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ABSTRACT 
 

With the rise of e-commerce and online purchases in the modern age, credit card fraud has 

become a severe and growing issue. Such unpleasant practices can impact millions of people 

around the world through this identity theft and the loss of money. Crime is a growing threat 

with far-reaching consequences to the finance sector. The extraction of information seemed to 

be a core job for payment fraud recognition, fraud detection efficiency in card buy-outs has a 

significant impact on the measurement strategy for the data set, the choices of the variable and 

the techniques of detection used. We'll aim at how Artificial Neural Networks (ANN), Decision 

Trees, K-Nearest Neighbors (KNN), Logistic Regression, Support Vector Machines (SVM), 

Random Forests, Neural Network Supervised (MLPClassifier), Ridge Classification, 

AdaBoost Classification, and Naive Bayes are implemented in this research. Classification 

algorithms for highly skewed credit card fraud results. For model understanding, accuracy, f1, 

recall, precision, Matthew's correlation coefficient (MCC), confusion matrix, and lime which 

will be used to evaluate the execution of these techniques.  
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Chapter 1 

Introduction 

1.1 Introduction 

Financial fraudulent activity in an ever growing threat in this modern era, where business, 

industries, organizations and government is highly dependable on the internet technology. 

And with rapidly developing the economy globalization, credit card transactions became 

popular for commercial transactions in both online and offline. According to Global 

Payment report 2020, 24.2% in eCommerce and 20.9% in Point of Sale (POS) payment 

had made by credit card in 2019.  Thus, the huge transactional services often target by 

cyber criminals to perform fraudulent activity using credit card services. 

 

The unauthorized usages of card and unusual transactions are defined as a credit card fraud. 

Namely there are three three types of credit card frauds in general. Conventional frauds, 

which performed by stilling, faking or counterfeiting. Online frauds are often committed 

by the fake or false merchant sites. And Merchant related frauds involved with merchant 

collusion and triangulation. 

 

By using traditional methods of manual detection can be time consuming, inefficient and 

costly for detecting the fraudulent transactions. Credit card fraud detection is the process 

of identifying transaction whether it’s legitimate (genuine) or fraudulent. To counter cyber-

criminal activities, data mining and machine learning approaches are vastly used. 

Therefore, these techniques can be applied for credit card fraud detection methods. 

 

1.2 Aim and Objective 

• Find an appropriate deep neural architecture for the fraud detection method, based 

on accuracy. 

• Find an appropriate agent architecture for the fraud detection system based on 

accuracy. 

• Develop and incorporate a framework in the available database to identify 

fraudulent transactions where the number of cases of fraud is very limited 

compared to legal cases. 

• Determine which algorithm gives a better result based on accuracy, Recall and 

Precision 
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1.3 Limitations and Challenges 

• Huge amount of data processing everyday. 

• Build model have to fast enough to respond to the scam in time. 

• Maintain high accuracy. 

• Imbalanced Data (i.e. mostly 99.8% are legitimate or non-fraudulent which makes 

it hard to direct the fraudulent one). 

• Data unavailability as most are private. 

• Another major issue can be misclassified data, as not every single fraudulent 

transaction is caught or reported. 

• Adaptivity against scammers. 

 

1.4 Chapter Description 

• Chapter 2 - Technical Background shows the background of Machine Learning 

approaches discussed in this work. 

• Chapter 3 - The Data Overview explains the database and analyzes it.  

• Chapter 4 – Data Sorting and Exploration, preparing the data to test, train and 

predict.  

• Chapter 5 – Modeling with ten classification model (ANN, Decision Tree, KNN, 

Logistic Regression, SVM, Random Forest, Neural Network Supervised 

(MLPClassifier), Ridge Classification, AdaBoost Classification and Naive Bayes). 

• Chapter 6 – Model Evaluation with accuracy, f1, recall, precision, Matthew’s 

correlation coefficient (MCC),confusion matrix and used lime for model 

interpretation. 

• Chapter 7 - Results provides the provisional and final results of the study 

conducted. 
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Chapter 2 

Technical Background 

In this chapter introduces each technique and definition used in the creation of work in the field 

of machine learning and deep learning. These terms, beginning with , Artificial Neural Network 

(ANN), Decision tree , K-nearest Neighbors (KNN), Logistic Regression algorithm, Support 

Vector Machine(SVM), Random Forest Tree Algorithm and Naive Bayes Classifier, are clearly 

explained, trying to make them easy to understand. 

2.1 Artificial neural network 

Artificial neural networks (ANNs) are computation systems largely inspired by the biological 

neural networks that form animal brains, often called as neural networks (NNs). 

ANN were developed as a mathematical generalization of the components of the human brain, 

specifically neuron networks that obtain information to learn characteristics and take action 

according to the ANN objective. Artificial neural networks find the best combination of 

parameters that match a given problem during the training phase. The study of artificial neural 

networks is inspired by their similarities to biological systems that function efficiently, 

consisting of very basic yet multiple nerve cells that work massively and have the ability to 

learn in parallel. After good training, an ANN may find logical solutions to similar problems 

in the same class that have not been specifically trained, since they have the capacity to 

generalize and associate knowledge. In exchange, this results in a high level of fault tolerance 

against noisy data inputs. 

