
i
©DaffodilInternationalUniversity

iPage Title

A Comparative Analysis of Credit Card Fraud Detection Using Machine

Learning Classification Algorithms

By

M. Shahrear Shohag

152-19-1783

Supervised By

Md. Mushfiqul Islam

Lecturer

Department of ETE

Faculty of Engineering

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA-1207, BANGLADESH

ii
©DaffodilInternationalUniversity

APPROVAL

This thesis titled “A Comparative Analysis of Credit Card Fraud Detection Using Machine

Learning Classification Algorithms” submitted by M. Shahrear Shohag the Department of

Electronics and Telecommunication Engineering (ETE), Daffodil International University, has

been accepted as satisfactory for the partial fulfillment of the requirements for the bachelor

degree. in Electronics and Telecommunication Engineering and approved as to its style and

contents.

BOARD OF EXAMINERS

 Associate Prof. Md. Arefin Taslim Chairman

 Head

 Department of ETE

 Faculty of Engineering

 Daffodil International University

 Professor Dr. A K M Fazlul Haque Internal

Examiner

 Professor & Associate Dean Faculty of Engineering

 Daffodil International University

 Ms. Tasnuva Ali Internal Examiner

 Assistant Professor

 Department of ETE

 Faculty of Engineering

 Daffodil International University

 Dr. Saeed Mahmud Ullah External Examiner

 Associate Professor

 Department of Electrical and Electronics Engineering University of Dhaka

iii
©DaffodilInternationalUniversity

DECLARATION

I hereby declare that this research is my own work and effort under the supervision of Md. Mushfiqul

Islam, Md. Mushfiqul Islam, Department of ETE, Faculty of Engineering, Daffodil International

University, Dhaka. It has not been submitted anywhere for any award. Where other sources of information

have been used, they have been acknowledged.

Supervised By:

Md. Mushfiqul Islam

Lecturer

Department of ETE

Faculty of Engineering

Daffodil International University

Submitted By:

M. Shahrear Shohag

152-19-1783

Department of ETE

Daffodil International University

iv
©DaffodilInternationalUniversity

DEDICATION

This thesis is wholeheartedly committed to my dearest guardians, who have been our source

of motivation and gave us strength when we thought of surrendering, who consistently provide

their ethical, spiritual, feeling and financial support.

v
©DaffodilInternationalUniversity

ACKNOWLEDGEMENT

First and foremost, we would like to express and convey our gratitude to the Almighty

Allah,for his blessing approval, protection, mental power and wisdom in all aspect of our life,

and all applause to Allah of Complete this thesis.

The real sprit of achieving a goal is through the way of excellence and austere discipline. We

would have never succeeded in completing our task without the cooperation, encouragement

and help provided by various personalities.

This work would not have been possible without the support and guidance of Md. Mushfiqul

Islam, Lecturer, Department of ETE, Faculty of Engineering, Daffodil International

University, Dhaka, who happen to be my research supervisor for his endless patience,

scholarly guidance continual encouragement, constant and energetic supervision, constructive

criticism, valuable advice, reading inferior drafts and correcting them at all stages have made

it possible to complete this research. And we choose this topic and developed the research.

Deep Knowledge and keep interest of our supervisor in the field of Biomedical and

influenced us to carry out of this research.

We would like to express our heartiest gratitude to all of our faculty members, Department of

Electronics and Telecommunication Engineering, for their kind help to finish our thesis and

also we would like to thank the staffs of the ETE Department of Daffodil International

University.

We must sincere to acknowledge with due respect the constant support and patience of our

family members and outfriends their helpful and assistance of completing our program.

M. Shahrear Shohag

vi
©DaffodilInternationalUniversity

ABSTRACT

With the rise of e-commerce and online purchases in the modern age, credit card fraud has

become a severe and growing issue. Such unpleasant practices can impact millions of people

around the world through this identity theft and the loss of money. Crime is a growing threat

with far-reaching consequences to the finance sector. The extraction of information seemed to

be a core job for payment fraud recognition, fraud detection efficiency in card buy-outs has a

significant impact on the measurement strategy for the data set, the choices of the variable and

the techniques of detection used. We'll aim at how Artificial Neural Networks (ANN), Decision

Trees, K-Nearest Neighbors (KNN), Logistic Regression, Support Vector Machines (SVM),

Random Forests, Neural Network Supervised (MLPClassifier), Ridge Classification,

AdaBoost Classification, and Naive Bayes are implemented in this research. Classification

algorithms for highly skewed credit card fraud results. For model understanding, accuracy, f1,

recall, precision, Matthew's correlation coefficient (MCC), confusion matrix, and lime which

will be used to evaluate the execution of these techniques.

vii
©DaffodilInternationalUniversity

Table of Contents
Page Title .. i

APPROVAL .. ii

DECLARATION.. iii

DEDICATION.. iv

ACKNOWLEDGEMENT .. v

ABSTRACT .. vi

Chapter 1

Introduction ... 1

1.1 Introduction ... 1

1.2 Aim and Objective .. 1

1.3 Limitations and Challenges ... 2

1.4 Chapter Description .. 2

Chapter 2

Technical Background .. 3

2.1 Artificial neural network ... 3

2.1.1 Learning Paradigms of ANN ... 7

2.1.2 Common problems and Methods of data splitting ... 9

2.2 Random Forest .. 10

2.2.1 Working Function of Random Forest Algorithm ... 12

2.3 K-nearest Neighbor (KNN) ... 13

2.4 Logistic Regression ... 14

2.5 Support Vector Machine (SVM) ... 15

2.6 Naive Bayes .. 16

2.7 Decision Tree .. 16

2.8 Neural Network Supervised (MLPClassifier) ... 17

2.9 Ridge Classification .. 19

2.10 AdaBoost Classifier .. 19

2.11 Confusion Matrix .. 20

2.12 Principal Component Analysis (PCA) .. 22

2.13 Lime .. 23

2.13.1 LIME assesses the following characteristics: .. 23

Chapter 3

Data Overview ... 27

3.1 Dataset of Credit Card Fraud .. 27

3.1.1 Time Feature .. 27

3.1.2 Amount Feature ... 28

viii
©DaffodilInternationalUniversity

3.1.3 Class Feature .. 28

3.1.4 V-features ... 29

Chapter 4

Data Sorting and Exploration .. 31

4.1 TensorFlow ... 31

4.2 Colab ... 31

4.3 Importing Packages for Data Sorting and Exploration ... 31

4.4 Importing the data ... 31

4.5 Exploratory Data Analysis and Processing ... 32

Chapter 5

Modeling .. 37

5.1 Artificial Neural Network (ANN) ... 37

5.1.1 Develop Keras Model .. 37

5.1.2 Compiling The Model .. 37

5.2 Decision Tree .. 39

5.3 K-Nearest Neighbors (KNN) .. 39

5.4 Logistic regression .. 39

5.5 Support Vector Machine (SVM) ... 40

5.6 Random forest ... 40

5.7 Naive Bayes .. 40

5.8 Neural Network Supervised (MLPClassifier) ... 40

5.9 Ridge Classification .. 41

5.10 AdaBoost Classification .. 41

Chapter 6

Model Evaluation .. 42

6.1 ANN Model Evaluation .. 42

6.2 Recall .. 42

6.3 Precision .. 43

6.4 Accuracy score .. 45

6.5 F1 Score .. 46

6.6 Matthews Correlation Coefficient (MCC) .. 47

6.7 Confusion Matrix .. 48

6.8 Lime .. 59

Chapter 7

Results and Discussion .. 64

Chapter 8

Conclusions .. 66

ix
©DaffodilInternationalUniversity

References .. 67

List of Table

Table 3. 1 Dataset of Credit Card Fraud ... 27

Table 6. 1 Recall score of our models ... 43

Table 6. 2 precision score of our models .. 45

Table 6. 3 Accuracy score of models .. 46

Table 6. 4 F1 score of models ... 47

Table 6. 5 Matthews correlation coefficient (MCC) score of models. .. 48

Table 7. 1 Results and Comparisons of ten classification models .. 64

List of Figures

Figure 2. 1 Natural Neurons .. 3

Figure 2. 2 ... 4

Figure 2. 3 Transfer Function ... 5

Figure 2. 4 Supervised Learning ... 8

Figure 2. 5 Unsupervised Learning ... 8

Figure 2. 6 Reinforcement Learning ... 9

Figure 2. 7 A data splitting visualization .. 10

Figure 2. 8 Illustrations of Random Forest algorithm working function. ... 13

Figure 2. 9 SVM Explanation ... 15

Figure 2. 10 Decision Tree Explanation ... 17

Figure 2. 11 Jezzball- a classic Microsoft game ... 17

Figure 2. 12 One of The Multi-layer Perceptron (MLP) hidden layer. ... 18

Figure 2. 13 The AdaBoost algorithm's operation .. 20

Figure 2. 14 Confusion Matrix .. 20

Figure 2. 15 Principal Component Analysis(PCA) explanation. .. 22

Figure 3. 1 Time Function Allocation of the Dataset.. 28

Figure 3. 2 Amount per transaction .. 29

Figure 3. 3 Tome of transaction vs amount .. 29

Figure 3. 4 Transaction class distribution ... 29

Figure 3. 5 Frequency for each Dataset Function ... 30

Figure 3. 6 The Dataset Correlation Matrix .. 30

Figure 4. 1 Importing packages for data sorting and exploration ... 31

Figure 4. 2 Mount the environment with google drive. .. 32

Figure 4. 3 Importing the data ... 32

Figure 4. 4 Determine the number of fraud and valid cases in datasets. ... 33

Figure 4. 5 Statistical view of fraud transaction amount .. 33

Figure 4. 6 Statistical view of valid transaction amount ... 33

Figure 4. 7 Splitting data into X and Y values .. 34

Figure 4. 8 Training and testing the splitting data .. 34

file:///T:/presentation/thesis%20book/A%20Comparative%20Analysis%20of%20Credit%20Card%20Fraud%20Detection%20Using%20Machine%20Learning%20Classification%20Algorithms.docx%23_Toc66027613

x
©DaffodilInternationalUniversity

Figure 4. 9 Training dataset after PCA Applied ... 35

Figure 4. 10 Standardized dataset of training after PCA .. 36

Figure 5. 1 Developing sequential model (ANN model) .. 38

Figure 5. 2 Compiling sequential model (ANN Model) ... 38

Figure 5. 3 Construction of Decision Tree model ... 39

Figure 5. 4 Construction of K-Nearest Neighbors (KNN) model ... 39

Figure 5. 5 Construction of Logistic regression model ... 39

Figure 5. 6 Support Vector Machine (SVM) model construction. .. 40

Figure 5. 7 Random Forest model construction .. 40

Figure 5. 8 Construction of Naïve Bayes classification model. .. 40

Figure 5. 9 Construction of Neural Network Supervised (MLPClassifier) model. 41

Figure 5. 10 Construction of Ridge Classification model. .. 41

Figure 5. 11 Construction of AdaBoost Classification model. ... 41

Figure 6. 1 ANN Model Evaluation. ... 42

Figure 6. 2 Recall Score of six different classification models by the scikit-learn package. 43

Figure 6. 3 precision score of six different classification models by the scikit-learn package. 44

Figure 6. 4 Accuracy score of six different classification models by the scikit-learn package. 45

Figure 6. 5 F1 score of six different classification models by the scikit-learn package. 46

