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ABSTRACT 

 

Programming online judges (POJs) are an emerging application scenario in e-learning 

recommendation areas. Specifically, they are e-learning tools usually used in 

programming practices. Usually, they contain a large collection of such problems, to be 

solved by students at their own personalized pace. These online judges play an 

outstanding role for any student who wants to practice programming. Basically, these 

online judge platforms provide the various type of programming problems made by 

many problem setters. Sometimes these problems are categorized by problem tag. The 

more problems in the online judges the harder the selection of the right problem to solve 

according to previous users performance, causing information overload and a 

widespread discouragement.  

Many times, students try problems that are difficult than their skill level. Also, it is very 

troublesome for them to find-out suitable problems that match with his/her skill levels. 

These issues have not been addressed in any previous research works so we end up with 

a solution in that we use machine learning and recommendation algorithms.  

This research works presents a non-personalized and content based collaborative 

filtering technique to mitigate this issue by suggesting programming problem. 
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CHAPTER 1 

 

Introduction 

1.1 Introduction 

Competitive programming or contest programming are one kind-off mind sports 

arranged over the internet. During the programming contest, contestants were given a 

specified specification usually called problem statements. Contestants write programs 

according to the specification given in the problem statement. Programming Contests 

usually held on an online contest platform hosted by some educational institution 

supported by various tech companies worldwide. Over the last decades, programming 

contests popularity has increased to a great extent.  

1.2 Motivation 

The contest programming's acts as a backbone to create world class programmers. It 

involves a lot of programmers to willingly participate and learn a lot of things related 

to problem solving. There are currently thousands of programming problems available 

on numerous online judges over the internet. These problems are categorized by 

different kind-of topics such as Implementation, Mathematics, Number Theory, Data 

Structures, Dynamic Programming, Graph, Greedy and so on. Many online judges 

provided the difficulty levels of the problems. For example, Codeforces problems from 

the same topic can be of varying difficulty levels. For a programming contestant to be 

able to reach a good position at coding where he/she has enough critical thinking and 

skills to solve challenging problems takes years of practice and requires learning new 

algorithms continuously. Therefore, solving programming problems from various 

topics and slowly progressing to more difficult and challenging problems is a difficult 

task to do for a competitive programmer as programming problems in various 

automated online judges are not well organized at times. So, in order to address this 

problem of searching the right problems to solve next for a competitive, we have 

proposed a recommendation system for programming problems found in various online 

judges 
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1.3 Rationale of the Study 

Newcomers face many difficulties when they start to learn programming. At the 

beginning they seem to be exited to do programming, but after a while they become 

disappointed. One of the reasons for this disappointment is not getting the right 

direction. They often try to solve a problem that is more difficult than their skill level. 

They get frustrated as most of the times they aren't able solve the problem even after 

trying numerous times  

Sometimes it is seen that they are solving the same difficultly level problem more than 

they actually need, as a result of which, after spending a lot of time, they are not able 

to perform as expected. 

This issue has not been addressed in any previous related works so we have come up 

with a non-classical approach to recommending programming problems to competitive 

programmers. 

  

1.4 Research Questions 

Every system is made up of many small simple parts. As such research problems usually 

becomes understandable once each individual section of the problems defined properly. 

 

1.4.1 Recommender System 

Recommender systems are the systems that help users to discover items that they might 

be interested in. Recommender systems are the key part of the modern ecommerce and 

consumer base online industries. Over the last decades, with the rise of Youtube, 

Amazon, Netflix, Google search and many other web services , recommender systems 

have been a regular things in our daily lives. 
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1.4.1.1 Non-Personalized Approach of Recommender System 

Non personalized approach of recommender systems are the simplest type of 

recommender system. Non personalized recommender system gives recommendation 

to the users without thinking what user preferences is. 

 

1.4.1.2 Personalized Approach of Recommender System 

In personalized approach of recommendation, there are two types. content based 

recommendation system and collaborative filtering method.  

In Collaborative filtering method, recommendation are based soley on past interactions 

recorded between users and items in order to give new recommendation. These 

interactions are stored in the so-called “user item-interaction matrix” 

Unlike Collaborating filtering, that is depend on user and item interaction, Content 

based approaches uses additional information about user and item. The main approach 

of content-based recommendation system is building a model based on available 

“features” that observed user item interactions. A content-based recommendation 

system tries to recommend items ( products or any other object) based on users profile. 