 
Figure 2. 1 Natural Neurons 

That of natural neurons is the model that remains. A basic drawing of a biological neuron is 

seen in Figure 2.1. Via synapses located on the neuron dendrites or membrane, natural neurons 

receive signals. The neuron is triggered when the signals received are high enough and emits a 

signal through the axon. This signal might be sent to another synapse, and other neurons might 

be activated. If we equate them with artificial neurons, natural neurons have immense 

complexity. However, when designing our neural networks, we can extract features that are 

important. Inputs are needed, multiplied by initial weights, to be enabled by a mathematical 

function afterwards. An example of an artificial neuron is shown in Figure 2.2. 
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Figure 2. 2 

Artificial Neuron 

 

Artificial Neuron 

An artificial neuron is a natural neuron inspired computational model. The architecture and 

functioning of the biological neuron, which is the basic building block of biological neural 

networks, including the brain, spinal cord and peripheral ganglia, is derived from observation. 

It is possible to research an artificial neuron using a simple mathematical procedure. Project, 

such as the following: 

 
𝑦(𝑘) = 𝐹 (∑𝜔𝑖(𝑘). 𝑥𝑖(𝑘) + 𝑏

𝑚

𝑖=0

) 
2.1 

Where, 

• 𝒙𝒊(k) is the discrete time k input 

• 𝝎𝒊(𝒌) is the discrete time k weight value 

• b is bias 

• F is a transfer function  

• 𝒚𝒊(𝒌) is the discrete time k output value 

Loss Function 

To minimize the so-called loss on the training set is the standard approach for training a 

deterministic regression or classification model. The loss is defined as a function of the 

parameters of the model θ: 

 

𝑙(𝜃) =
1

𝑆
∑𝐿(𝑦𝜃(𝑋𝑠), 𝑇𝑠)

𝑆

𝑠=0

 

2.2 

Where𝑋𝑠 is a sample of training with corresponding goal 𝑇𝑠 and 𝑦𝜃(𝑥)is the prediction of the 

input x model given. Measure of Loss 𝐿 ∶ ℝ𝐷 ×ℝ𝐷 → ℝ To each sample, R assigns a loss 

value based on the discrepancy between the estimation of the model and the ground truth. The 

function of loss is used to assess and minimize the difference between expected 
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Real performance and. Mean Squared Error (MSE) is one of the most used loss functions: 

 
𝑀𝐸𝑆(𝑥, �̂�)

∑ ∥ 𝑥𝑖 − 𝑥�̂� ∥
2𝑁

𝑖=1

𝑁
 

2.3 

Where x is the target and �̂� is the obtained value. 

Transfer Function 

In the 2.1 equation, the transfer function is one of the most important variables. Another term 

by which transfer functions are named is Activation Functions. Activation functions are 

functions used to determine the weighted total of inputs and biases in neural networks, which 

are used to assess whether or not a neuron can be shot. The Artificial Neural Network properties 

are defined by these functions. There are several types of activation functionality that are used 

according to the issue that needs to be addressed. The graphs of the most general functions are 

shown in Figure 2.3 (retrieved from) and are defined as: 

 
Figure 2. 3 Transfer Function 

 

 

Linear Function  

The input/output properties of most actual models are non-linear. But there are several models 

that have conduct that is similar enough to linear if run within nominal parameters. In these 

types of cases, this feature may be an appropriate reflection of input/output actions. There are 

no thresholds applied by the linear function and the output is similar to the input. 

 𝑓(𝑥) = 𝑥 2.4 

Step Function 
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This is used to model the behavior of the classic 'All-or-none.' It resembles a ramp function, 

but when a threshold value is reached, the function value θ shifts abruptly. 

 
𝑓(𝑥) = {

0, 𝑖𝑓 𝑥 ≤ 𝜃
1, 𝑖𝑓 𝑥 > 𝜃

 
2.5 

Ramp Function 

With the Linear output function, the Ramp function combines the Step function. The neuron 

exhibits the output f(x)= 0 as long as the activation is smaller than the threshold value 𝜃1, if the 

activation reaches the threshold value𝜃2, the output is f(x)= 1. The activation output of the 

neuron at the interval between the two threshold values of 𝜃1< x <𝜃2  is calculated by a linear 

activation interpolation. 

  

𝑓(𝑥) =

{
 

 
0                     𝑖𝑓 𝑥 ≤ 𝜃1        
𝑥 − 𝜃1
𝜃2 − 𝜃1

       𝑖𝑓𝜃1 ≤ 𝑥 ≤ 𝜃2

1                        𝑖𝑓 𝑥 > 𝜃2

 

2.6 

Sigmoid Function  

The input is taken and compressed the output by This function of transfer in the range 0 to 1. 

In multilayer networks that are trained using the Backpropagation Algorithm1, this transfer 

function is widely used, in part because this function is distinguishable in its entire range. This 

function is defined mathematically as, 

 
𝑓(𝑥) =

1

1 +∈−𝑥
 

2.7 

Hyperbolic Target Function 

In terms of neural networks, this function is comparable to a bipolar sigmoid that has an output 

range from −1 to +1. For neural networks, where speed is more important than the exact shape 

of the transfer function, this function is a reasonable trade-off. 

 
𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

2.8 

Gaussian Function  

For zero activation, a Gaussian function's maximum function value is found. Even the function 

is: f(−x) = f (x). The value of the function decreases as the absolute activation value increases. 

 𝑓(𝑥) = 𝑒−𝑥 2.9 
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Learning Rate 

The learning rate is a parameter in neural networks that defines how much the weights will 

adjust in response to an observed mistake on the training set. Choosing this learning rate can 

have a dramatic impact on the precision of generalization as well as the pace of training. This 

value is a proportionality constant that configures the scale of the weight changes. The value 

of this constant typically varies throughout the [0; 1] interval. If the learning rate is too high, 

the average loss will rise and get stuck at or even diverge from a local minimum. If the value 

is too poor, however, the learning rate can lead to slow convergence. 