Figure 6. 6 Matthews correlation coefficient (MCC) score of six different classification models by the

scikit-learn package. ... 47

Figure 6. 7 Confusion Matrix of ANN model ... 48

Figure 6. 8 Plotting Confusion Matrix heatmap of ANN model ... 49

Figure 6. 9 Confusion Matrix of Random Forest model ... 49

Figure 6. 10 Plotting Confusion Matrix heatmap of Random Forest model ... 50

Figure 6. 11 Confusion Matrix of KNN model ... 51

Figure 6. 12 Plotting Confusion Matrix heatmap of KNN model ... 51

Figure 6. 13 Confusion Matrix of Logistic Regression model .. 51

Figure 6. 14 Plotting Confusion Matrix heatmap of Logistic Regression model 52

Figure 6. 15 Confusion Matrix of Support Vector Machine (SVM) model .. 52

Figure 6. 16 Plotting Confusion Matrix heatmap of Support Vector Machine (SVM) model.............. 53

Figure 6. 17 Confusion Matrix of Naive Bayes Classifier model ... 53

Figure 6. 18 Plotting Confusion Matrix heatmap of Naive Bayes Classifier model 54

Figure 6. 19 Confusion Matrix of Neural Network Supervised (MLPClassifier) model 54

Figure 6. 20 Plotting Confusion Matrix heatmap of Neural Network Supervised (MLPClassifier)

model .. 55

Figure 6. 21 Confusion Matrix of Ridge Classification model ... 55

Figure 6. 22 Plotting Confusion Matrix heatmap of Ridge Classification model 56

Figure 6. 23 Confusion Matrix of AdaBoost Classification model .. 56

Figure 6. 24 Plotting Confusion Matrix heatmap of AdaBoost Classification model 57

Figure 6. 25 Confusion Matrix of Decision Tree model ... 57

Figure 6. 26 Plotting Confusion Matrix heatmap of Decision Tree model ... 58

Figure 6. 27 Generate LIME explanation ... 59

Figure 6. 28 ANN model's array value for predict_proba ... 59

Figure 6. 29 ANN model interpretation by lime ... 59

Figure 6. 30 KNN model interpretation by lime ... 60

Figure 6. 31 Random Forest model interpretation by lime ... 60

Figure 6. 32 Logistic Regression model interpretation by lime .. 60

Figure 6. 33 SVM model interpretation by lime ... 61

xi
©DaffodilInternationalUniversity

Figure 6. 34 Naive Bayes Classifier model interpretation by lime ... 61

Figure 6. 35 Decision Tree model interpretation by lime ... 62

Figure 6. 36 Neural Network Supervised (MLPClassifier) model interpretation by lime 62

Figure 6. 37 Ridge Classification model's array value for predict_proba ... 62

Figure 6. 38 Ridge Classification model interpretation by lime ... 63

Figure 6. 39 AdaBoost Classification model interpretation by lime ... 63

1
©DaffodilInternationalUniversity

Chapter 1

Introduction

1.1 Introduction

Financial fraudulent activity in an ever growing threat in this modern era, where business,

industries, organizations and government is highly dependable on the internet technology.

And with rapidly developing the economy globalization, credit card transactions became

popular for commercial transactions in both online and offline. According to Global

Payment report 2020, 24.2% in eCommerce and 20.9% in Point of Sale (POS) payment

had made by credit card in 2019. Thus, the huge transactional services often target by

cyber criminals to perform fraudulent activity using credit card services.

The unauthorized usages of card and unusual transactions are defined as a credit card fraud.

Namely there are three three types of credit card frauds in general. Conventional frauds,

which performed by stilling, faking or counterfeiting. Online frauds are often committed

by the fake or false merchant sites. And Merchant related frauds involved with merchant

collusion and triangulation.

By using traditional methods of manual detection can be time consuming, inefficient and

costly for detecting the fraudulent transactions. Credit card fraud detection is the process

of identifying transaction whether it’s legitimate (genuine) or fraudulent. To counter cyber-

criminal activities, data mining and machine learning approaches are vastly used.

Therefore, these techniques can be applied for credit card fraud detection methods.

1.2 Aim and Objective

• Find an appropriate deep neural architecture for the fraud detection method, based

on accuracy.

• Find an appropriate agent architecture for the fraud detection system based on

accuracy.

• Develop and incorporate a framework in the available database to identify

fraudulent transactions where the number of cases of fraud is very limited

compared to legal cases.

• Determine which algorithm gives a better result based on accuracy, Recall and

Precision

2
©DaffodilInternationalUniversity

1.3 Limitations and Challenges

• Huge amount of data processing everyday.

• Build model have to fast enough to respond to the scam in time.

• Maintain high accuracy.

• Imbalanced Data (i.e. mostly 99.8% are legitimate or non-fraudulent which makes

it hard to direct the fraudulent one).

• Data unavailability as most are private.

• Another major issue can be misclassified data, as not every single fraudulent

transaction is caught or reported.

• Adaptivity against scammers.

1.4 Chapter Description

• Chapter 2 - Technical Background shows the background of Machine Learning

approaches discussed in this work.

• Chapter 3 - The Data Overview explains the database and analyzes it.

• Chapter 4 – Data Sorting and Exploration, preparing the data to test, train and

predict.

• Chapter 5 – Modeling with ten classification model (ANN, Decision Tree, KNN,

Logistic Regression, SVM, Random Forest, Neural Network Supervised

(MLPClassifier), Ridge Classification, AdaBoost Classification and Naive Bayes).

• Chapter 6 – Model Evaluation with accuracy, f1, recall, precision, Matthew’s

correlation coefficient (MCC),confusion matrix and used lime for model

interpretation.

• Chapter 7 - Results provides the provisional and final results of the study

conducted.

3
©DaffodilInternationalUniversity

Chapter 2

Technical Background

In this chapter introduces each technique and definition used in the creation of work in the field

of machine learning and deep learning. These terms, beginning with , Artificial Neural Network

(ANN), Decision tree , K-nearest Neighbors (KNN), Logistic Regression algorithm, Support

Vector Machine(SVM), Random Forest Tree Algorithm and Naive Bayes Classifier, are clearly

explained, trying to make them easy to understand.

2.1 Artificial neural network

Artificial neural networks (ANNs) are computation systems largely inspired by the biological

neural networks that form animal brains, often called as neural networks (NNs).

ANN were developed as a mathematical generalization of the components of the human brain,

specifically neuron networks that obtain information to learn characteristics and take action

according to the ANN objective. Artificial neural networks find the best combination of

parameters that match a given problem during the training phase. The study of artificial neural

networks is inspired by their similarities to biological systems that function efficiently,

consisting of very basic yet multiple nerve cells that work massively and have the ability to

learn in parallel. After good training, an ANN may find logical solutions to similar problems

in the same class that have not been specifically trained, since they have the capacity to

generalize and associate knowledge. In exchange, this results in a high level of fault tolerance

against noisy data inputs.

Figure 2. 1 Natural Neurons

That of natural neurons is the model that remains. A basic drawing of a biological neuron is

seen in Figure 2.1. Via synapses located on the neuron dendrites or membrane, natural neurons

receive signals. The neuron is triggered when the signals received are high enough and emits a

signal through the axon. This signal might be sent to another synapse, and other neurons might

be activated. If we equate them with artificial neurons, natural neurons have immense

complexity. However, when designing our neural networks, we can extract features that are

important. Inputs are needed, multiplied by initial weights, to be enabled by a mathematical

function afterwards. An example of an artificial neuron is shown in Figure 2.2.

4
©DaffodilInternationalUniversity

Figure 2. 2

Artificial Neuron

Artificial Neuron

An artificial neuron is a natural neuron inspired computational model. The architecture and

functioning of the biological neuron, which is the basic building block of biological neural

networks, including the brain, spinal cord and peripheral ganglia, is derived from observation.

It is possible to research an artificial neuron using a simple mathematical procedure. Project,

such as the following:

𝑦(𝑘) = 𝐹 (∑𝜔𝑖(𝑘). 𝑥𝑖(𝑘) + 𝑏

𝑚

𝑖=0

)
2.1

Where,

• 𝒙𝒊(k) is the discrete time k input

• 𝝎𝒊(𝒌) is the discrete time k weight value

• b is bias

• F is a transfer function

• 𝒚𝒊(𝒌) is the discrete time k output value

Loss Function

To minimize the so-called loss on the training set is the standard approach for training a

deterministic regression or classification model. The loss is defined as a function of the

parameters of the model θ:

𝑙(𝜃) =
1

𝑆
∑𝐿(𝑦𝜃(𝑋𝑠), 𝑇𝑠)

𝑆

𝑠=0

2.2

Where𝑋𝑠 is a sample of training with corresponding goal 𝑇𝑠 and 𝑦𝜃(𝑥)is the prediction of the

input x model given. Measure of Loss 𝐿 ∶ ℝ𝐷 ×ℝ𝐷 → ℝ To each sample, R assigns a loss

value based on the discrepancy between the estimation of the model and the ground truth. The

function of loss is used to assess and minimize the difference between expected

5
©DaffodilInternationalUniversity

Real performance and. Mean Squared Error (MSE) is one of the most used loss functions:

𝑀𝐸𝑆(𝑥, �̂�)

∑ ∥ 𝑥𝑖 − 𝑥�̂� ∥
2𝑁

𝑖=1

𝑁

2.3

Where x is the target and �̂� is the obtained value.

Transfer Function

In the 2.1 equation, the transfer function is one of the most important variables. Another term

by which transfer functions are named is Activation Functions. Activation functions are

functions used to determine the weighted total of inputs and biases in neural networks, which

are used to assess whether or not a neuron can be shot. The Artificial Neural Network properties

are defined by these functions. There are several types of activation functionality that are used

according to the issue that needs to be addressed. The graphs of the most general functions are

shown in Figure 2.3 (retrieved from) and are defined as:

Figure 2. 3 Transfer Function

Linear Function

The input/output properties of most actual models are non-linear. But there are several models

that have conduct that is similar enough to linear if run within nominal parameters. In these

types of cases, this feature may be an appropriate reflection of input/output actions. There are

no thresholds applied by the linear function and the output is similar to the input.

 𝑓(𝑥) = 𝑥 2.4

Step Function

6
©DaffodilInternationalUniversity

This is used to model the behavior of the classic 'All-or-none.' It resembles a ramp function,

but when a threshold value is reached, the function value θ shifts abruptly.

𝑓(𝑥) = {

0, 𝑖𝑓 𝑥 ≤ 𝜃
1, 𝑖𝑓 𝑥 > 𝜃

2.5

Ramp Function

With the Linear output function, the Ramp function combines the Step function. The neuron

exhibits the output f(x)= 0 as long as the activation is smaller than the threshold value 𝜃1, if the

activation reaches the threshold value𝜃2, the output is f(x)= 1. The activation output of the

neuron at the interval between the two threshold values of 𝜃1< x <𝜃2 is calculated by a linear

activation interpolation.

𝑓(𝑥) =

{

0 𝑖𝑓 𝑥 ≤ 𝜃1
𝑥 − 𝜃1
𝜃2 − 𝜃1

 𝑖𝑓𝜃1 ≤ 𝑥 ≤ 𝜃2

1 𝑖𝑓 𝑥 > 𝜃2

2.6

Sigmoid Function

The input is taken and compressed the output by This function of transfer in the range 0 to 1.

In multilayer networks that are trained using the Backpropagation Algorithm1, this transfer

function is widely used, in part because this function is distinguishable in its entire range. This

function is defined mathematically as,

𝑓(𝑥) =

1

1 +∈−𝑥

2.7

Hyperbolic Target Function

In terms of neural networks, this function is comparable to a bipolar sigmoid that has an output

range from −1 to +1. For neural networks, where speed is more important than the exact shape

of the transfer function, this function is a reasonable trade-off.

𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

2.8

Gaussian Function

For zero activation, a Gaussian function's maximum function value is found. Even the function

is: f(−x) = f (x). The value of the function decreases as the absolute activation value increases.

 𝑓(𝑥) = 𝑒−𝑥 2.9

7
©DaffodilInternationalUniversity

Learning Rate

The learning rate is a parameter in neural networks that defines how much the weights will

adjust in response to an observed mistake on the training set. Choosing this learning rate can

have a dramatic impact on the precision of generalization as well as the pace of training. This

value is a proportionality constant that configures the scale of the weight changes. The value

of this constant typically varies throughout the [0; 1] interval. If the learning rate is too high,

the average loss will rise and get stuck at or even diverge from a local minimum. If the value

is too poor, however, the learning rate can lead to slow convergence.

Epochs

When the set of training is finite, training continues by sweeps through the set of training called

an age, and complete training typically takes several epochs (iterations through the set of

training). For example, for each model (i.e.) a network with a different set of weights, the back

propagation learning algorithm constructs a different model. The learning algorithm examines

or travels through 1000 different models if a neural network is trained for 1000 epochs.

2.1.1 Learning Paradigms of ANN

There are more and more types of ANNs that refer to a variety of fields. Therefore, to enable

their use, they must be categorized correctly. There are many ways of categorizing them, such

as the type of transfer functions, the topology, implementations, algorithm type, etc. A brief

classification according to the learning paradigms is shown in this section. Learning may refer

to either knowledge acquisition or enhancement. The learning process is a method for updating

an ANN's architecture and link weights to maximize its effectiveness in order to perform a

particular task. The following are the three primary learning paradigms: supervised,

unsupervised (or self-organized), and reinforcement. Numerous algorithms include each

category.

Supervised Learning

In supervised learning, in the form of the exact activation of all output neurons, the training set

consists of input patterns and their correct outcomes. Then, each output produced by the

training set is compared with the correct solution (target) and the neural network's synaptic

weights are modified according to this comparison. The main aim of this training is to change

the weights so that the difference is minimal between performance and target. The Error

Backpropagation Algorithm usually solves learning by practicing in a supervised ANN model.

Supervised learning is a common technique since it facilitates the ability of neural networks to

generalize, that is, even with new data without prior knowledge of the goal, to give correct

results. Normally, this method of learning is used for classification for which there are several

choices for each problem type. However, choosing an appropriate classifier (Multilayer

Perceptron, Support Vector Machines, K-nearest Neighbors Algorithm, Gaussian Mixture

Model, Gaussian, Naive Bayes, Decision Tree, Radial Basis Function Classifiers,etc.) is still

8
©DaffodilInternationalUniversity

more art than science for a given issue. A general representation of Supervised learning

paradigm is shown in figures 2.4

Figure 2. 4 Supervised Learning

Unsupervised Learning

The most biologically plausible method is unsupervised learning, but it is not ideal for all

problems. Only the input patterns are given; the network attempts to recognize and classify

similar patterns into similar categories. Neural networks that are trained using unsupervised

methods are referred to as self-organizing because they are not driven by what should be the

optimal or right performance. The output processing units self-organize when faced with a set

of input patterns by initially competing to identify the pattern, and then coordinating to change

their relation weights.

Unsupervised learning is mainly used in applications such as statistical modeling, compression,

filtering, blind source separation and clustering that fall within the field of estimation problems.

The last one is a typical method of unsupervised learning where we try to categorize data by

similarity in different clusters. Self-organizing maps are the ones that use unsupervised learning

algorithms most often. A general representation of Unsupervised learning paradigm is shown

in figure 2.5

Figure 2. 5 Unsupervised Learning

Reinforcement Learning

1.

Inputs

3.

Adjust weights using error

(Desired Actual)

Actual

output

2.

Specific Desired

output

1.

Input

3.

Adjust weights using error

(Desired-Action)

2.

Outputs compete to be the

winner

9
©DaffodilInternationalUniversity

The training set consists of input patterns, a value is returned to the network after a sequence

is completed indicating whether the outcome was correct or wrong and, likely, how right or

wrong it was. In order to learn an optimal (or nearly optimal) environmental policy, the goal

of reinforcement learning is to use observed rewards. Reinforcement learning is learning

through engaging with an environment by taking multiple actions and witnessing several

Figure 2. 6 Reinforcement Learning

defeats and accomplishments while attempting to increase the rewards obtained. Agent 2 is not

aware of what action to take. Reinforcement learning is especially suited to issues like a trade-

off of long-term and short-term reward. It has been successfully applied to various issues,

including control of robots, telecommunications, and games such as chess and other sequential

tasks of decision-making. A general representation of Reinforcement Learning learning

paradigm is shown in figures 2.6.

2.1.2 Common problems and Methods of data splitting

Two common problems can arise in the training of a neural network, which can be avoided by

choosing a proper method of data splitting. Those issues are:

• Underfitting occurs when there is very little training information provided to the neural

network and therefore does not allow learning to be generalized. That is, the model has

not learned enough, resulting in low generalization and results that are unreliable.

• Overfitting is a key issue in machine learning tasks that are supervised. If a learning

algorithm fits the training data set so well that noise and the peculiarities of the training

data are memorized, it is the phenomenon identified. This problem leads to the

deterioration of the model's generalization properties and, when applied to new

measurements, results in its unreliable performance.

There are many splitting techniques that can be used, but dividing the data into three subsets is

one of the most common.

• Training: the knowledge used to teach (train) the algorithm to perform its assignment.

• Validation: the data used to tune a learning algorithm's hyperparameters.

• Testing: data used to validate the behaviors of the machine learning model.

10
©DaffodilInternationalUniversity

It is a task that requires many tests to determine the division of data that goes to each subset,

which then produces the best model for each problem. There are many suggestions, though,

such as dividing or even using empirical tests manually.

Figure 2. 7 A data splitting visualization

2.2 Random Forest

Random forests or random decision forests are a supervised learning algorithm for

classification, regression and other tasks that function by creating a number of decision trees

at training time and generating the class that is the class mode (classification) or the individual

trees' mean/average prediction (regression). Random forests of decision making correct the

practice of overfitting their training set for decision trees. However, their performance may be

influenced by data characteristics.

There are a number of applications for Random Forests, such as recommendation engines,

classification of images and selection of features. It can be used to categorize loyal applicants

for loans, classify fraudulent behavior and predict diseases. It lies at the basis of the Boruta

algorithm, which in a dataset selects important features.

It is theoretically an ensemble technique of decision trees generated on a randomly divided

dataset (based on the divide-and-conquer approach). This set of classifiers for the decision tree

is also known as the forest. The individual decision trees are created for each attribute using an

attribute selection indicator such as data gain, gain ratio and Gini index. Each tree depends on

a random sample that is independent. Each tree votes and the most common class is selected

as the final outcome in a classification problem. In the case of regression, the final outcome is

called the sum of all the outputs of the tree. In comparison to the other non-linear classification

algorithms, it is simpler and more efficient.

Preliminaries: decision tree learning

For different machine learning tasks, decision trees are a common tool. In particular, very

deeply grown trees appear to learn extremely erratic patterns: they overfit their training sets,

i.e., they have low bias, but very high variance. Random forests are a way to average many

deep decision trees, trained with the intention of reducing the variance on various sections of

the same training set. This comes at the cost of a slight increase in bias and some lack of

interpretability, but usually improves the performance in the final model significantly.

11
©DaffodilInternationalUniversity

Forests are like pulling decision tree algorithm attempts together. In this way, the teamwork of

multiple trees increases the effectiveness of a single random tree. Forests do offer the results

of a K-fold cross validation, but not very similar.

Bagging

The training algorithm for random forests applies to tree learners the general bootstrap

aggregating method, or bagging. Provided the training set X = 𝑥1, ..., 𝑥𝑛 with answers Y = 𝑦1,

..., 𝑦𝑛, bagging repeatedly (B times), a random sample is chosen to replace the training set and

matches the following samples with trees:

For b = 1, ..., for B:

1. Test, n training examples from X, Y with replacement; call these 𝑋𝑏, 𝑌𝑏.

2. Train 𝑓𝑏 on 𝑋𝑏, 𝑌𝑏, to a classification or regression tree.

Predictions for unseen samples 𝑥′ can be made after training by averaging the predictions on

𝑥′ from all the individual regression trees:

𝑓 =
1

𝐵
∑𝑓𝑏(𝑥

′)

𝐵

𝑏=1

2.10

In the case of classification trees, or by taking the majority vote.

This bootstrapping technique leads to better performance of the model because, without

increasing the bias, it reduces the variance of the model. This implies that while a single tree's

predictions in its training set are extremely sensitive to noise, the average of several trees is

not, as long as the trees are not correlated. It will give strongly correlated trees (or even the

same tree many times, if the training algorithm is deterministic) to simply train many trees on

a single training set; bootstrap sampling is a way of de-correlating the trees by showing them

different training sets.

In addition, the uncertainty of the forecast can be calculated as the standard deviation of the

forecasts from all the individual regression trees on 𝑥′:

𝜎 = √
∑ (𝑓𝑏(𝑥′) − 𝑓)

2𝐵
𝑏−1

𝐵 − 1

2.11

The sample/tree count, B, is a free parameter. A few hundred to several thousand trees,

depending on the size and design of the training collection, are usually used. Using cross

validation or observing the out-of-bag error, the optimal number of trees B can be found: the

mean prediction error on each training sample𝑥𝑖, using only the trees that did not have 𝑥𝑖 in

their bootstrap sample. After certain numbers of trees have been fit, the training and test error

appears to level off.

12
©DaffodilInternationalUniversity

From bagging to random forests

The original bagging algorithm for trees is defined in equation 2.10. Random forests vary from

this general scheme in just one way: they use a modified tree learning algorithm that selects a

random subset of features for each candidate split in the learning process. This process is called

"feature bagging" sometimes. In an ordinary bootstrap sample, the explanation for doing this

is the correlation of the trees: if one or a few characteristics are very good predictors for the

response variable (target output), these characteristics will be selected in many of the B trees,

allowing them to become correlated. Ho offers an overview of how bagging and random

subspace projection lead to precision gains under various conditions.

Usually, in each break, √𝑝 (rounded down) characteristics are used for a classification problem

with p functions. The inventors suggest 𝑝 3⁄ (rounded down) for regression problems with a

minimum node size of 5 as the norm. The best values for these parameters in practice would

depend on the issue and should be viewed as tuning parameters.

ExtraTrees

Adding another randomization stage yields highly randomized trees, or ExtraTrees. Although

similar to ordinary random forests, there are two key differences in that they are an ensemble

of individual trees: first, each tree is trained using the entire learning sample (rather than a

bootstrap sample), and second, the top-down splitting is randomized in the tree learner. A

random cut-point is chosen instead of calculating the locally optimal cut-point for each function

under consideration (based on, e.g., information gain or Gini impurity). This value is chosen

from a uniform distribution within the empirical range of the function (in the training set of the

tree). Then, to split the node, the split that yields the highest score is chosen from all randomly

generated splits. The number of randomly selected features to be considered at each node can

be defined, similar to ordinary random forests. The default values for this parameter are √𝑝 for

classification, and p for regression, where the number of features in the model is p.

2.2.1 Working Function of Random Forest Algorithm

By following steps, we can comprehend the working Function of the Random Forest

algorithm.

• Start by selecting random samples from a given dataset first.