The user profile revolves around that user’s preference and tastes. 

 

1.5 Expected Outcome 

In this research, we tried to build a system that will provide programming problems on 

the basis of user previous solve history. The outcome for this research project is to find 

out a solution for the problems we mentioned earlier by using recommendation 

approach. 
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1.6 Report layout 

Chapter 1: Introduction 

In this chapter we have discussed the introduction, motivation of the work, Rationale 

of the study and expected outcome of the research and the report layout. 

 

Chapter 2: Literature Review 

In this chapter, we have discussed the background of our research. We also provide the 

information of some related work, background, research summary, and scope of the 

problem and the challenges of this research. 

 

Chapter 3: Research Methodology 

In this chapter, we have discussed our working procedure. What’s are in our proposed 

solution, how our proposed solution works. Our research subject and what was we used 

in our research. We also discussed sample data. 

 

Chapter 4: Experimental Results and Discussion 

In this chapter, we have discussed our experimental results and discussion about our 

results. 

 

Chapter 5: Summary, Conclusion, and Implication for Future Research 

In this chapter, we have discussed Summary of our whole research and some 

recommendations. We also include what needs for future research. 
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CHAPTER 2 

 

Literature Review 

2.1 Introduction 

Our proposed solution is combination of cutting-edge modern technology’s that is easy 

to implement and possible to easily maintain in future.  

There is not much research has been done using recommender systems before to make 

it easier to learn programming. 

Most of the research of the recommendation system is industry centered, such as how 

an approach can be used in e-commerce, or how users can suggest good movies, music. 

However, in our research, we have taken ideas from some previous work. 

To do that, we study literature as much as possible. We believe that there is no scope to 

develop new solution for this problem without study. 

 

2.2 Related works 

In previous, there are lots of works has been done with recommender systems but very 

few are related with competitive programming. 

 

“NewsWeeder: Learning to filter Newnews-1995" [5] 

NewsWeeder is a net news filtering systems, which let the users to rate his/her interest 

level for each article being read between 1 to 5, and then it learns the user profile based 

on these ratings. In this reasearch, NewsWeeder uses the words of their text as features. 

Then a content based recommendation systems learn the profile of a user’s interest 

based on the feature present on the basis of user has rated. 

 

“Tapestry “ [6] 

Tapestry is one of the old implementations of collaborative filter based 

recommendation systems. Tapestry was a manual collobaroative filtering systems. In 

Tapestry users help each other by recording through their reactions about a document 

which is referred to as annotation. In this systems you had to choose your own expert 

whose annotations you wanted to throw into the mix. Other users of the system can use 

this annotation or documents to filter their releivant documents.   
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“Bayesian networks” [8]. 

Bayesian networks are a type of probabilities and graphical model consist of nodes and 

corresponding edges. The nodes hold decision trees and the edges represents user 

information’s. For example, a node can represent a variable such as someone’s weight, 

age. A node variable can be district such Gender or might be a continuous such as 

someone’s age. The model is created on the training dataset. This sort of model is not 

very large. This kind-off model are very fast, and as accurate as nearest neighbor 

method. Bayesian networks works better when then knowledge of user preferences 

updated slowly. They are not suitable for situations where users preferences updated 

very quickly. 

“Horting Hatches an Egg: A New Graph-Theoretic approach to Collaborating 

filtering” [10] 

In this research, a new and novel approach of rating based collaborative filtering is 

introduced. This technique is most suitable for e-commerce platforms for 

recommending homogeneous items such as cooker, washing machines, mixer. In this 

approach, nodes are representing the users and the edges between nodes represents the 

degree of the similarity between two users. The predications are made by traversing the 

graph through adjacent nodes at each step and then combining the results for the 

adjacent users.  

“Recommender Systems in Ecommerce” [11]. 

In this research, a depth classification and example are founds for various recommender 

systems that are being used in E-commerce systems and how these recommendation 

systems give one-to-one personalized recommendations . Though, this kind-off 

recommendation systems are used successfully for quite some time now.  