Epochs 

When the set of training is finite, training continues by sweeps through the set of training called 

an age, and complete training typically takes several epochs (iterations through the set of 

training). For example, for each model (i.e.) a network with a different set of weights, the back 

propagation learning algorithm constructs a different model. The learning algorithm examines 

or travels through 1000 different models if a neural network is trained for 1000 epochs. 

2.1.1 Learning Paradigms of ANN 

There are more and more types of ANNs that refer to a variety of fields. Therefore, to enable 

their use, they must be categorized correctly. There are many ways of categorizing them, such 

as the type of transfer functions, the topology, implementations, algorithm type, etc. A brief 

classification according to the learning paradigms is shown in this section. Learning may refer 

to either knowledge acquisition or enhancement. The learning process is a method for updating 

an ANN's architecture and link weights to maximize its effectiveness in order to perform a 

particular task. The following are the three primary learning paradigms: supervised, 

unsupervised (or self-organized), and reinforcement. Numerous algorithms include each 

category. 

Supervised Learning 

In supervised learning, in the form of the exact activation of all output neurons, the training set 

consists of input patterns and their correct outcomes. Then, each output produced by the 

training set is compared with the correct solution (target) and the neural network's synaptic 

weights are modified according to this comparison. The main aim of this training is to change 

the weights so that the difference is minimal between performance and target. The Error 

Backpropagation Algorithm usually solves learning by practicing in a supervised ANN model. 

Supervised learning is a common technique since it facilitates the ability of neural networks to 

generalize, that is, even with new data without prior knowledge of the goal, to give correct 

results. Normally, this method of learning is used for classification for which there are several 

choices for each problem type. However, choosing an appropriate classifier (Multilayer 

Perceptron, Support Vector Machines, K-nearest Neighbors Algorithm, Gaussian Mixture 

Model, Gaussian, Naive Bayes, Decision Tree, Radial Basis Function Classifiers,etc.) is still 
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more art than science for a given issue. A general representation of Supervised learning 

paradigm is shown in figures 2.4 

 

Figure 2. 4 Supervised Learning 

Unsupervised Learning 

The most biologically plausible method is unsupervised learning, but it is not ideal for all 

problems. Only the input patterns are given; the network attempts to recognize and classify 

similar patterns into similar categories. Neural networks that are trained using unsupervised 

methods are referred to as self-organizing because they are not driven by what should be the 

optimal or right performance. The output processing units self-organize when faced with a set 

of input patterns by initially competing to identify the pattern, and then coordinating to change 

their relation weights. 

Unsupervised learning is mainly used in applications such as statistical modeling, compression, 

filtering, blind source separation and clustering that fall within the field of estimation problems. 

The last one is a typical method of unsupervised learning where we try to categorize data by 

similarity in different clusters. Self-organizing maps are the ones that use unsupervised learning 

algorithms most often. A general representation of Unsupervised learning paradigm is shown 

in figure 2.5 

 

 
Figure 2. 5 Unsupervised Learning 

Reinforcement Learning 
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The training set consists of input patterns, a value is returned to the network after a sequence 

is completed indicating whether the outcome was correct or wrong and, likely, how right or 

wrong it was. In order to learn an optimal (or nearly optimal) environmental policy, the goal 

of reinforcement learning is to use observed rewards. Reinforcement learning is learning 

through engaging with an environment by taking multiple actions and witnessing several  

 
Figure 2. 6 Reinforcement Learning 

defeats and accomplishments while attempting to increase the rewards obtained. Agent 2 is not 

aware of what action to take. Reinforcement learning is especially suited to issues like a trade-

off of long-term and short-term reward. It has been successfully applied to various issues, 

including control of robots, telecommunications, and games such as chess and other sequential 

tasks of decision-making. A general representation of Reinforcement Learning learning 

paradigm is shown in figures 2.6. 

2.1.2 Common problems and Methods of data splitting 

Two common problems can arise in the training of a neural network, which can be avoided by 

choosing a proper method of data splitting. Those issues are: 

• Underfitting occurs when there is very little training information provided to the neural 

network and therefore does not allow learning to be generalized. That is, the model has 

not learned enough, resulting in low generalization and results that are unreliable. 

• Overfitting is a key issue in machine learning tasks that are supervised. If a learning 

algorithm fits the training data set so well that noise and the peculiarities of the training 

data are memorized, it is the phenomenon identified. This problem leads to the 

deterioration of the model's generalization properties and, when applied to new 

measurements, results in its unreliable performance. 

There are many splitting techniques that can be used, but dividing the data into three subsets is 

one of the most common. 

• Training: the knowledge used to teach (train) the algorithm to perform its assignment. 

• Validation: the data used to tune a learning algorithm's hyperparameters. 

• Testing: data used to validate the behaviors of the machine learning model. 
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It is a task that requires many tests to determine the division of data that goes to each subset, 

which then produces the best model for each problem. There are many suggestions, though, 

such as dividing or even using empirical tests manually. 

 
Figure 2. 7 A data splitting visualization 

2.2 Random Forest 

Random forests or random decision forests are a supervised learning algorithm for 

classification, regression and other tasks that function by creating a number of decision trees 

at training time and generating the class that is the class mode (classification) or the individual 

trees' mean/average prediction (regression). Random forests of decision making correct the 

practice of overfitting their training set for decision trees. However, their performance may be 

influenced by data characteristics. 

There are a number of applications for Random Forests, such as recommendation engines, 

classification of images and selection of features. It can be used to categorize loyal applicants 

for loans, classify fraudulent behavior and predict diseases. It lies at the basis of the Boruta 

algorithm, which in a dataset selects important features. 