• Next, for each sample, this algorithm will create a decision tree. Then, from any

decision tree, it will get the prediction result.

• For any predicted outcome, voting will be carried out in this step.

• Eventually, pick the outcome of the most voted prediction as the final result of the

prediction.

13
©DaffodilInternationalUniversity

The diagram below illustrates the Random Forest algorithm working function:

Figure 2. 8 Illustrations of Random Forest algorithm working function.

2.3 K-nearest Neighbor (KNN)

The k-nearest neighbor algorithm (KNN) is a method of non-parametric classification in

statistics. It is used for regression and classification. In both instances, the input consists of the

examples of k training nearest to the dataset. The performance depends on whether the

classification or regression uses k-NN.

The performance is a class affiliation in the KNN classification. An object is graded by its

neighbors' majority of votes, with the object being allocated to the most common class amongst

the nearest neighbors. Where k is typically a small positive integer. If k = 1, therefore the

component is simply assigned to that nearest neighbor's single class. The output in the KNN

regression is the object's property value. That's the ideal number including its k values of the

nearest neighbors.

KNN itself is a method of classifier where the mechanism is only locally approximated and all

calculations are postponed until the analysis of the function. Because this algorithm tends to

focus on classification distance, when the functionalities reflect distinct physiological units or

arrive in significantly various scales, the normalization of training dataset can greatly enhance

its accuracy.

Parameter selection

The appropriate choice of k relies on the information; generally, higher values of k decrease

the effect of the noise on the classification, but make boundaries less distinct between groups.

By various heuristic methods, a strong k can be extracted (see hyperparameter optimization).

The nearest neighbor algorithm is called the necessary evil in which the classification is

expected being the class of its closest training set (i.e., while k = 1).

By the existence of noisy or insignificant features, the accuracy of the k-NN algorithm can be

severely degraded, or if the feature scales are not compatible with their significance. To

Training

set

Test

set

Training data 1 Training data 2 Training data n

Decision tree 1 Decision tree 2 Decision tree n

Voting

(averaging)

Prediction

14
©DaffodilInternationalUniversity

enhance classification, significant study effort has been made towards filtering or balancing

features. Through use of evolutionary algorithms towards enhance feature scaling is an

especially popular [citation required] approach. Another traditional strategy is just to optimize

features with training classes through the shared knowledge of it's data sets.

It is beneficial to select k to be an odd number in binary (two class) classification problems, as

this prevents tied votes. In this setting, one common way to choose the experimentally

optimized k is through the bootstrap process.

The Mathematical Concepts Behind KNN

KNN functions because of the deeply ingrained mathematical ideas it uses, just like almost

anything else. The first step is to translate data points into feature vectors, or their mathematical

significance, while implementing KNN. By finding the distance between the mathematical

values of these points, the algorithm then operates. The Euclidean distance is the most common

way of finding this distance, as shown below.

𝑑(𝑝, 𝑞) = √∑(𝑞𝑖 − 𝑝𝑖)2
𝑛

𝑖=1

2.12

In order to compute the distance between each data point and the test data, KNN runs this

formula. The likelihood of these points is then found to be identical to the test data and graded

based on which points share the greatest probabilities.

2.4 Logistic Regression

Logistic Regression is a Supervised Learning algorithm which is not a regression but a

classification algorithm. It's being used to predict discrete values associated with a given set of

independent variable values (binary values such as 0,1 or yes, no or true, false). In simple

words, through fitting the data towards a logit function, it predicts the likelihood of occurrence

of the event. It is, thus, often referred to as logit regression. Since the likelihood is estimated,

its performance values are between 0 and 1 because.

Suppose, we've got a puzzle to solve. There are only two outcome scenarios, either you or you

don't solve it. Now imagine, in an effort to understand which topics we are strong at, when we

are given a wide variety of puzzles or quizzes. If we have been given a trigonometry-based

tenth grade dilemma, we are 70 percent likely to solve that. The result of this research will be

something like this. But from the other hand, the chance of receiving an answer is only 30

percent if it is a fifth grade history question. Logistic Regression gives us this.

15
©DaffodilInternationalUniversity

 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 (
𝑝

(1 − 𝑝)
)

2.13

In equation 2.13, p is the probability that there will be a characteristic of interest. Choose

parameters which maximize the probability of observing the values of the sample rather than

just minimize the sum of squared errors as in normal regression.

2.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a method of classification. and in this algorithm, we plot

then each data element as a point in n-dimensional space at which n represents the number of

features which we have, with its value of each function being its valuation of the specific

coordinate

For example, if we had only two features like the Height and the Hair length of a person, we

would then plot these two variables through two dimensional spaces that each point has two

coordinates These coordinates are considered as support vectors.

(a)
(b)

Figure 2. 9 SVM Explanation

Now, we're going to find a line that divides the data between the two different groups of data,

which is shown in figure 2.8(a). This will be the line in such a way that the distances from the

nearest point in each of the two groups will be the most distant.

In the example shown figure 2.8(b), the line that divides the data into two distinctly classified

groups is the black line, since the two closest points are the most distant from the line. This is

our ranking line. Finally, based on how far the test data lands from either side of the line that's

what category the new data can be classified as.

A

B

16
©DaffodilInternationalUniversity

2.6 Naive Bayes

Naive Bayes is a linear classifier focused on Bayes theory, assuming independence between

predictors. In simple terms, the Naive Bayes classification algorithm of a specific feature in a

class is not correlated with the presence of any other function. For example, if the fruit is red,

round while approximately 3 inches in radius it can be considered an apple. Even though this

value depends on one another or on its existence of the other functionalities the naive Bayes

classifier might consider that most of these characteristics would individually make a

contribution to the likelihood that the fruit would be an apple.

The Naïve Bayesian model is easy to build and is particularly useful for very large data sets.

In addition to simplicity, Naive Bayes is known to perform even highly sophisticated

classification methods.

Bayes Theorem offers a way to calculate P(c|x) of P(c), P(x) and P(x|c) of the posterior

probability.

𝑃(𝑐|𝑥) =

𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)

2.14

In this,

• P(c|x) is the posterior probability of the target class given the predictor attribute.

• P(c) is the class's prior probability.

• P(x|c) is the probability of a given class predictor.

• P(x) is the prior predictor probability.

2.7 Decision Tree

Decision Tree is one of the most popular algorithms in the community and has been used quite

quite often. It is a method of supervised learning algorithm which is most commonly used for

classification problems. Surprisingly, this works with both categorical as well as continuous

dependent variables. In this algorithm, we have divided the population into two or more

homogeneous sets. This is framed in terms of the most significant attributes/independent

variables to make as distinct groups as possible.

In the figure 2.9, we can see that the population is split into four separate categories consisting

of multiple attributes to define 'whether or not they will play.' It uses a variety of techniques

such as Gini, Information Gain, Chi-square, entropy to divide the population into various

heterogeneous categories.

17
©DaffodilInternationalUniversity

The easiest way of understanding how the decision tree operates is to play Jezzball – a classic

Microsoft game (figure: 2.10). Supposedly, we have an area with moving walls, and we need

to create walls that allow the maximum area to be cleared out of the balls.

Figure 2. 11 Jezzball- a classic Microsoft game

So, every time we split each room with a wall, we're trying to create two different populations

in the same room. Decision trees work in a very similar way by dividing the population into as

many groups as possible.

2.8 Neural Network Supervised (MLPClassifier)
Artificial Neural Networks, or ANNs for short, are commonly used in many applications today,

including classification, and there are many libraries and frameworks dedicated to quickly

creating Neural Networks. When compared to a simple Scikit-Learn library, most of these

frameworks and tools take several lines of code to implement.

The MLPClassifier from Scikit-Learn is one of the easiest to use Neural Networks for

classification.

Play 13

Don’t Play 9

Dependent variable: PLAY

Play 13

Don’t Play 9 Play 13

Don’t Play 9

Play 13

Don’t Play 9

Play 13

Don’t Play 9

Play 13

Don’t Play 9

Play 13

Don’t Play 9

Play 13

Don’t Play 9

OUTLOOK?

OVERCAST

HUMIDITY? WINDY?

≤70 >70 TRUE
FALSE

score: 2/2 3/3 5/8 3/4

 2/2

4/5

Figure 2. 10 Decision Tree Explanation

18
©DaffodilInternationalUniversity

MLPClassifier stands for Multi-layer Perceptron Classifier, which is connected to a Neural

Network by its name. Unlike other classification algorithms like Support Vectors or Naive

Bayes Classifier, MLPClassifier is based on a mathematical model.

However, MLPClassifier is similar to Scikit-Learn's other classification algorithms in that it

needs no more effort to implement than Support Vectors, Naive Bayes, or any other Scikit-

Learn classifier.

The Multi-layer Perceptron (MLP) itself is a supervised machine learning algorithm which

trains on a dataset to learn a function 𝑓(.): 𝑅𝑚 → 𝑅0 , where represents the number of input

dimensions and is the amount of output dimensions. This could learn a non-linear function

approximator for classification or regression given a set of characteristics 𝑋 = 𝑥1, 𝑥2, … . , 𝑥𝑚

and a target y. It differs from logistic regression in that one or much more non-linear layer upon

layer, known as hidden layers, may exist between both the input and output layers. Figure 2.11

shows a scalar output MLP with one hidden layer.

The input layer, on the left, is made up of a group of neurons called {𝑥𝑖|𝑥1, 𝑥2, … . , 𝑥𝑚} that

represent the input features. The variables from the previous layer are transformed within each

neurons in the hidden layer using a weighted linear summation 𝜔1𝑥1 + 𝜔2𝑥2 +⋯+

𝜔𝑚𝑥𝑚accompanied by a non-linear activation

function 𝑔(.): 𝑅 → 𝑅 - similar to the hyperbolic tan function. The values from the last hidden

layer are passed to the output layer, which converts them to output values.

Figure 2. 12 One of The Multi-layer Perceptron (MLP) hidden layer.

The public attributes coefs_ and intercepts_ are contained within the module. The weight

matrices at index represent the weights among layer i as well as layer i+1, and coefs_ is a

collection of them. The vector at index reflects the bias values, while intercepts_ is a collection

of bias vectors.

The public attributes coefs_ and intercepts_ are contained within the module. The weight

matrices at index represent the weights among both layer i as well as layer i+1, while coefs_ is

19
©DaffodilInternationalUniversity

a collection of them. The bias vector at index reflects the bias values applied to layer i+1, and

intercepts_ is a collection of bias vectors.

2.9 Ridge Classification

RidgeClassifier is a classifier version of the Ridge regressor. This classifier converts binary

goals to -1, 1 before treating the problem as a regression problem and optimizing the same goal

as before. The predicted class is determined by the regressor's prediction symbol. The problem

is viewed as multi-output regression for multiclass classification, and the expected class

corresponds to the output with the highest value.

A (penalized) lower square loss could seem questionable in place of the more traditional

logistical or hook losses, in place of a model classification. All these models can however direct

to closely related cross-validation values in terms of accuracy or accuracy/recall in practice,

while the lowest penalized losses used in the Ridge Classifier make it possible to choose

numerical solvers of a very different computational performance.

The RidgeClassifier can be considerably faster than LogisticRegression for example including

a wide range of positions, because the projection matrix (𝑋𝑇𝑋)−1𝑋𝑇 can only be computed

once.