“A Recommender System for Programming Online Judges Using Fuzzy 

Information Modeling” [ 17 ] 

This paper presents a recommendation framework to recommend problems to solve 

in online judges, through the use of fuzzy tools . 
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2.4 Scope of the problem 

The necessity of a system that helps students by guiding and providing personalized 

programming problems is very much required. 

Programming problems solving acts as a backbone to create world-class programmers. 

It involves a lot of programmers to willingly participate and learn a lot of knowledge 

regarding data structure and algorithms.  

For being a world class programmer, one needs to have lots of patience and must go 

through a lot of hard works, frustrations.  

For Bangladesh perspective, competitive programming is not as popular as China or 

Russia. That’s why only few people are doing competitive programming. As, less 

people does it, the chances of getting help are less. One may say that, there have online 

communities for helping programmers. But usually those communities have a 

environment that it only helps when a programmer become stuck on a problem. Online 

communities are not so helpful in order to get guidelines all the times.  

With our systems, it is possible for students get suggestions and guideline all the time. 

 

2.5 Challenges 

The problem seemed a little difficult to us at the beginning because Recommendation 

system is complex by itself. 

And all programming contest sites not provide Application Programming Interfaces 

(API) to access challenges. And Not all sites have programming problems tagged by 

categories.  

We are mentioning few more challenges we faced during research. 

1) Codeforces API that we used primarily on our implementation is relatively slow, we 

cannot made more than 4-5 request per minute to their server. 

2) Many times, Codeforces server goes down and become inaccessible. 

3) After fetching the data from the server, filtering it and storing valid data to the 

database is a little troublesome. 

4) The default category of the problems always is not valid. 
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CHAPTER 3 

 

Research Methodology 

3.1 Introduction 

 

The bellow diagram demonstrates the process of data collected for visualization. While 

the process is complete with 6 different segments. Where in initial stage, user (students) 

data will be collected from the input field (internal users)  and a request is sent to our 

system. then our system will store the user Codeforces username to our database. The 

Codeforces username is required to retrieve the submission history of the user. Then a 

submission history request is sent to Codeforces system to retrieve a user submission 

history. In this research, the term submission history refers that, what problem user has 

been solved yet. The request has been done using Rest API provided by Codeforces. 

Then Codeforces will return the submission history for that user to our system. Then 

our system will analyze the data and generate recommendation by using content-based 

recommendation system approach. 

 

 

 

Fig 3.1: Working Procedure for the Proposed Model 
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Then user will view all the recommendation our system made in his/her 

computer. 
 

3.2 Objective 

There have many recommendation systems approaches that are being used in many real 

world scenarios. But all the approaches are not be helpful in recommending 

programming problems.. Now we have come to several criteria that our systems should 

fulfill. These are :  

1.  Recommend Programming problems that has not been solved yet by the user  

2.  Recommend Programming problems that are most likely to be solvable by the 

user, I.e , recommended problems must be in a difficulty range based on the 

user's skills level. 

3. Recommend programming problems in a way that will ensure the growth of a 

user in almost every topic rather than the partial growth of certain or few topics. 

4. Recommend programming problems in such a way that will ensure the growth 

of the user as a good problem solver. 

 

3.3 Working Procedure with Flow Chart 

 

Basic Algorithm of Proposed Model. 

Step 1 – Start: - User logged in our system 

Step 2 − User view’s current recommendation made by our system for him/her 

Step 3 − User send a new recommendation request to our system  

Step 4 − Our system will request Codeforces web server to provide the submission 

history for the user 

Step 5 − Codeforces provide the submission history for the user to our system 

Step 6 − Our system analyzes the submission history and extract necessary data from 

that history. 

Step 7 − Then our system generate recommendation on the basis of user submission 

history. 

Step 8 −   System response the user by sending the generated recommendation. 
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Step 9 −   System response the user by sending the generated recommendation. 

Step 10 −   User receives the recommendation made by our system. 

Step 11 −   End 

 

 
 

Fig 3.2: Flow Chart of proposed model 
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3.4 Research Subject and Instrumentation 

 

Research Subject: 

Research subject: We have proposed a solution by using content-based 

recommendation technic, that will recommend programming problems to a user on the 

basis of user previous problem-solving history. 