It is theoretically an ensemble technique of decision trees generated on a randomly divided 

dataset (based on the divide-and-conquer approach). This set of classifiers for the decision tree 

is also known as the forest. The individual decision trees are created for each attribute using an 

attribute selection indicator such as data gain, gain ratio and Gini index. Each tree depends on 

a random sample that is independent. Each tree votes and the most common class is selected 

as the final outcome in a classification problem. In the case of regression, the final outcome is 

called the sum of all the outputs of the tree. In comparison to the other non-linear classification 

algorithms, it is simpler and more efficient. 

Preliminaries: decision tree learning 

For different machine learning tasks, decision trees are a common tool. In particular, very 

deeply grown trees appear to learn extremely erratic patterns: they overfit their training sets, 

i.e., they have low bias, but very high variance. Random forests are a way to average many 

deep decision trees, trained with the intention of reducing the variance on various sections of 

the same training set. This comes at the cost of a slight increase in bias and some lack of 

interpretability, but usually improves the performance in the final model significantly. 
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Forests are like pulling decision tree algorithm attempts together. In this way, the teamwork of 

multiple trees increases the effectiveness of a single random tree. Forests do offer the results 

of a K-fold cross validation, but not very similar. 

Bagging 

The training algorithm for random forests applies to tree learners the general bootstrap 

aggregating method, or bagging. Provided the training set X = 𝑥1, ..., 𝑥𝑛 with answers Y = 𝑦1, 

..., 𝑦𝑛, bagging repeatedly (B times), a random sample is chosen to replace the training set and 

matches the following samples with trees: 

 

For b = 1, ..., for B: 

1. Test, n training examples from X, Y with replacement; call these 𝑋𝑏, 𝑌𝑏. 

2. Train 𝑓𝑏 on 𝑋𝑏, 𝑌𝑏, to a classification or regression tree. 

Predictions for unseen samples 𝑥′ can be made after training by averaging the predictions on 

𝑥′ from all the individual regression trees: 

 

𝑓 =
1

𝐵
∑𝑓𝑏(𝑥

′)

𝐵

𝑏=1

 

2.10 

In the case of classification trees, or by taking the majority vote. 

This bootstrapping technique leads to better performance of the model because, without 

increasing the bias, it reduces the variance of the model. This implies that while a single tree's 

predictions in its training set are extremely sensitive to noise, the average of several trees is 

not, as long as the trees are not correlated. It will give strongly correlated trees (or even the 

same tree many times, if the training algorithm is deterministic) to simply train many trees on 

a single training set; bootstrap sampling is a way of de-correlating the trees by showing them 

different training sets. 

In addition, the uncertainty of the forecast can be calculated as the standard deviation of the 

forecasts from all the individual regression trees on 𝑥′: 

 

𝜎 = √
∑ (𝑓𝑏(𝑥′) − 𝑓)

2𝐵
𝑏−1

𝐵 − 1
 

2.11 

The sample/tree count, B, is a free parameter. A few hundred to several thousand trees, 

depending on the size and design of the training collection, are usually used. Using cross 

validation or observing the out-of-bag error, the optimal number of trees B can be found: the 

mean prediction error on each training sample𝑥𝑖, using only the trees that did not have 𝑥𝑖 in 

their bootstrap sample. After certain numbers of trees have been fit, the training and test error 

appears to level off. 
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From bagging to random forests 

The original bagging algorithm for trees is defined in equation 2.10. Random forests vary from 

this general scheme in just one way: they use a modified tree learning algorithm that selects a 

random subset of features for each candidate split in the learning process. This process is called 

"feature bagging" sometimes. In an ordinary bootstrap sample, the explanation for doing this 

is the correlation of the trees: if one or a few characteristics are very good predictors for the 

response variable (target output), these characteristics will be selected in many of the B trees, 

allowing them to become correlated. Ho offers an overview of how bagging and random 

subspace projection lead to precision gains under various conditions. 

Usually, in each break, √𝑝 (rounded down) characteristics are used for a classification problem 

with p functions. The inventors suggest 𝑝 3⁄  (rounded down) for regression problems with a 

minimum node size of 5 as the norm. The best values for these parameters in practice would 

depend on the issue and should be viewed as tuning parameters. 

ExtraTrees 

Adding another randomization stage yields highly randomized trees, or ExtraTrees. Although 

similar to ordinary random forests, there are two key differences in that they are an ensemble 

of individual trees: first, each tree is trained using the entire learning sample (rather than a 

bootstrap sample), and second, the top-down splitting is randomized in the tree learner. A 

random cut-point is chosen instead of calculating the locally optimal cut-point for each function 

under consideration (based on, e.g., information gain or Gini impurity). This value is chosen 

from a uniform distribution within the empirical range of the function (in the training set of the 

tree). Then, to split the node, the split that yields the highest score is chosen from all randomly 

generated splits. The number of randomly selected features to be considered at each node can 

be defined, similar to ordinary random forests. The default values for this parameter are √𝑝 for 

classification, and p for regression, where the number of features in the model is p. 

2.2.1 Working Function of Random Forest Algorithm 

By following steps, we can comprehend the working Function of the Random Forest 

algorithm. 

• Start by selecting random samples from a given dataset first. 

• Next, for each sample, this algorithm will create a decision tree. Then, from any 

decision tree, it will get the prediction result. 

• For any predicted outcome, voting will be carried out in this step. 

• Eventually, pick the outcome of the most voted prediction as the final result of the 

prediction. 
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The diagram below illustrates the Random Forest algorithm working function: 

 

 

 

 

 

 

 

 

Figure 2. 8 Illustrations of Random Forest algorithm working function. 