2.10 AdaBoost Classifier

Ada-boosting or adaptive boosting is one of Yoav Freund and Robert Schapire's ensemble

boosting classification of 1996. It combines multiple classificators to improve classification

accuracy. An iterative ensemble approach is AdaBoost. By combining several poor

performance classifier so that you get a strong classifier with high accuracy, AdaBoost

classifier creates a strong classifier. The general concept behind Adaboost here is to set the

weights of the classifiers and to help train the sample data within every iteration so that the

unusual observations are predicted accurately.

Any machine learning algorithm that accepts weights on the training set can be used as a base

classifier. Adaboost must fulfill two requirements:

1. The classifier should be interactively trained using a variety of weighted training

examples.

2. It tries to provide an excellent match for these examples in each iteration by minimizing

training error.

20
©DaffodilInternationalUniversity

Figure 2. 13 The AdaBoost algorithm's operation

The AdaBoost algorithm's operation

1. Adaboost selects a training subset at random at first.

2. It trains the AdaBoost machine learning model iteratively by choosing the training set

based on the last training's accurate prediction.

3. It gives incorrectly categorized observations a higher weight so that they have a higher

chance of being classified in the next iteration.

4. It also assigns weight to the trained classifier in each iteration based on the classifier's

accuracy. The more precise classifier will be given more weight.

5. This process runs until the complete training data is correct or the maximum number of

estimators is reached without error.

6. To classify, take a vote in all the learning algorithms that you have developed.

2.11 Confusion Matrix
Calculation of the performance of a trained system is one of the measures that can be used to

determine whether the model is reliable. It is therefore important to choose a tool that allows

us to visualize this performance. Confusion matrix encapsulates the classification performance

of the classifier with regards with some of the test data.

 Predicted

 Negative Positive

Actual
Negative a b

Positive c d

Figure 2. 14 Confusion Matrix

In the context of the case study, the records throughout the confusion matrix have the following

meaning:

• A is the number of correct predictions that an instance is negative;

• b is the range of incorrect statements that an instance is positive;

• c is the number of erroneous assumptions that an instance is negative,

21
©DaffodilInternationalUniversity

• d is the proportion of true predictions that the case is positive.

New terms are derived from the confusion matrix:

Accuracy (AC) is the proportion of total number of assumptions that have been correct. This

is defined by the equation

𝐴𝐶 =

𝑎 + 𝑑

𝑎 + 𝑑 + 𝑐 + 𝑏

2.15

Recall or true positive rate (TP) is the ratio of positive samples which have occurred

Identified correctly:

𝑇𝑃 =

𝑑

𝑐 + 𝑑

2.16

The false positive rate (FP) is the ratio of negative cases falsely predicted positive. It is

defined by the following:

𝐹𝑃 =

𝑏

𝑎 + 𝑏

2.17

The true negative rate (TN) is expressed as the ratio of negative cases, have been correctly

classified as measured by using equation:

 𝑇𝑁 =
𝑎

𝑎 + 𝑏
 2.18

The false negative rate (FN) is the ratio of positive cases incorrectly classified as negative as

calculated using the equation:

 𝐹𝑁 =
𝑐

𝑐 + 𝑑
 2.19

Precision (P) is the ratio of positive cases predicted that were correct. This term is defined by

the following equation:

𝑃 =

𝑑

𝑏 + 𝑑

2.20

F1-score standard is the harmonic mean of precision and recall. The perfect model has an F-

score of one.

𝐹1 =

2𝑎

2𝑎 + 𝑏 + 𝑐

2.21

Matthews Correlation Coefficient (MCC) has a range of-1 to 1 where-1 indicates a factually

false binary classifier, while 1 implies a totally correct binary classifier.

22
©DaffodilInternationalUniversity

𝑀𝐶𝐶 =

𝑎 × 𝑑 − 𝑏 × 𝑐

√(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑑 + 𝑏)(𝑑 + 𝑐)

2.22

2.12 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a methodology designed to reduce the dimensionality

of certain sets of data, increase the usability but then at the same time reduce the loss of

information. This technique extracts features that specifically change inputs, eliminating

variables that do not provide important information to the data. Identifying such additional

variables, the main components, reduces the problem of the own value/eigenvector and the new

variables are characterized by the data set at hand, not a priori, making the PCA an affective

data management methodology. Principal Component Analysis (PCA) technique is one of the

most famous non-supervised dimensional reduction techniques.

The aim of the technique is to find the PCA space, which represents the direction of the

maximum variance of the data. The PCA technique finds a lower dimensional space or a PCA

space (W) that is used to transform the space.

Data (X = 𝑥1, 𝑥7,…., 𝑥𝑁) from the higher dimensional space (𝑅𝑀) to the lower dimensional

space (𝑅𝑘), where N represents the total number of samples or observations and 𝑥 𝑖 represents

𝑖𝑡ℎ sample, pattern or observation. All samples are of the same size (𝑥𝑖𝜖𝑅
𝑀). In other words,

each sample is represented by M variables, i.e., each sample is represented as an M-

dimensional space point.

Figure 2. 15 Principal Component Analysis(PCA) explanation.

Figure 2.14 shows an example of two-dimensional data (𝑥1, 𝑥2) where the original data is left

with the original coordinates, i.e. 𝑥1 and 𝑥2, the variance of each variable is graphically

represented and the direction of the maximum variance, i.e. 𝑃𝐶1, is shown; the original data is

shown on the right. The main components are projected on the first (blue stars) and second

(green stars).

23
©DaffodilInternationalUniversity

2.13 Lime
LIME (Local Interpretable Model-agnostic Explanations) is an unique clarification approach

which learns the interpretable model locally mostly around prediction to describe any

classifier's prediction under an interpretable as well as faithful manner.

The influence of the LIME property on model interpretability

1. A model-independent, consistent explainer [LIME].

2. A framework for selecting a representative set that includes explanations [SP-LIME]

to ensure that the model behaves consistently when replicating human reasoning. This

representative collection will provide a global understanding of the model that is

intuitive.Via feature engineer, LIME describes a prediction so that even non-experts

can compare and build on an untrustworthy model.

LIME explains the forecast to enable even non-experts through feature engineering to

compare and improve an unsustainable model. The following desirable properties should be

included in an ideal model:

Interpretable

The qualitative understanding between the input variables and the answer should be provided.

It should be understandable.

Local faithfulness

An explanation may not be completely faithful unless the model itself is described in its

entirety. After saying that it should at least be faithful locally, it must replicate the behavior

of the model next door to the predicted instance.

Agnostic Model

When giving examples, the explainer should be able to describe each model and should not

make any assumptions about the model.

Perspective from afar

The explainer should give the consumer a representative collection to explain so that they

have a general understanding of the model.

2.13.1 LIME assesses the following characteristics:

2.13.1.1 Data Representations That Can Be Interpreted

LIME uses a representation that humans can understand, regardless of the model's actual

features. The term "interpretable representation" was coined to describe this. An interpretable

representation will differ depending on the type of data we're working with, for instance:

1. In the case of text, it denotes the presence or absence of words.

2. In the case of an image, it denotes the presence or absence of superpixels (

contiguous patch of similar pixels).

3. It is a weighted combination of columns for tabular results.

In short, even non-experts can understand LIME's explainer.

2.13.1.2. Interpretability-Fidelity a compromise

Locally replicate the model's actions and make it interpretable. LIME does this by

minimizing the following:

24
©DaffodilInternationalUniversity

𝜉(𝑥) = argmin
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔) 2.23

Variables in the equation

f: a unique predictor

x: exclusive features

g: an interpretation model, such as a linear model, a decision tree, or a collection of falling

rule lists

Pi is a measure of how close an instance of z is to an instance of x in order to determine

locality around x. It gives z' (perturbed instances) different weights depending on how far

away they are from x.

First Term: the measure of g's unreliability in approximating f in the Pi-defined locality. In

the original article, this is referred to as locality-aware failure.

Last term: a metric for the complexity of an explanation's model g. If the explanation model

is a decision tree, for example, the width of the tree can be used, or in the case of linear

explanation models, the number of non-zero weights can be used.

For future reference, here are some abbreviations.

1. x' (interpretable representation): This binary vector represents a human-readable

version of the original model's actual features.

2. z' (perturbed sample): a percentage of x' elements that are not zero.

3. class mark f(z)

4. g(z'): This is the model that LIME has mastered (explanation model).

Locality-aware loss is reduced while the second term is kept low enough to ensure both

interpretability and local fidelity.

In order to ensure that both interpretability and local loyalty are minimized locality-conscious

loss while maintaining the second term as low as possible for human interpretation. This is

called Omega(g) for the remainder of the post.

LIME achieves local loyalty while optimizing locality-conscious loss.

2.13.1.3. Local Exploration By Sampling

To recap, g is the learning model, z' is an example of the training data, and f (z) is the y.

Random uniform sampling from x' is used to construct a full training set. To put it another

way, we make several z's out of a single row of x. (original training example).

These are then pi(x) weighted to concentrate on z', which is closer to x.

Equation 1 is optimized to learn the description model given this dataset and labels. To

summarize, LIME's ability to provide explanations is not dependent on the form of original

model (model agnostic).

2.13.1.4. Explanation in a Sparse Linear Format

ℒ(𝑓, 𝑔, 𝜋𝑥) = ∑ 𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(�́�))
2

𝑧,𝑧∈𝑍́

 2.24

Assume that

1. g(z') = w. z' (Making the explanation model linear)

2. Loss that is locally conscious equals square loss

25
©DaffodilInternationalUniversity

3. Pi(z) : exp(-D(x,z)(2)/sigma(2)) (Samples are weighed based on their proximity)

4. Distance function D(x,z)

Understanding the LIME algorithm

K places a limit on the number of variables that must be taken into account in the explanation.

For example, K is the number of words to consider in a text, the number of superpixels in an

image, and the number of columns in tabular data. If size(w) > K, we render Omega tend to

infinity to achieve this. To summarize, LIME employs linear explainers to estimate the decision

boundary of the original model.

2.13.1.5. SP-LIME is a submodular pick for illustrating templates.

LIME seeks to attribute human-understandable characteristics to a model's prediction. To do

so, we must run the explanation model on a diverse but representative set of instances in order

to generate a nonredundant explanation set that serves as a global representation of the model.

Let's go through the prerequisites before we get into the algorithm:

1. B(Budget): The number of reasons the consumer is able to examine.

2. Select a Step: Selecting B instances from all instances is a difficult task.

3. W(Explanation Matrix):n(number of samples)*d'(human-understandable

characteristics) matrix

4. I(j): In the description space, the value of component j is global.

5. V: Considered features for explanation

6. C (V, W, I): Calculates the total importance of all features in a set V that appear in at

least one case.

𝑐(𝑉,𝑊, 𝐼) = ∑1[∃𝑖 ∈ 𝑉:𝑊𝑖𝑗 > 0]𝐼𝑗

𝑑′

𝑗=1

2.25

Nonredundant converge intuition

 𝑃𝑖𝑐𝑘(𝑊, 𝐼) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑐
𝑉,|𝑉|≤𝐵

(𝑉,𝑊, 𝐼) 2.26

26
©DaffodilInternationalUniversity

Steps in the Algorithm 2

1. Apply the interpretation model to all occurrences (all x's).

2. Calculate the relative value of individual components on a global scale.

3. Iteratively add the instance with the highest maximum coverage benefit to maximize the

coverage function.

4. Go back to V. (representative nonredundant explanation set)

As can be shown, LIME possesses all four desirable properties of an ideal model explainer.:

Considered features

27
©DaffodilInternationalUniversity

Chapter 3

Data Overview
An overview of the database used in this project is provided in this chapter. This is crucial

because to ensure effective strategic decision-making, we can view data and information

needed.