 

Instrumentation: 

 

Design:  

Draw.io: This is an open-source online tool for designing diagram, such that flow 

charts, process diagrams, org charts, UML diagrams, ER models, network diagrams, 

and much more. 

 

Report Writing: 

Google Docs:  This is an online-based document application. That is used in online at 

any computer with internet. And access user can view, edit  

Microsoft word: Microsoft word is a mostly used word processing application for 

creating any types of documents like letters, quizzes, and student assignment 

Grammarly:  This is a platform that checks grammar. It’s basically a writing app, that 

help to write clear and effective English. 

 

Development: 

Phpstorm: Phpstorm is an IDE that is designed to handle large php projects. It is 

developed by Jetbrains. Phpstorm supports all the type of related tools also testing and 

debugging tools. We used student version of Phpstorm. It has all the features that a 

proffesional verson have . 

 

Project Management: 

MeisterTask: MeisterTask is an online tools for project management actually, It is 

similar to Trello. 
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Communication: 

Skype: Skype is a calling platform that helps us communicate with each other for group 

discussion. 

Gmail: We use Gmail for communication and file transfer with each other.  

 

Data Store and Share:  

Google Drive: Google drive is a online-based cloud storage service to store any kind 

of data. 

We store our all document in Google drive. 

Google Site: We publish a web page that contain our research related information on 

Google sites. 

 

3.5 Data collection  

 

We collected data from different sources. Our primary data sources was Codeforces. 

We collected around 7000 programming problems from codeforces. We stored those 

data in our system’s database. then our secondary data source was kaggle. 

 

Codeforces data:  

 

Kaggle data:  

 

   3.6 Structures of Online Judges 

Currently there are many active online coding judges which provide various 

programming problems of wide ranges of categories.  Among these online judges there 

are some judges which don't contain good quality problems. A serious problem solver 

usually solves problems from online judges that contain a wide range of quality 

problems. Codeforces, Uva, ATCoder , Sphere online judges ( SPOJ ) are among the 

most popular online judges.  

1) Codeforces [1] 

    Codeforces is a Russian based online judges  dedicated to competitive programming. 

Codeforces was created and currently maintained by a group of notable competitive 

programmers from Saratov State University led by Mikhail Mirzayanov ( named as 

Mike Mirzayanov) . Codeforces arranged different types of programming contests. Div-
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1, Div-2 or Div-3 held about 2-3 times in a week, Also codeforces educational contests 

(2-2.5 hours), held 2-3 times per month. In codeforces it is possible to challenge or hack 

other contestants' solutions. CF also has social-networking through the use of internal 

public blogs and Personal messaging. 

 

2) Sphere Online Judge ( SPOJ ) [2] 

Sphere Online Judge or SPOJ called in short is an online judge with over 500,000 

registered users. Its problem archive consists of over 40,000 problems. All the problems 

in the problem archive were prepared by its community of problem setters or are taken 

from programming contests that are already held. SPOJ allows users to organize 

contests under their own rules and also includes a forum where problem solvers can 

discuss a problem. 

3) ATCoder [3] 

AtCoder is an Online judges website based in Japan. 

Basically there are three types of contests at AtCoder: 

● AtCoder Grand Contest (AGC). This is the best contest at Atcoder. The 

problems have high originality and require interesting observations to solve. 

● AtCoder Regular Contest (ARC). The problems may be a bit typical compared 

to AGC problems, but still problem solvers can enjoy them and these are good 

for practice. 

● AtCoder Beginner Contest (ABC). These types of contests are mainly targeted 

for newcomers at competitive programming. The problem sets are easy and 

educational. 

 

For the purpose of our proposed solution we would like to use the API provided by 

Codeforces. By using codeforces API we will fetch problems with categories such as 

Implementation, Graphs, Mathematics , String Processing , Computational Geometry 

and so on. It also provides the difficulty level of each problem in a problem category 
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and statistics of a problem. We can also retrieve submission history for a certain user 

who has a codeforces account.  