2.3 K-nearest Neighbor (KNN) 

The k-nearest neighbor algorithm (KNN) is a method of non-parametric classification in 

statistics. It is used for regression and classification. In both instances, the input consists of the 

examples of k training nearest to the dataset. The performance depends on whether the 

classification or regression uses k-NN. 

The performance is a class affiliation in the KNN classification. An object is graded by its 

neighbors' majority of votes, with the object being allocated to the most common class amongst 

the nearest neighbors. Where k is typically a small positive integer. If k = 1, therefore the 

component is simply assigned to that nearest neighbor's single class. The output in the KNN 

regression is the object's property value. That's the ideal number including its k values of the 

nearest neighbors. 

KNN itself is a method of classifier where the mechanism is only locally approximated and all 

calculations are postponed until the analysis of the function. Because this algorithm tends to 

focus on classification distance, when the functionalities reflect distinct physiological units or 

arrive in significantly various scales, the normalization of training dataset can greatly enhance 

its accuracy. 

Parameter selection 

The appropriate choice of k relies on the information; generally, higher values of k decrease 

the effect of the noise on the classification, but make boundaries less distinct between groups. 

By various heuristic methods, a strong k can be extracted (see hyperparameter optimization). 

The nearest neighbor algorithm is called the necessary evil in which the classification is 

expected being the class of its closest training set (i.e., while k = 1). 

By the existence of noisy or insignificant features, the accuracy of the k-NN algorithm can be 

severely degraded, or if the feature scales are not compatible with their significance. To 

Training 

set 
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Training data 1 Training data 2 Training data n 

Decision tree 1 Decision tree 2 Decision tree n 

Voting 

(averaging) 
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enhance classification, significant study effort has been made towards filtering or balancing 

features. Through use of evolutionary algorithms towards enhance feature scaling is an 

especially popular [citation required] approach. Another traditional strategy is just to optimize 

features with training classes through the shared knowledge of it's data sets. 

It is beneficial to select k to be an odd number in binary (two class) classification problems, as 

this prevents tied votes. In this setting, one common way to choose the experimentally 

optimized k is through the bootstrap process. 

The Mathematical Concepts Behind KNN 

KNN functions because of the deeply ingrained mathematical ideas it uses, just like almost 

anything else. The first step is to translate data points into feature vectors, or their mathematical 

significance, while implementing KNN. By finding the distance between the mathematical 

values of these points, the algorithm then operates. The Euclidean distance is the most common 

way of finding this distance, as shown below. 

 

𝑑(𝑝, 𝑞) = √∑(𝑞𝑖 − 𝑝𝑖)2
𝑛

𝑖=1

 

2.12 

 

In order to compute the distance between each data point and the test data, KNN runs this 

formula. The likelihood of these points is then found to be identical to the test data and graded 

based on which points share the greatest probabilities. 

2.4 Logistic Regression 

Logistic Regression is a Supervised Learning algorithm which is not a regression but a 

classification algorithm. It's being used to predict discrete values associated with a given set of 

independent variable values (binary values such as 0,1 or yes, no or true, false). In simple 

words, through fitting the data towards a logit function, it predicts the likelihood of occurrence 

of the event. It is, thus, often referred to as logit regression. Since the likelihood is estimated, 

its performance values are between 0 and 1 because. 

Suppose, we've got a puzzle to solve. There are only two outcome scenarios, either you or you 

don't solve it. Now imagine, in an effort to understand which topics we are strong at, when we 

are given a wide variety of puzzles or quizzes. If we have been given a trigonometry-based 

tenth grade dilemma, we are 70 percent likely to solve that. The result of this research will be 

something like this. But from the other hand, the chance of receiving an answer is only 30 

percent if it is a fifth grade history question. Logistic Regression gives us this. 

 



15 
©DaffodilInternationalUniversity 

 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛 (
𝑝

(1 − 𝑝)
) 

2.13 

In equation 2.13, p is the probability that there will be a characteristic of interest. Choose 

parameters which maximize the probability of observing the values of the sample rather than 

just minimize the sum of squared errors as in normal regression. 

2.5 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a method of classification. and in this algorithm, we plot 

then each data element as a point in n-dimensional space at which n represents the number of 

features which we have, with its value of each function being its valuation of the specific 

coordinate 

For example, if we had only two features like the Height and the Hair length of a person, we 

would then plot these two variables through two dimensional spaces that each point has two 

coordinates These coordinates are considered as support vectors. 

(a) 
(b) 

Figure 2. 9 SVM Explanation 

Now, we're going to find a line that divides the data between the two different groups of data, 

which is shown in figure 2.8(a). This will be the line in such a way that the distances from the 

nearest point in each of the two groups will be the most distant. 

In the example shown figure 2.8(b), the line that divides the data into two distinctly classified 

groups is the black line, since the two closest points are the most distant from the line. This is 

our ranking line. Finally, based on how far the test data lands from either side of the line that's 

what category the new data can be classified as. 

A 

B 
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2.6 Naive Bayes 

Naive Bayes is a linear classifier focused on Bayes theory, assuming independence between 

predictors. In simple terms, the Naive Bayes classification algorithm of a specific feature in a 

class is not correlated with the presence of any other function. For example, if the fruit is red, 

round while approximately 3 inches in radius it can be considered an apple. Even though this 

value depends on one another or on its existence of the other functionalities the naive Bayes 

classifier might consider that most of these characteristics would individually make a 

contribution to the likelihood that the fruit would be an apple. 

The Naïve Bayesian model is easy to build and is particularly useful for very large data sets. 

In addition to simplicity, Naive Bayes is known to perform even highly sophisticated 

classification methods. 

Bayes Theorem offers a way to calculate P(c|x) of P(c), P(x) and P(x|c) of the posterior 

probability. 