3.1 Dataset of Credit Card Fraud
The dataset includes credit card purchases made by European cardholders in September

2013.We have used the latest third version of this dataset which is updated in march 2018.

This dataset presents two-day transactions, of which we have 492 frauds out of 284,807

transactions. The dataset is strongly unbalanced, accounting for 0.172 percent of all

transactions in the positive class (fraud).

It only includes numerical input variables that are the product of a transformation of a PCA.

Unfortunately, we do not include the original characteristics and further background details

about the data due to confidentiality problems. Features V1,V2, ,...,V28 are the key components

obtained with PCA, 'Time' and 'Number' are the only features not transformed with PCA.

The 'Time' feature includes the seconds in the dataset between each transaction and the first

transaction. The 'Number' function is the Amount transaction, which can be used for example-

dependent cost-sensitive learning. The answer variable is the 'Class' function, which takes value

1 in the case of fraud and 0 otherwise.

Time V1 … V28 Amount Class

1 0 -1.359807134 … -0.021053053 149.62 0

2 0 1.191857111 … 0.014724169 2.69 0

3 1 -1.358354062 … -0.059751841 378.66 0

4 1 -0.966271712 … 0.061457629 123.5 0

5 2 -1.158233093 … 0.215153147 69.99 0

… … … … … … …

284803 172786 -11.88111789 … 0.823730961 0.77 0

284804 172787 -0.732788671 … -0.053527389 24.79 0

284805 172788 1.91956501 … -0.026560829 67.88 0

284806 172788 -0.24044005 … 0.104532821 10 0

284807 172792 -0.533412522 … 0.013648914 217 0

Table 3. 1 Dataset of Credit Card Fraud

3.1.1 Time Feature
Time indicates the seconds which have elapsed since the first transaction. Once the values are

graphically represented (see Figure 3.1), it can be checked that transactions that have occurred

over a span of two days are stored in the database. The data indicates bimodal activity in which

there is a substantial decrease in the number of transactions after a period of approximately 24

hours. It is fair to assume that since they are night hours, this fall arose. Finally, this variable

28
©DaffodilInternationalUniversity

is assumed to be omitted because it is not applicable to learning the model, because until the

last transaction, the data is very similar to others.

Figure 3. 1 Time Function Allocation of the Dataset

3.1.2 Amount Feature
The amount of cash in each transaction is a function called Amount. The highest transaction

with this collection of data is $25,691.16, while the transaction average is $88.35. Figure 3.2

shows that the data is mainly clustered at very low values close to zero, while the maximum

value found is approximated by just a few transactions. The representation of the amount of

money for each transaction (see Figure 3.3) indicates, on the other hand, certain values which

differ from each other. These are referred to as outliers because they are transactions in which

a significant sum of money is exchanged in this situation. These principles logically draw the

attention of potential fraud, but this is something that fraudsters want to avoid altogether.

Existing evidence indicates that small sums of money have also been moved by fraudsters to

continue stealing in an undetectable way.

3.1.3 Class Feature
Figure 3.4 represents the feature called Class, which gives information that if the transactions

are fraudulent or not, this variable takes value 1 in case of fraud and 0 otherwise.

This feature shows that there is a minimum percentage of fraudulent cases which represent

0.17% of all data. While non-fraudulent cases equal 99.83%. It is concluded that the data is

highly imbalanced, which requires choosing appropriate measures to divide the data and make

the training of the system effective.

T
o

ta
l

N
u

m
b

er
 o

f
tr

an
sa

ct
io

n
s

Time

29
©DaffodilInternationalUniversity

Figure 3. 2 Amount per transaction

Figure 3. 3 Tome of transaction vs amount

Figure 3. 4 Transaction class distribution

3.1.4 V-features
It is also beneficial to observe the V-feature histogram representation (see figure 3.5). This

gives a basic concept of the distribution of data. It is also necessary to check whether there is a

significant correlation between the characteristics, particularly with regard to the class function.

A matrix of correlations between all features is shown in figure 3.6. This representation stresses

that there are few class-related features and that while there are several features in the class,

30
©DaffodilInternationalUniversity

There are very few important associations in the results. This implies that the characteristics

are essentially Principal Components, the product of the previous PCA planning that the dataset

had.

Finally, it can be seen that the features of Time1 and Amount do not correspond with the Class

function, so they are not important in the learning phase of the system.

Figure 3. 5 Frequency for each Dataset Function

Figure 3. 6 The Dataset Correlation Matrix

31
©DaffodilInternationalUniversity

Chapter 4

Data Sorting and Exploration

In this chapter, we have sort out the dataset and explore to prepare the data. We will be using

python, TensorFlow(version 2.2) and colab notebook for implementation.

4.1 TensorFlow
TensorFlow is a quick numerical computing library that is open source.Google developed and

maintains it, and it's open source under the Apache 2.0 license. While there is access to the

underlying C++ API, the API is ostensibly for the Python programming language.

Unlike other numerical libraries for Deep Learning, such as Theano, TensorFlow was created

with the aim of being used in both research and production systems, including Google's

RankBrain and the fun DeepDream project.

It can run on single-processor computers, GPUs, mobile devices, and large-scale distributed

systems involving hundreds of machines.

4.2 Colab

Colaboratory, or' Colab' in shorter, itself is a Google Research product. Colab enables anyone

through the browser to compose as well as implement arbitrary python scripts, and is

particularly applicable suitable for machine learning, data analysis and education. More

technically, Colab is a hosted Jupyter notebook service that needs no configuration to use, thus

providing free access to GPUs, including device resources.

The open source project on which Colab is based is Jupyter. Colab allows to use Jupyter

notebooks and share them with others without downloading, installing or running anything.

4.3 Importing Packages for Data Sorting and Exploration

Pandas to work with data, NumPy to work with arrays, scikit-learn for data split, building and

evaluating classification models, and finally matplotlib for visualization will be the key

packages to begin with.

Figure 4. 1 Importing packages for data sorting and exploration

4.4 Importing the data

In order to mount the environment with google drive, we need to import drive function from

google.colab (figure 4.2). As we import the data using the ‘pd.read_csv’ method and print the

32
©DaffodilInternationalUniversity

data. The dataset we have used is from Kaggle Credit Card Fraud Detection. The key

components obtained by PCA are features V1 to V28. We will disregard the time function that

is of no use in constructing the models. Further the existing features are "Time" feature

containing transaction time, the "Amount" feature containing the total quantity of money being

transacted as well as the "Class" feature containing about whether or not the transaction itself

is a case of fraud. The details of it has showed in figure 4.3.

Input

Output:

Figure 4. 2 Mount the environment with google drive.

Input:

Output:

Figure 4. 3 Importing the data

4.5 Exploratory Data Analysis and Processing

In this process, we have analyzed the data and perspire the by splitting, training and testing. In

addition to analysis of the noisy data, we have applied PCA and StandardScaler module from

scikit-learn preprocessing import for standardization.

4.5.1 Cases Count

In the figure, 4.4 we can see that there are only 492 cases of fraud out of 284,807 samples,

which is only 0.17 per cent of the total samples in the dataset. So, we can state that the data we

deal with is highly imbalanced.

33
©DaffodilInternationalUniversity

Input:

Output:

Figure 4. 4 Determine the number of fraud and valid cases in datasets.

Using the 'describe' method, a statistical view of both fraud and valid transaction amount data

has generated which is shown in figure 4.5 and 4.6

Input:

Output:

Figure 4. 5 Statistical view of fraud transaction amount

Input:

Output:

Figure 4. 6 Statistical view of valid transaction amount

34
©DaffodilInternationalUniversity

4.5.2 Splitting Data into X and Y Values

We have divided the information into input parameters and output value formats in this process,

shown in figure 4.7. And in a training set and testing set, define the value as the independent

(X) and the dependent variables (Y). Furthermore, we divided the information into a training

set and a testing set using the specified variables.

4.5.3 Training and Testing The Splitting Data

For modelling and assessing, training and testing sets are used. We use the 'train test split'

algorithm to split the data. And the samples shown in Figure 4.8 are written.

Input:

Output:

Figure 4. 7 Splitting data into X and Y values

Input:

Output:

Figure 4. 8 Training and testing the splitting data

35
©DaffodilInternationalUniversity

4.5.4 Analyze the noisy test and Train Data

From Figure 4.9, we have pointed out how many noisy training and test sets are by applying

PCA.

Input:

Output:

Figure 4. 9 Training dataset after PCA Applied

4.5.5 Standardize the noisy test and Train Data

To minimize and standardize noisy data by applying StandardScaler from sci-kit-learn

preprocessing. In addition to visualizing the PCA standardized dataset conducted in Figure

4.10

Input:

36
©DaffodilInternationalUniversity

Output:

Figure 4. 10 Standardized dataset of training after PCA

37
©DaffodilInternationalUniversity

Chapter 5

Modeling

Artificial Neural Network (ANN) and none different types of classification models have been

developed in this section, namely Decision Tree, K-Nearest Neighbors (KNN), Logistic

Regression, Support Vector Machine (SVM), Random Forest, Neural Network Supervised

(MLPClassifier), Ridge Classification, AdaBoost Classification and Naive Bayes. These are

the most common models used to solve classification problems, although there are several more

models that we can use. All of these models have been developed using the algorithms given

by the sci-kit-learn package. We only used the Keras for the ANN model.

5.1 Artificial Neural Network (ANN)

In order to build an Artificial Neural Network model, we have developed and compiled the

model with keras package.

5.1.1 Develop Keras Model

We used "sequential" models to construct the neural network. This top-down approach helps

to create and play with the form and layers of the Neural net architecture. The first layer will

have the amount of characteristics that can be corrected using "input dim" In this situation, we

set it at 40.

It is not a very simple process to build Neural Networks. Before a successful model is

constructed, there are many trials and failures that take place. Using the "Dense" class in Keras,

we have created a Completely Connected network structure. The Neuron is the first statement

that the dense layer has to give.

Using the activation statement, the activation function can be set. In this case, we have used

the 'Rectified Linear' Unit as the activation function. Other options such as "Sigmoid" or

"TanH" are available, but "RELU" is a more general option and a better one.

5.1.2 Compiling The Model

The next step after model specification is compiling the model. For model compilation,

TensorFlow is used. Compilation is the phase in which parameters for model training and

forecasts are set. In the context, CPU/GPU or distributed memories can be used.

We have defined a loss function which is used for the various layers to calculate weights. The

optimizer changes the rate of learning and goes through different weight sets. We used "Binary

Cross Entropy" as the loss function in this instance. We used "ADAM" in the case of the

optimizer, which is an effective stochastic gradient descent algorithm.

38
©DaffodilInternationalUniversity

It is used very widely for tuning. Finally, since it is a classification question, the classification

accuracy, accuracy, recall and Matthews correlation coefficient(MCC) identified by the metrics

argument will be collected and published. For MCC, we have the principles summarized.

The process of building the ANN model has shown in figure 5.1 and 5.2

Input:

Output:

Figure 5. 1 Developing sequential model (ANN model)

Figure 5. 2 Compiling sequential model (ANN Model)

39
©DaffodilInternationalUniversity

5.2 Decision Tree

To construct the model, we used the 'DecisionTreeClassifier' algorithm. We have listed the

'max depth' within the algorithm to be '4' which implies that we allow the tree to split four times

and the 'criterion' to be 'entropy' which is most similar to the 'max depth' but specifies when the

tree should stop splitting. Finally, in the 'tree-Pred' variable, we have installed and stored the

expected values. Shown in figure 5.3

Figure 5. 3 Construction of Decision Tree model

5.3 K-Nearest Neighbors (KNN)

Using the 'KNeighborsClassifier' algorithm, we developed the model and mentioned the

'n_neighbors' as '5'.The value of the 'n_neighbors' is chosen at random, but it can be selected

optimistically by iterating the set of outcomes, followed by fitting and storing values that have

predicted into the 'knn_Pred' vector. Figure 5.4 shows the Construction of K-Nearest Neighbors

(KNN) model.