 

  3.7 Recommendation phase: 

Before processing a recommendation from a user statistic for a user, we have to build 

a structure that holds information for problems in each category such as the problem’s 

category, the number of accepted submissions, the number of total submissions and the 

difficulty level. As for the accepted number of submissions and total submissions we 

were able to acquire them using the Codeforces API. Using this information, we have 

to build a problem profile. Some examples of problem profiles are:  

 

Problem Statistics of a 1000 difficulty level Problem of Mathematics Category 

 

Fig 3.3: Statistics of a 1000 difficulty Problem of Mathematics Category  
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Problem Statistics of a 1100 difficulty Problem of Ad Hoc Category 

 

Fig 3.4: Statistics of a 1100 Problem of Ad Hoc Category 

 

Fig 3.5: Profile Building for a user 
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There are two types of users in an online judge.  

1. New Users 

2. Existing Users 

 

New Users:  

For new users, we don’t have any statistics or history for which we can analyze or 

evaluate the user’s skill level as a competitive programmer . So in this case , we will 

use non - personalized  recommendation techniques. We will choose K Problems from 

each problem category. These K problems will have the lowest difficulty ( easiest 

problems) in those categories. In Codeforces, difficulty level ranges from 500 to 3800 

with 3800 being the most challenging level. In Certain categories ( Probabilities, FFT ) 

with difficulty below 1500 may not exist. In that case the next lowest level will be 

considered. The k problems suggested from each category will be randomly picked. 

One question may arise, why not suggest only easy Ad-hoc/introduction problems 

rather than picking a certain number of problems from each category ? As our objective 

was to ensure the growth of a problem solver in the all rounder basis so we exposed the 

new user to problems from other categories as well, but those problems are the easiest 

from their respective categories. 

 

Pseudocode:  

for each category from categories: 

   count = 0 

   for each level starting from lowest level from problem category : 

       count ++ 

       suggest this problem 

       if count == k: 

           break 
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Existing User:  

For existing users we will retrieve all the required information ( user statistics , history 

, solved problems) from codeforces using codeforces username. Then the fetched data 

will contain the list of problems solved by the user in Codeforces. Afterwards, we will 

build a user profiles for the user. The user profile will contain the problems solved by 

that user in each difficulty level for each and every category of problems. A sample 

user profiles represented using bar chart is given below:  

 

 

    Fig 3.6: Statistics of a number of problems solved by a user from each category 

Next we will iterate each category one by one and we will try to determine the user's 

skill level in each category. It also may happen that the user is good at some category 

while not as good at some other categories.  The reason for this is often programmers 

team up in a group of three when they participate in many onsite contests for which an 

individual programmer does not work on all the problems in the problem set. This 

process builds biases towards some categories or topics for that competitive 

programmer. But to perform better in programming contests, all the team members 
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should need to be well adept in almost all topics. In any onsite programming contests 

if one programmer gets stuck on a problem due to some corner cases or any errors, 

having another team member who has significant expertise on the same topic will help 

a lot for identifying the error. So our goal is to ensure growth of a competitive 

programmer in all categories by providing the suitable problems. 

In order to recommend problems that match a user’s level we will filter out all the 

problems solved by that user in a specific category. Then, we will filter the problems 

that are solved based on difficulty level. A chart showing problems solved by a user 

named ‘zim2520 in Ad Hoc category are given below. 

 

Fig 3.7: Statistics of a number of problem solved by a user from Mathematics category ( in integer ) 

 

The problem with the above method is that it does not hold accurate information 

regarding the level of the user currently in. It is possible that one may simply assume 

that the user is capable enough to solve a level with rating 1400-1500 problems so 

recommended problems should be of level with difficulty rating 1400-1500 only. But 

that is not true. Often a programmer is able to solve some higher-level problems but not 

capable enough to solve other problems in that difficulty level, It basically means it 
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requires to solve a significant amount of programming problems in a lower level in 

order to gain consistency. But now a question may arise; how many problems need to 

be solved in certain categories to ensure the mastery of that level? The number of 

problems in each category in Codeforces is not large. Also the number of problems in 

each difficulty level are not equal. So the number of problems is not a good way to 

evaluate the masteriness of a level. Thus, we came up with the idea of considering the 

ratio of problems solved to the total number of problems in that specific level in a 

specific category. 