 
𝑃(𝑐|𝑥) =

𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 

2.14 

In this,  

• P(c|x) is the posterior probability of the target class given the predictor attribute. 

• P(c) is the class's prior probability. 

• P(x|c) is the probability of a given class predictor. 

• P(x) is the prior predictor probability. 

 

 

2.7 Decision Tree 

Decision Tree is one of the most popular algorithms in the community and has been used quite 

quite often. It is a method of supervised learning algorithm which is most commonly used for 

classification problems. Surprisingly, this works with both categorical as well as continuous 

dependent variables. In this algorithm, we have divided the population into two or more 

homogeneous sets. This is framed in terms of the most significant attributes/independent 

variables to make as distinct groups as possible. 

In the figure 2.9, we can see that the population is split into four separate categories consisting 

of multiple attributes to define 'whether or not they will play.' It uses a variety of techniques 

such as Gini, Information Gain, Chi-square, entropy to divide the population into various 

heterogeneous categories. 
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The easiest way of understanding how the decision tree operates is to play Jezzball – a classic 

Microsoft game (figure: 2.10). Supposedly, we have an area with moving walls, and we need 

to create walls that allow the maximum area to be cleared out of the balls. 

 
Figure 2. 11 Jezzball- a classic Microsoft game 

So, every time we split each room with a wall, we're trying to create two different populations 

in the same room. Decision trees work in a very similar way by dividing the population into as 

many groups as possible. 

2.8 Neural Network Supervised (MLPClassifier) 
Artificial Neural Networks, or ANNs for short, are commonly used in many applications today, 

including classification, and there are many libraries and frameworks dedicated to quickly 

creating Neural Networks. When compared to a simple Scikit-Learn library, most of these 

frameworks and tools take several lines of code to implement. 

The MLPClassifier from Scikit-Learn is one of the easiest to use Neural Networks for 

classification. 

Play 13 

Don’t Play 9 
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Play 13 

Don’t Play 9 Play 13 
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Figure 2. 10 Decision Tree Explanation  
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MLPClassifier stands for Multi-layer Perceptron Classifier, which is connected to a Neural 

Network by its name. Unlike other classification algorithms like Support Vectors or Naive 

Bayes Classifier, MLPClassifier is based on a mathematical model. 

However, MLPClassifier is similar to Scikit-Learn's other classification algorithms in that it 

needs no more effort to implement than Support Vectors, Naive Bayes, or any other Scikit-

Learn classifier. 

The Multi-layer Perceptron (MLP) itself is a supervised machine learning algorithm which 

trains on a dataset to learn a function 𝑓(. ): 𝑅𝑚 → 𝑅0 , where represents the number of input 

dimensions and is the amount of output dimensions. This could learn a non-linear function 

approximator for classification or regression given a set of characteristics 𝑋 = 𝑥1, 𝑥2, … . , 𝑥𝑚 

and a target y. It differs from logistic regression in that one or much more non-linear layer upon 

layer, known as hidden layers, may exist between both the input and output layers. Figure 2.11 

shows a scalar output MLP with one hidden layer. 

The input layer, on the left, is made up of a group of neurons called {𝑥𝑖|𝑥1, 𝑥2, … . , 𝑥𝑚} that 

represent the input features. The variables from the previous layer are transformed within each 

neurons in the hidden layer using a weighted linear summation 𝜔1𝑥1 + 𝜔2𝑥2 +⋯+

𝜔𝑚𝑥𝑚accompanied by a non-linear activation  

function 𝑔(. ): 𝑅 → 𝑅 - similar to the hyperbolic tan function. The values from the last hidden 

layer are passed to the output layer, which converts them to output values. 

 
Figure 2. 12 One of The Multi-layer Perceptron (MLP) hidden layer. 

The public attributes coefs_ and intercepts_ are contained within the module. The weight 

matrices at index represent the weights among layer i as well as layer i+1, and coefs_ is a 

collection of them. The vector at index reflects the bias values, while intercepts_ is a collection 

of bias vectors. 

The public attributes coefs_ and intercepts_ are contained within the module. The weight 

matrices at index represent the weights among both layer i as well as layer i+1, while coefs_ is 
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a collection of them. The bias vector at index reflects the bias values applied to layer i+1, and 

intercepts_ is a collection of bias vectors. 

2.9 Ridge Classification  

RidgeClassifier is a classifier version of the Ridge regressor. This classifier converts binary 

goals to -1, 1 before treating the problem as a regression problem and optimizing the same goal 

as before. The predicted class is determined by the regressor's prediction symbol. The problem 

is viewed as multi-output regression for multiclass classification, and the expected class 

corresponds to the output with the highest value. 

A (penalized) lower square loss could seem questionable in place of the more traditional 

logistical or hook losses, in place of a model classification. All these models can however direct 

to closely related cross-validation values in terms of accuracy or accuracy/recall in practice, 

while the lowest penalized losses used in the Ridge Classifier make it possible to choose 

numerical solvers of a very different computational performance. 

The RidgeClassifier can be considerably faster than LogisticRegression for example including 

a wide range of positions, because the projection matrix (𝑋𝑇𝑋)−1𝑋𝑇 can only be computed 

once. 

2.10 AdaBoost Classifier 

Ada-boosting or adaptive boosting is one of Yoav Freund and Robert Schapire's ensemble 

boosting classification of 1996. It combines multiple classificators to improve classification 

accuracy. An iterative ensemble approach is AdaBoost. By combining several poor 

performance classifier so that you get a strong classifier with high accuracy, AdaBoost 

classifier creates a strong classifier. The general concept behind Adaboost here is to set the 

weights of the classifiers and to help train the sample data within every iteration so that the 

unusual observations are predicted accurately. 