Figure 5. 4 Construction of K-Nearest Neighbors (KNN) model

5.4 Logistic regression

For logistic regression, by using the 'LogisticRegression' algorithm, we kept the model in a

more simplified way and, as usual, fitted and stored the predicted variables in the 'lr_red'

variable. Construction of Logistic regression model has shown in figure 5.5

Figure 5. 5 Construction of Logistic regression model

40
©DaffodilInternationalUniversity

5.5 Support Vector Machine (SVM)

Using the 'SVC' algorithm, we designed the Support Vector Machine model and we did not

specify anything inside the classifier as we planned to use the 'rbf' kernel as the default kernel.

After that, forward to fitting the model, we preserved the predicted values in 'svm Pred'.

Support Vector Machine (SVM) model Construction has shown in figure 5.6.

Figure 5. 6 Support Vector Machine (SVM) model construction.

5.6 Random forest

We developed a random forest model using the 'RandomForestClassifier' algorithm and

specified the 'max_depth' to be 4, much like how we built the model of the decision tree.

Finally, the values are adapted and stored in the 'rfc_Pred '. Notice that the key difference

between the decision tree and the random forest is that, while the random forest uses randomly

selected features to create different models, the decision tree uses the entire dataset to construct

a single model. That's why the random forest model versus a decision tree is used. In figure

5.7, construction has demonstrated.

Figure 5. 7 Random Forest model construction

5.7 Naive Bayes

For naïve bayes model we have used GaussianNB, which implies for classification. We have

fitted and stored the final prediction by the model in “NBC_pred”,which is shown in figure 5.8.

Figure 5. 8 Construction of Naïve Bayes classification model.

5.8 Neural Network Supervised (MLPClassifier)
We built a Neural Network Supervised model using the 'MLPClassifier' algorithm. We've

also introduced parameters solver, alpha, hidden_layer_sizes, and random_state. After that,

41
©DaffodilInternationalUniversity

the expected values are fitted and stored in the 'nns_pred' vector. The construction of a Neural

Network Supervised model is shown in Figure 5.9.

Figure 5. 9 Construction of Neural Network Supervised (MLPClassifier) model.

5.9 Ridge Classification
RidgeClassifier was used to build Ridge Classification models, as the name suggests. The

model's final prediction has been fitted and stored in "RC_pred," as shown in figure. 5.10

Figure 5. 10 Construction of Ridge Classification model.

5.10 AdaBoost Classification
The 'AdaBoost Classification' algorithm is used to build an AdaBoost Classification model. N

estimators parameter has also been introduced. Then you fit and store the expected values in

the 'AdBC_pred' vector. Figure 5.11 illustrates the structure of an AdaBoost classification

model.

 Figure 5. 11 Construction of AdaBoost Classification model.

42
©DaffodilInternationalUniversity

Chapter 6

Model Evaluation

We have evaluated our constructed models in this chapter using the evaluation metrics given

by the scikit-learn package. But we used the ANN model metrics function from the keras

package. The accuracy, f1, recall, precision, Matthew’s correlation coefficient (MCC) and

finally the confusion matrix are the assessment metrics we have used. Additionally, we have

used lime for model interpretation.

6.1 ANN Model Evaluation

To evaluate the ANN model, we have used evaluate method form keras package. (figure 6.1).

AS classification metrics can't handle a mix of binary and continuous targets.

Input:

Output:

Figure 6. 1 ANN Model Evaluation.

6.2 Recall
The fraction of the related records that are effectively recovered is a recall.

𝑟𝑒𝑐𝑎𝑙𝑙 =
|(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) ∩ (𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)|

(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

For example, recall is the number of correct results, divided by the number of results that should

have been returned, for a text search on a collection of documents.

Remembering is called sensitivity in binary classification. It can be interpreted as a probability

that the query will retrieve a suitable document.

It is negligible to maintain recall of 100 percent by returning all documents in response to any

question. Thus the, recall is not always enough, however the number of non-relevant records

must also be calculated, for example, by measuring the accuracy as well. For measuring recall,

we have used recall metrics from keras for our ANN model (fig 5.2)and for our six classifier

model "recall_score" method from the scikit-learn package(6.2) to do it in python.

Input:

43
©DaffodilInternationalUniversity

Output:

Figure 6. 2 Recall Score of six different classification models by the scikit-learn package.

After reviewing the chapter 6.1 and 6.2, found recall scores have listed in Table 6.1.

Model Recall score

1 Artificial Neural Network (ANN) 0.7755101919174194

2 Random Forest 0.7755102040816326

3 K-Nearest Neighbors (KNN) 0.7857142857142857

4 Logistic Regression 0.5816326530612245

5 Support Vector Machine (SVM) 0.6122448979591837

6 Naive Bayes Classifier 0.8163265306122449

7 Decision Tree 0.7755102040816326

8 Neural Network Supervised (MLPClassifier) 0.8061224489795918

9 Ridge Classification 0.4387755102040816

10 AdaBoost Classification 0.7653061224489796

Table 6. 1 Recall score of our models

6.3 Precision

The accuracy is the fraction of documents obtained that are important to the query:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) ∩ (𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)|

(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

44
©DaffodilInternationalUniversity

For instance, accuracy is the number of correct results, divided by the number of all returned

results, for a text search on a collection of documents.

Precision takes into account all the documents obtained, but it can also be assessed at a

specified cut-off rank, taking into account only the system's highest return performance. At n

or P/n, this calculation is called precision. Precision is used for recall, the percent of all related

documents that is returned by the scan. In order to provide a single calculation for a system,

the two measurements are often used together in the F1 Score (or f-measure). For our six

classifier model " precision_score" framework from the scikit-learn package(fig 6.3)and for

ANN model (fig 5.2) we used precision metrics from keras for calculating precision to do it in

python.

Input:

Output:

Figure 6. 3 precision score of six different classification models by the scikit-learn package.

After analyzing chapter 6.1 and 6.3, the precision scores contained in Table 6.2

Model Precision score

1 Artificial Neural Network (ANN) 0.8539325594902039

2 Random Forest 0.987012987012987

3 K-Nearest Neighbors (KNN) 0.9390243902439024

4 Logistic Regression 0.8636363636363636

5 Support Vector Machine (SVM) 0.967741935483871

6 Naive Bayes Classifier 0.05956813104988831

7 Decision Tree 0.8636363636363636

8 Neural Network Supervised

(MLPClassifier)

0.797979797979798

9 Ridge Classification 0.8269230769230769

45
©DaffodilInternationalUniversity

10 AdaBoost Classification 0.9146341463414634

Table 6. 2 precision score of our models

6.4 Accuracy score
One of the most basic assessment criteria that is commonly used to test classification models

is the accuracy score. The precision score is determined by simply dividing the model's number

of accurate predictions by the model's overall amount of predictions (can be multiplied by 100

to transform the result into a percentage). Generally, it can be expressed as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

The six different classification models (Random Forest, KNN, Logistic Regression, SVM,

Naive Bayes Classifier, Decision Tree) we created to check the accuracy score. We have used

accuracy metrics by keras for ANN model (fig 5.2) and for six classifier model(fig 6.4)

'accuracy_score' method given by the scikit-learn package to do it in python.

Input:

Output:

Figure 6. 4 Accuracy score of six different classification models by the scikit-learn package.

After evaluating the chapter 6.1 and 6.4 the accuracy score, we have found has appointed in

table 6.3

Model Accuracy score

1 Artificial Neural Network (ANN) 0.017450230196118355

2 Random Forest 0.9995962220427653

3 K-Nearest Neighbors (KNN) 0.9995435553526912

4 Logistic Regression 0.9991222218320986

5 Support Vector Machine (SVM) 0.9992977774656788

6 Naive Bayes Classifier 0.9775113233383659

46
©DaffodilInternationalUniversity

7 Decision Tree 0.999403110845827

8 Neural Network Supervised (MLPClassifier) 0.9993153330290369

9 Ridge Classification 0.9988764439450862

10 AdaBoost Classification 0.9994733330992591

Table 6. 3 Accuracy score of models

6.5 F1 Score
One of the most common assessment metrics used for evaluating classification models is the

F1 score or F-score. It can be generally described as the harmonic mean of both the accuracy

and recall of a model. It is determined by dividing the model's precision product and recalling

the value obtained by adding the model's accuracy and recall and eventually multiplying the

result by 2. It is possible to express it as:

𝑓1 𝑠𝑐𝑜𝑟𝑒 = 2(
(𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
)

The F1 score has calculated in python using the scikit-learn package's 'f1_score' function for

six classifier model(fig 6.5) and for ANN model we have calculated manually(fig 5.2).

Input:

Output:

Figure 6. 5 F1 score of six different classification models by the scikit-learn package.

After evaluating the chapter 6.1 and 6.5 the f1 score that we have found has appointed in table

6.4

Model F1 score

1 Artificial Neural Network (ANN) 0.04267265275120735

2 Random Forest 0.8685714285714285

3 K-Nearest Neighbors (KNN) 0.8555555555555556

4 Logistic Regression 0.6951219512195121

5 Support Vector Machine (SVM) 0.75

6 Naive Bayes Classifier 0.11103400416377515

47
©DaffodilInternationalUniversity

7 Decision Tree 0.8172043010752688

8 Neural Network Supervised (MLPClassifier) 0.8020304568527918

9 Ridge Classification 0.5733333333333333

10 AdaBoost Classification 0.8333333333333334

Table 6. 4 F1 score of models

6.6 Matthews Correlation Coefficient (MCC)
The Matthews correlation coefficient (MCC) is often used in machine learning as an indicator

of the consistency for multiclass and binary classifications. It takes into consideration true /

false positives and negatives and is commonly known as a neutral measurement which could

be used even though the groups are of quite various sizes. The MCC is in essence a

correlation coefficient value between -1 and +1. A coefficient of +1 reflects a perfect

prediction, 0 an average random prediction and -1 an inverse prediction. The figure is also

known as the phi coefficient.

The MCC can be determined directly from the confusion matrix using the formula:

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√((𝑇𝑃 + 𝐹𝑃) × (𝐹𝑁 + 𝑇𝑁) × (𝐹𝑃 + 𝑇𝑁) × (𝑇𝑃 + 𝐹𝑁))

Where,True Positive(TP), True Negative(TN), False Negative(FN) and False Positive(FP)

The MCC score has calculated in python using the scikit-learn package's

“matthews_corrcoef” function for six classifier model (fig 6.6) and for ANN model we have

calculated manually(fig 5.2).

Input:

Output:

Figure 6. 6 Matthews correlation coefficient (MCC) score of six different classification

models by the scikit-learn package.

48
©DaffodilInternationalUniversity

After evaluating the chapter 6.1 and 6.6 the Matthews correlation coefficient (MCC) score that

we have found has appointed in table 6.5

Model MCC score

1 Artificial Neural Network (ANN) 0.04267265647649765

2 Random Forest 0.8747121626683524

3 K-Nearest Neighbors (KNN) 0.8587387603689554

4 Logistic Regression 0.708352596990073

5 Support Vector Machine (SVM) 0.769449263019846

6 Naive Bayes Classifier 0.21690316877855267

7 Decision Tree 0.81809330663897

8 Neural Network Supervised (MLPClassifier) 0.8016979038656407

9 Ridge Classification 0.6018960204490671

10 AdaBoost Classification 0.836392916286224

Table 6. 5 Matthews correlation coefficient (MCC) score of models.

