knowledge about any organization by using this

program.

© Daffodil International University 128 | P a g e

• Students can help with the previous online question balance. You will quickly

locate them.

• The admission procedure can be known to students at any school, university or

school.

• Students can take different online exams such as (IELTS), which they can

participate through the professional function.

• It is a software application for educational purposes that assists students in various

ways.

• We have developed a communications system and a user feedback system with

this.

• In the user forum the user can chat about everything.

 Success of the project

Every project's success depends on the approval of its individual users and we have

succeeded greatly in bringing it to our users. I wish to say that the requirements of this

project are met in all these fields. With input from different students and educational

institutions, we have achieved all the objectives. We have built an interactive and user-

friendly forum through which both student and user can easily find a solution to the issue.

Finally, I can say that we have succeeded in very efficiently achieving all the goals, which

is our main project success.

 Value of the project

The needs of our lives are rising every day and our issues are rising with our needs every

day. The A and O students in our country need plenty of information in order to obtain

admission at various universities at some point in their educational life, not only are we

obliged to speak to our students but also the parents we need plenty of information in

order to enroll their children in different schools. Our web-built application takes your

words into account. Here you can find all the information you can receive for admission

of a student and parent via the procedure. Here we have built a forum from which every

student can learn from any of his topics by asking questions. That's going to do our

country a lot of success.

© Daffodil International University 129 | P a g e

 My experience

I learnt a lot that was new to me during the internship. In my internship and this is a web

application, I have been working on a huge projector. The application name is "OAIHUB."

I've also done a lot of work in connection with the background when I worked on it, such

as the database design, database architecture. Using the Java Spring Boot Framework,

we have developed "OAIHUB" web application. I am learning many new issues, new skills

that I can add. The best thing I've known, I'll find a way to fix it if I face a problem. I am

very well qualified to solve the problem. What I know very well is that, given the strain,

one has to complete a job absolutely. The criteria that I have accomplished by teamwork

in a very efficient manner. I have learned from here how to manage a team and work with

the team and solve problems through cooperation. I think this experience in my future life

will be very useful.

© Daffodil International University 130 | P a g e

Bibliography

(2019). Retrieved from http://softwaretestingfundamentals.com/test-case/

99, G. (2019). Retrieved from https://www.guru99.com/unit-testing-guide.html

fowler, M. (2018). Retrieved from https://martinfowler.com/bliki/IntegrationTest.html

help, S. t. (2018). Retrieved from https://www.softwaretestinghelp.com/what-is-component-testing-or-

module-testing/

Neotyz. (201). Retrieved from https://www.neotys.com/insights/performance-testing

Simsform. (2019). Retrieved from https://www.simform.com/functional-testing/

Tutorials Point. (n.d.). Retrieved from

https://www.tutorialspoint.com/software_testing_dictionary/test_plan.htm

© Daffodil International University 131 | P a g e

https://www.turnitin.com/newreport_printview.asp?eq=0&eb=0&esm=0&oid=1363960011&sid=0&n=0

&m=2&svr=50&r=50.8562007200502&lang=en_us