Any machine learning algorithm that accepts weights on the training set can be used as a base 

classifier. Adaboost must fulfill two requirements: 

1. The classifier should be interactively trained using a variety of weighted training 

examples. 

2. It tries to provide an excellent match for these examples in each iteration by minimizing 

training error. 
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Figure 2. 13 The AdaBoost algorithm's operation 

The AdaBoost algorithm's operation 

1. Adaboost selects a training subset at random at first. 

2. It trains the AdaBoost machine learning model iteratively by choosing the training set 

based on the last training's accurate prediction. 

3. It gives incorrectly categorized observations a higher weight so that they have a higher 

chance of being classified in the next iteration. 

4. It also assigns weight to the trained classifier in each iteration based on the classifier's 

accuracy. The more precise classifier will be given more weight. 

5. This process runs until the complete training data is correct or the maximum number of 

estimators is reached without error. 

6. To classify, take a vote in all the learning algorithms that you have developed. 

2.11 Confusion Matrix 
Calculation of the performance of a trained system is one of the measures that can be used to 

determine whether the model is reliable. It is therefore important to choose a tool that allows 

us to visualize this performance. Confusion matrix encapsulates the classification performance 

of the classifier with regards with some of the test data. 

 

  Predicted 

  Negative Positive 

Actual 
Negative a b 

Positive c d 

Figure 2. 14 Confusion Matrix 

In the context of the case study, the records throughout the confusion matrix have the following 

meaning: 

• A is the number of correct predictions that an instance is negative; 

• b is the range of incorrect statements that an instance is positive; 

• c is the number of erroneous assumptions that an instance is negative, 
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• d is the proportion of true predictions that the case is positive. 

 

 

New terms are derived from the confusion matrix: 

Accuracy (AC) is the proportion of total number of assumptions that have been correct. This 

is defined by the equation 

 
𝐴𝐶 =

𝑎 + 𝑑

𝑎 + 𝑑 + 𝑐 + 𝑏
 

2.15 

Recall or true positive rate (TP) is the ratio of positive samples which have occurred 

Identified correctly: 

 
𝑇𝑃 =

𝑑

𝑐 + 𝑑
 

2.16 

The false positive rate (FP) is the ratio of negative cases falsely predicted positive. It is 

defined by the following: 

 
𝐹𝑃 =

𝑏

𝑎 + 𝑏
 

2.17 

 

The true negative rate (TN) is expressed as the ratio of negative cases, have been correctly 

classified as measured by using equation: 

 𝑇𝑁 =
𝑎

𝑎 + 𝑏
 2.18 

 

The false negative rate (FN) is the ratio of positive cases incorrectly classified as negative as 

calculated using the equation: 

 𝐹𝑁 =
𝑐

𝑐 + 𝑑
 2.19 

 

Precision (P) is the ratio of positive cases predicted that were correct. This term is defined by 

the following equation: 

 
𝑃 =

𝑑

𝑏 + 𝑑
 

2.20 

 

F1-score standard is the harmonic mean of precision and recall. The perfect model has an F-

score of one. 

 
𝐹1 =

2𝑎

2𝑎 + 𝑏 + 𝑐
 

2.21 

 

Matthews Correlation Coefficient (MCC) has a range of-1 to 1 where-1 indicates a factually 

false binary classifier, while 1 implies a totally correct binary classifier. 
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𝑀𝐶𝐶 =

𝑎 × 𝑑 − 𝑏 × 𝑐

√(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑑 + 𝑏)(𝑑 + 𝑐)
 

2.22 

 

2.12 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a methodology designed to reduce the dimensionality 

of certain sets of data, increase the usability but then at the same time reduce the loss of 

information. This technique extracts features that specifically change inputs, eliminating 

variables that do not provide important information to the data. Identifying such additional 

variables, the main components, reduces the problem of the own value/eigenvector and the new 

variables are characterized by the data set at hand, not a priori, making the PCA an affective 

data management methodology. Principal Component Analysis (PCA) technique is one of the 

most famous non-supervised dimensional reduction techniques. 

The aim of the technique is to find the PCA space, which represents the direction of the 

maximum variance of the data. The PCA technique finds a lower dimensional space or a PCA 

space (W) that is used to transform the space. 

Data (X = 𝑥1, 𝑥7,…., 𝑥𝑁) from the higher dimensional space (𝑅𝑀) to the lower dimensional 

space (𝑅𝑘), where N represents the total number of samples or observations and 𝑥 𝑖  represents 

𝑖𝑡ℎ sample, pattern or observation. All samples are of the same size (𝑥𝑖𝜖𝑅
𝑀). In other words, 

each sample is represented by M variables, i.e., each sample is represented as an M-

dimensional space point. 

 
Figure 2. 15 Principal Component Analysis(PCA) explanation. 

Figure 2.14 shows an example of two-dimensional data (𝑥1, 𝑥2) where the original data is left 

with the original coordinates, i.e. 𝑥1 and 𝑥2, the variance of each variable is graphically 

represented and the direction of the maximum variance, i.e. 𝑃𝐶1, is shown; the original data is 

shown on the right. The main components are projected on the first (blue stars) and second 

(green stars). 
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2.13 Lime  
LIME (Local Interpretable Model-agnostic Explanations) is an unique clarification approach 

which learns the interpretable model locally mostly around prediction to describe any 

classifier's prediction under an interpretable as well as faithful manner. 

The influence of the LIME property on model interpretability 

1. A model-independent, consistent explainer [ LIME ]. 

2. A framework for selecting a representative set that includes explanations [ SP-LIME ] 

to ensure that the model behaves consistently when replicating human reasoning. This 

representative collection will provide a global understanding of the model that is 

intuitive.Via feature engineer, LIME describes a prediction so that even non-experts 

can compare and build on an untrustworthy model. 