Now we are getting data in the below format:  

 

Fig 3.8: Statistics of a number of problem solved by a user from Mathematics category (in ratios )  

 

From the above list of given ratios of all the difficulty levels we will choose the highest 

level that has exceeded a certain ratio. If the ratio exceeds 0.5 then we do not 

recommend problems from that level but recommend problems from the next level. if 

the ratio exceeds 0.4 but is less than 0.7 then we recommend problems from that level 

and from the next level. But if the ratio is below 0.4 then only problems from the current 

level get recommended.  
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In this way, our recommender system will choose first k problems from each category 

and make a recommendation to the user.  

Pseudocode :  

For a user, getting recommended user skill level for each category 

UserLevel = get the lowest level available in that category 

Ratio = 0 

Get List of solved problems for the user 

Map with key as category and value as recommended level 

for each category from all category 

   Make a list of number of solved problems for each difficulty level 

   Make a list of ratio of solved problems and total problems for each difficulty 

level 

   for each level from level ratio list 

       if level ratio > RecommendedLevelRatio 

           UserLevel = UserLevel+1 

           recommendedLevelRatio = minimum of (level ratio + 1, 0.5) 

        add category and UserLevel + 1 to map 

        if reommendedLevelRatio > 0.4 and RecommendedLevelRatio < 0.5 

           add category and userLevel+1 to the Map 

return Map 

 

For a given user, making recommendation 

Get list of all available problems 

Get list of user solved problems 

For each category 

   Get UserRecommendedLevel 

   Filter a list of unsolved problems for the given category and user Recommended 

Level 

   Choose K random problems from filtered list and make recommendation 
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3.8 Implementation Requirement 

The details system information is given below: 

Hardware Requirement (minimum): 

Processor: 

Over 3.0 Ghz and 3 core CPU and multithreading enabled. 

Memory: 

At least 8GB of physical RAM. 

Storage: 

At least 20 GB of HDD space. 

Software Requirement: 

Operating System 

• Linux - Ubuntu 18.04 

• Windows - Windows 10 ( professional ) 

 

Required Environments 

• Xampp 

• Php V7 

• Mysql 

 

Packages 

• Laravel >= 6 

• Gazzle Http 
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CHAPTER 4 

 

Experimental Results and Discussion 

4.1 Introduction 

We have tested our recommender system by taking 10 users of Codeforces. From 

these 10 users we have picked 3 different types of users (one who is expert, one who 

is in intermediate level and another one is beginner) for analyzing the results. 

 

4.2 Experimental Results and Analysis 

The results and the analysis of the results are given below. 

4.2.1 Analysis for the Expert User 

Our Recommendation for the user:  

Table 4.1: Recommendation for the Expert User 

 Problem ID Problem Name Category Difficulty Rating 

363B Fence Dynamic 

Programming 

1200 

1108D 

 

Diverse Garland Dynamic 

Programming 

1500 

489C Given Length and 

Sum of Digits.. 

Greedy 1400 

1338A Powered Addition Mathematics 1100 

1335B Construct the 

String 

String Processing 

  

1200 

1084C The Fair Nut and 

String 

Implementation 1500 

1327B Princesses and 

Princes 

Graph Theory 1300 

1331E Jordan Smiley Computational 

Geometry 

1600 

 

 

https://codeforces.com/problemset/problem/363/B
https://codeforces.com/problemset/problem/363/B
https://codeforces.com/problemset/problem/327/A
https://codeforces.com/problemset/problem/1108/D
https://codeforces.com/problemset/problem/489/C
https://codeforces.com/problemset/problem/489/C
https://codeforces.com/problemset/problem/1338/A
https://codeforces.com/problemset/problem/1335/B
https://codeforces.com/problemset/problem/1335/B
https://codeforces.com/problemset/problem/1084/C
https://codeforces.com/problemset/problem/1084/C
https://codeforces.com/problemset/problem/1327/B
https://codeforces.com/problemset/problem/1327/B
https://codeforces.com/problemset/problem/1331/E
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Analysis:  

 

Fig 4.1: Analysis for the Expert User 

 

From the above chart we can see that in “implementation” categories our expert user 

has solved more than 50% (1400-1500) difficulty problems but has solved less than 

40% problems in level with difficulty more than 1500. Therefore the user needs to solve 

a bit more in level with difficulty 1200-1400 in order to level up.  