6.7 Confusion Matrix

Usually, a confusion matrix is a visualization of a classification model that indicates how well

the model has predicted the outcomes as opposed to the original ones. Typically, the expected

outcomes are stored in a variable that is then transformed into a correlation table. The confusion

matrix is plotted by using the correlation table in the form of a heatmap.

Input:

Output:

Figure 6. 7 Confusion Matrix of ANN model

49
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 8 Plotting Confusion Matrix heatmap of ANN model

Input:

Output:

Figure 6. 9 Confusion Matrix of Random Forest model

Input:

50
©DaffodilInternationalUniversity

Output:

Figure 6. 10 Plotting Confusion Matrix heatmap of Random Forest model

Input:

Output:

51
©DaffodilInternationalUniversity

Input:

Figure 6. 11 Confusion Matrix of KNN model

Output:

Figure 6. 12 Plotting Confusion Matrix heatmap of KNN model

Input:

Output:

Figure 6. 13 Confusion Matrix of Logistic Regression model

52
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 14 Plotting Confusion Matrix heatmap of Logistic Regression model

Input:

Output:

Figure 6. 15 Confusion Matrix of Support Vector Machine (SVM) model

Input:

53
©DaffodilInternationalUniversity

Output:

Figure 6. 16 Plotting Confusion Matrix heatmap of Support Vector Machine (SVM) model

Input:

Output:

Figure 6. 17 Confusion Matrix of Naive Bayes Classifier model

Input:

54
©DaffodilInternationalUniversity

Output:

Figure 6. 18 Plotting Confusion Matrix heatmap of Naive Bayes Classifier model

Input:

Output:

Figure 6. 19 Confusion Matrix of Neural Network Supervised (MLPClassifier) model

55
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 20 Plotting Confusion Matrix heatmap of Neural Network Supervised

(MLPClassifier) model

Input:

Output:

Figure 6. 21 Confusion Matrix of Ridge Classification model

56
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 22 Plotting Confusion Matrix heatmap of Ridge Classification model

Input:

Output:

Figure 6. 23 Confusion Matrix of AdaBoost Classification model

57
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 24 Plotting Confusion Matrix heatmap of AdaBoost Classification model

Input:

Output:

Figure 6. 25 Confusion Matrix of Decision Tree model

58
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 26 Plotting Confusion Matrix heatmap of Decision Tree model

Understanding the confusion matrix:

Let's take the Decision Tree model's confusion matrix as an example. Check out the first row

which is for transactions in the test set whose real fraud value is 0. The fraud value of 56864

of them is 0, as you can measure. And out of these 56864 non-fraud operations, 56852 of them

were correctly predicted by the classifier as 0 and 12 of them as 1. This means that the real

churn value was 0 in the test set for 56852 non-fraud transactions, and the classifier correctly

predicted those as 0 too. We can assume that the non-fraud transactions were pretty well

identified by our model.

The second row, let's look at it. It seems like there have been 98 transactions with a fraud value

of 1. 76 of them were correctly predicted by the classifier as 1, and 22 of them wrongly as 0. It

is possible to view the wrongly expected values as the model's mistake.

59
©DaffodilInternationalUniversity

6.8 Lime
LIME, an algorithm that can faithfully clarify the predictions of any classifier or regressor by

localizing it with an interpretable model.

Figure 6. 27 Generate LIME explanation

Input:

Output:

Figure 6. 28 ANN model's array value for predict_proba

Input:

Output:

Figure 6. 29 ANN model interpretation by lime

Input:

60
©DaffodilInternationalUniversity

Output:

Figure 6. 30 KNN model interpretation by lime

Input:

Output:

Figure 6. 31 Random Forest model interpretation by lime

Input:

Output:

Figure 6. 32 Logistic Regression model interpretation by lime

61
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 33 SVM model interpretation by lime

Input:

Output:

Figure 6. 34 Naive Bayes Classifier model interpretation by lime

Input:

Output:

62
©DaffodilInternationalUniversity

Figure 6. 35 Decision Tree model interpretation by lime

Input:

Output:

Figure 6. 36 Neural Network Supervised (MLPClassifier) model interpretation by lime

Input:

Output:

Figure 6. 37 Ridge Classification model's array value for predict_proba

63
©DaffodilInternationalUniversity

Input:

Output:

Figure 6. 38 Ridge Classification model interpretation by lime

Input:

Output:

Figure 6. 39 AdaBoost Classification model interpretation by lime

Let's take the AdaBoost Classification model's lime as an example. The explanation consists

of three parts:

1. The prediction probabilities appear to the left most section.

2. 10 main features are returned in the middle section. It would be in 2 orange/blue colors

for the binary classification task. Attributes are valid for fraud and blue support classes

in orange support class. The relative importance of these features is the float-point

numbers on the horizontal bars.

3. Color coding across sections is consistent. It includes the actual values of the top five

variables.

64
©DaffodilInternationalUniversity

Chapter 7

Results and Discussion
In the training and testing sets, we have skewed our results. An under-sampling

technique was used to balance the data. To compare our ten classification models, we

used Accuracy, F1-Score, Recall, Precision, and Matthew’s correlation coefficient

(MCC).All classifier results and comparisons are shown in Table 7.1.

 Table 7. 1 Results and Comparisons of ten classification models

In table 7.1, we have got heights recall score 0.8061224489795918 from Neural

Network (Supervised) model. And have got almost same recall score from ANN

(0.7755101919174194), Random forest (0.7755102040816326) and Decision tree

(0.7755102040816326) model. In addition have got the lowest value from Ridge

Classification 0.4387755102040816.

Model Recall

score

Precision

score

Accuracy

score

F1

score

MCC

score

1 Artificial

Neural

Network

(ANN)

0.7755101919

174194

0.8539325594902

039

0.01745023

0196118355

0.0426726527

5120735

0.04267265

647649765

2 Random Forest 0.7755102040

816326

0.9870129870129

87

0.99959622

20427653

0.8685714285

714285

0.87471216

26683524

3 K-Nearest

Neighbors

(KNN)

0.7857142857

142857

0.9390243902439

024

0.99954355

53526912

0.8555555555

555556

0.85873876

03689554

4 Logistic

Regression

0.5816326530

612245

0.8636363636363

636

0.99912222

18320986

0.6951219512

195121

0.70835259

6990073

5 Support Vector

Machine

(SVM)

0.6122448979

591837

0.9677419354838

71

0.99929777

74656788

0.75 0.76944926

3019846

6 Naive Bayes

Classifier

0.8163265306

122449

0.0595681310498

8831

0.97751132

33383659

0.1110340041

6377515

0.21690316

877855267

7 Decision Tree 0.7755102040

816326

0.8636363636363

636

0.99940311

0845827

0.8172043010

752688

0.81809330

663897

8 Neural

Network

(supervised)

0.8061224489

795918

0.7979797979797

98

0.99931533

30290369

0.8020304568

527918

0.80169790

38656407

9 Ridge

Classification

0.4387755102

040816

0.8269230769230

769

0.99887644

39450862

0.5733333333

333333

0.60189602

04490671

10 AdaBoost

Classification

0.7653061224

489796

0.9146341463414

634

0.99947333

30992591

0.8333333333

333334

0.83639291

6286224

65
©DaffodilInternationalUniversity

From Random Forest model we have got heights precision score 0.987012987012987.

Followed by SVM model 0.967741935483871 and lowest 0.797979797979798 from

Neural Network (Supervised) model.

The heights and almost similar accuracy score we have got from models, Random

Forest (0.9995962220427653) and KNN (0.9995435553526912). Afterwards,

Decision Tree 0.999403110845827 and AdaBoost Classification

0.9994733330992591. Unexpectedly, From ANN model we have got the lowest

accuracy score of 0.017450230196118355.

For F1 score, Random forest model gives the heights value of 0.8685714285714285.

And then 0.8555555555555556 by KNN model. The lowest value from ANN model

which is 0.8555555555555556.

Matthews Correlation Coefficient (MCC) score of 0.8747121626683524 is the heights

value by Random forest model. Followed by KNN model (0.8587387603689554)

which is the second heights value among the models. And 0.04267265647649765 is the

lowest score by ANN model.

66
©DaffodilInternationalUniversity

Chapter 8

Conclusions

This study examines the comparative performance in the binary category of imbalanced

credit card fraud data of the Artificial Neural Network (ANN) Decision Tree, K-Nearest

Neighbors (KNN), Logistical Regression, Support Vector Machine (SVM), Random

Forest, Neural Network Supervised (MLPClassification), Ridge, AdaBoost and Naive

Bayes. The reason why these ten techniques are investigated is because they were less

comparable in past writings.

However, a further study is underway to compare other techniques for single and

ensemble using our approach. The paper summarizes the contribution as follows:

1. Ten classifiers based on different machine learning techniques (ANN, Decision

Tree, KNN, Logistic Regression, SVM, Random Forest, Neural Network

Supervised (MLPClassifier), Ridge Classification, AdaBoost Classification, and

Naive Bayes) are trained on real-world credit card transaction data, and their

performance on credit card fraud detection is evaluated and compared using several

relevant metrics.

2. A hybrid approach is used to sample the extremely imbalanced dataset, with the

positive class being oversampled and the negative class being under sampled,

resulting in two sets of data distributions.

3. The accuracy, f1, recall, precision, Matthew's correlation coefficient (MCC), and

finally the confusion matrix are used to evaluate the ten classifiers' output on the

two sets of data distributions. In addition, we used lime to interpret the models.

Classifier performance varies depending on the evaluation metric. The results of the

experiment show that the Random forest outperforms the other models in all metrics

except recall in the 10:90 data distribution. The effect of hybrid sampling on the

performance of binary classification of imbalanced data is demonstrated in this

analysis. Future research may look at meta-classifiers and meta learning approaches for

dealing with highly skewed credit card fraud data. Other sampling methods' results may

also be studied.

67
©DaffodilInternationalUniversity

References
[1] Dataset: Credit Card Fraud Detection

Anonymized credit card transactions labeled as fraudulent or genuine(Version 3)

Available: https://www.kaggle.com/mlg-ulb/creditcardfraud

[2] The Sequential class

Available: https://keras.io/api/models/sequential/#pop-method

[3] Importance of Feature Scaling

Available:

https://scikit-

learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html

[4] Scikit-learn Supervised learning

Available: https://scikit-learn.org/stable/supervised_learning.html#supervised-

learning

[5] Analysis on credit card fraud detection methods

S. Benson Edwin Raj; A. Annie Portia

Available: https://ieeexplore.ieee.org/document/5762457/authors#authors

[6] Supervised Machine Learning Algorithms for Credit Card Fraudulent Transaction

Detection: A Comparative Study

Sahil Dhankhad; Emad Mohammed; Behrouz Far

Available: https://ieeexplore.ieee.org/document/8424696

[7] "Why Should I Trust You?": Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Available: https://arxiv.org/abs/1602.04938 [Submitted on 16 Feb 2016 (v1), last

revised 9 Aug 2016 (this version, v3)]

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://keras.io/api/models/sequential/#pop-method
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://ieeexplore.ieee.org/document/5762457/authors#authors
https://ieeexplore.ieee.org/document/8424696
https://arxiv.org/abs/1602.04938