 

4.2.2 Analysis for the Mid-Level User 

Our Recommendation for the user:  

Table 4.2: Recommendation for the Mid-Level User 

Problem ID Problem Name Category Difficulty Rating 

706B Interesting drink Dynamic 

Programming 

1200 

1348D Phoenix and 

Science 

Binary Search 1400 

489C Phoenix and Beauty Data structure 1400 

1343B Balanced Array Mathematics 800 

https://codeforces.com/problemset/problem/706/B
https://codeforces.com/problemset/problem/706/B
https://codeforces.com/problemset/problem/1348/D
https://codeforces.com/problemset/problem/1348/D
https://codeforces.com/problemset/problem/1348/D
https://codeforces.com/problemset/problem/1348/B
https://codeforces.com/problemset/problem/1343/B
https://codeforces.com/problemset/problem/1343/B
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1342B Binary Period String Processing 

  

1000 

1336B Xenia and Colorful 

Gems 

Two pointer 1100 

1020B Badge Graph Theory 1300 

 

 

Analysis:  

 

Fig 4.2: Analysis for the Mid-Level User 

 

In the “implementation” category, our intermediate users have solved more than 80% 

of the level with 1000 to 1200 problems. So this level of problems are not necessary to 

be solved by the user. Our intermediate user needs to solve the problems from 1400 - 

1500 difficulty rating as only 20% of problems have been solved from that category. 

So, the recommended problems are both from difficulty rating 1200-1400 and 1400 - 

1500 which fits the current skill level of our intermediate user. 

 

 

https://codeforces.com/problemset/problem/1342/B
https://codeforces.com/problemset/problem/1342/B
https://codeforces.com/problemset/problem/1336/B
https://codeforces.com/problemset/problem/1336/B
https://codeforces.com/problemset/problem/1336/B
https://codeforces.com/problemset/problem/1020/B
https://codeforces.com/problemset/problem/1020/B
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4.2.3 Analysis for the Beginner Level User 

Our Recommendation for the user:  

Table 4.3: Recommendation for the Beginner Level User 

Problem ID Problem Name Category Difficulty Rating 

785A Anton and 

Polyhedrons 

Implementation 600 

141A Amusing Joke Sorting 800 

1165B Polycarp Training Data structure 1200 

999A Mishka and Contest Brute-Force 700 

723A The New Year: 

Meeting Friends 

Mathematics 1000 

734B Anton and Digits Greedy 700 

750A New Year and Hurry Binary Search 800 

 

https://codeforces.com/problemset/problem/785/A
https://codeforces.com/problemset/problem/785/A
https://codeforces.com/problemset/problem/785/A
https://codeforces.com/problemset/problem/141/A
https://codeforces.com/problemset/problem/141/A
https://codeforces.com/problemset/problem/1165/B
https://codeforces.com/problemset/problem/1165/B
https://codeforces.com/problemset/problem/999/A
https://codeforces.com/problemset/problem/999/A
https://codeforces.com/problemset/problem/723/A
https://codeforces.com/problemset/problem/723/A
https://codeforces.com/problemset/problem/723/A
https://codeforces.com/problemset/problem/734/B
https://codeforces.com/problemset/problem/734/B
https://codeforces.com/problemset/problem/750/A
https://codeforces.com/problemset/problem/750/A
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Analysis: 

 

Fig 4.3: Analysis for the Beginner Level User 

In the “Implementation” category, our beginner user has solved more than 80% problem 

with difficulty less than 1000 . And our user solved less than 20% problems from the 

level with difficulty 1000 to 1200 and solved less than 10% difficulty level 1200-1400 

problems. So, it makes sense to recommend him only difficulty level 1000-1200 

problems for now. 

4.3 Evaluation 

 

1) Online evaluation 

This evaluation is done by allowing few user to use our recommendation system. Every 

user used our system for last 30 days to practice programming. Our commendation 

system generated a recommendation list for every user for daily basis. Basically to 

evaluate our system we used following steps:  

1. The recommendation engine created a recommendation list on the basis of user 

submission history 

a. If user is new to the system then it will use non-personalized 

recommendation technic to recommend 

b. If user is already in our system then recommendation engine will create 

a user profiles based on user submission history 

2. User will attempt those problems. 
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3. When a user solved a problem, we will collect the following data for evaluation 

a. Number of attempts make by user to solve this problem 

b. How many problem user has been solved for this category? 

c. User rating for this problem recommendation ( 1 to 10 ) 

 

Then we calculated our evaluation matrix from collected data. A small snapshot of the 

matrix is given below:  

Table 4.6: Snapshot of evaluation ( online user ) 

 

 1st 

Recommendati

on 

2nd 

Recommendation 

3rd 

Recommendati

on 

4th 

Recommendation 

4th 

Recommen

dation 

User-1 0.9024 0.6924 0.7290 0.9589 0.6482 

User-2 0.5065 0.7912 0.7223 0.7378 0.7788 

User-3 0.9087 0.7920 0.7224 0.9322 0.7787 

User-4 0.7501 0.9686 0.8598 0.8838 0.7501 

 

 

4.4 Discussion 

From the above results we can ensure that our recommender systems are able to 

recommend suitable problems to the user that will be most likely to be solvable and 

also ensure the proper growth of the user. 
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CHAPTER 5 

Summary, Conclusion and Implication for Future Research 

 

5.1 Summary of the Study 

 

Though the whole study, we tried to build a system that will support competitive programmers like 

a coach. Our works are motivated from the contests like ACM International Collegiate 

Programming Contests ( ICPC ), IOI ( Informatics Olympiad ). We hope that our system will help 

programmers to perform better in these types of contest.  Our system may help in the preparation 

for a student for coding interview. In coding interview, challenges given to a candidate is much 

similar to competitive programming problem. If any one, wants to practice for interview then 

he/she can use our systems.  

 

5.2 Conclusions 

 

In conclusion, Competitive programming have many and many benefits. By competitive 

programming one may become a desirable candidate to major companies. It is an opportunity to 

be seen by large companies like google, facebook, Amazon and many other authorities in the IT 

industry. Competitive programming made a student to become more disciplined , faster and 

focused programmer. It also helps student to do team works . In short, the benefit of competitive 

programming is not be concluded. We tried our best to find a solution to help competitive 

programmers to do programming in cheerful environment. We tried to provide a system that will 

help competitive programmers to come out of frustration. 

 

 

5.3 Implication for Further Study 

 

Not all the system are not 100% perfect. Perfection is always a work in progress, There our system 

is only at its early stages. Though our proposed solutions fulfill all the requirement we have 

discussed for a recommender system that will recommend programming problems to 

programmers. However, Our proposed solution took advantages of codeforces API. In our  
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recommendation systems, we uses the feature for codeforces category and rating system. But all 

the online judges doesn’t provide category and rating. There are new challenges added on contest 

site regularly. The main sources of these problems is the contest arranged by those sites. There are 

few more things that our proposed solution not cover. Few of are:- 

1. Un-Categorized Problems: New problems are added on online judges at time passes. Most 

of these problems comes from contest held on those sites. To categorize a new problem 

machine learning might be able to use in this scenario. We can train a model to categorize 

new problems by using existing dataset  

2. Dealing with problems that falls multiple category 

3. More advanced system that helps faster growth for a competitive programmer. 
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APPENDICES 

Appendix A: Application Programming Interfaces ( API ) 

 

We used API in our application in multiple purses. API is a acronym of Application Programming 

Interfaces. API Allows two application two communicate with each other [13]. In our Application 

we used Codeforces API [14] and Guzzle HTTP [15] Library to fetch Problems from Codeforces. 

Guzzle HTTP [15] also uses to retrieve a submission of user. 

Appendix B: Costly System 

 

Our System is hosted on Heroku[16]. Heroku is a Paas ( Platform as a service ) platform provides 

container to host web application. Heroku gives subscription based services and the subscription 

is costly. And our system also uses databases to store the programming’s problems initially, The 

subscription for database is also costly. 

Appendix C: Web based interface 

 

Now a day’s cloud computing is much reliable and scalable than locally running system, It makes 

the system to accessible our system to almost all type of users from any geolocations.  

Appendix D: Open Source Repository 

Works for this repository is not yet completed. If any one wants to contribute this project, then 

he/she can fork this repository and able to contribute. 

Link: <<https://github.com/nesarjony/cfassistant-mysql>> 

 

https://github.com/nesarjony/cfassistant-mysql
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