LIME explains the forecast to enable even non-experts through feature engineering to 

compare and improve an unsustainable model. The following desirable properties should be 

included in an ideal model: 

 

 

Interpretable 

The qualitative understanding between the input variables and the answer should be provided. 

It should be understandable. 

Local faithfulness 

An explanation may not be completely faithful unless the model itself is described in its 

entirety. After saying that it should at least be faithful locally, it must replicate the behavior 

of the model next door to the predicted instance. 

Agnostic Model 

When giving examples, the explainer should be able to describe each model and should not 

make any assumptions about the model. 

Perspective from afar 

The explainer should give the consumer a representative collection to explain so that they 

have a general understanding of the model. 

2.13.1 LIME assesses the following characteristics: 

2.13.1.1 Data Representations That Can Be Interpreted 

LIME uses a representation that humans can understand, regardless of the model's actual 

features. The term "interpretable representation" was coined to describe this. An interpretable 

representation will differ depending on the type of data we're working with, for instance: 

1. In the case of text, it denotes the presence or absence of words. 

2. In the case of an image, it denotes the presence or absence of superpixels ( 

contiguous patch of similar pixels ). 

3. It is a weighted combination of columns for tabular results. 

In short, even non-experts can understand LIME's explainer. 

2.13.1.2. Interpretability-Fidelity a compromise 

Locally replicate the model's actions and make it interpretable. LIME does this by 

minimizing the following: 
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𝜉(𝑥) = argmin
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔) 2.23 

Variables in the equation 

f: a unique predictor 

x: exclusive features 

g: an interpretation model, such as a linear model, a decision tree, or a collection of falling 

rule lists 

Pi is a measure of how close an instance of z is to an instance of x in order to determine 

locality around x. It gives z' (perturbed instances) different weights depending on how far 

away they are from x. 

First Term: the measure of g's unreliability in approximating f in the Pi-defined locality. In 

the original article, this is referred to as locality-aware failure. 

Last term: a metric for the complexity of an explanation's model g. If the explanation model 

is a decision tree, for example, the width of the tree can be used, or in the case of linear 

explanation models, the number of non-zero weights can be used. 

For future reference, here are some abbreviations. 

1. x' (interpretable representation): This binary vector represents a human-readable 

version of the original model's actual features. 

2. z' (perturbed sample): a percentage of x' elements that are not zero. 

3. class mark f(z) 

4. g(z'): This is the model that LIME has mastered ( explanation model ). 

Locality-aware loss is reduced while the second term is kept low enough to ensure both 

interpretability and local fidelity. 

In order to ensure that both interpretability and local loyalty are minimized locality-conscious 

loss while maintaining the second term as low as possible for human interpretation. This is 

called Omega(g) for the remainder of the post. 

LIME achieves local loyalty while optimizing locality-conscious loss. 

2.13.1.3. Local Exploration By Sampling 

To recap, g is the learning model, z' is an example of the training data, and f (z) is the y. 

Random uniform sampling from x' is used to construct a full training set. To put it another 

way, we make several z's out of a single row of x. (original training example). 

These are then pi(x) weighted to concentrate on z', which is closer to x. 

Equation 1 is optimized to learn the description model given this dataset and labels. To 

summarize, LIME's ability to provide explanations is not dependent on the form of original 

model ( model agnostic ). 

2.13.1.4. Explanation in a Sparse Linear Format 

ℒ(𝑓, 𝑔, 𝜋𝑥) = ∑ 𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(�́�))
2

𝑧,𝑧∈𝑍́

 2.24 

Assume that  

1. g(z') = w. z' ( Making the explanation model linear ) 

2. Loss that is locally conscious equals square loss 
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3. Pi(z) : exp(-D(x,z)(2)/sigma(2)) (Samples are weighed based on their proximity) 

4. Distance function D(x,z) 

Understanding the LIME algorithm  

 
K places a limit on the number of variables that must be taken into account in the explanation. 

For example, K is the number of words to consider in a text, the number of superpixels in an 

image, and the number of columns in tabular data. If size(w) > K, we render Omega tend to 

infinity to achieve this. To summarize, LIME employs linear explainers to estimate the decision 

boundary of the original model. 

2.13.1.5. SP-LIME is a submodular pick for illustrating templates. 

LIME seeks to attribute human-understandable characteristics to a model's prediction. To do 

so, we must run the explanation model on a diverse but representative set of instances in order 

to generate a nonredundant explanation set that serves as a global representation of the model. 

Let's go through the prerequisites before we get into the algorithm: 

1. B(Budget): The number of reasons the consumer is able to examine. 

2. Select a Step: Selecting B instances from all instances is a difficult task. 

3. W(Explanation Matrix):n(number of samples)*d'(human-understandable 

characteristics) matrix 

4. I(j): In the description space, the value of component j is global. 

5. V: Considered features for explanation 

6. C (V, W, I): Calculates the total importance of all features in a set V that appear in at 

least one case. 

 
𝑐(𝑉,𝑊, 𝐼) = ∑1[∃𝑖 ∈ 𝑉:𝑊𝑖𝑗 > 0]𝐼𝑗

𝑑′

𝑗=1

 
2.25 

Nonredundant converge intuition 

 𝑃𝑖𝑐𝑘(𝑊, 𝐼) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑐
𝑉,|𝑉|≤𝐵

(𝑉,𝑊, 𝐼) 2.26 
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Steps in the Algorithm 2 

 
1. Apply the interpretation model to all occurrences (all x's). 

2. Calculate the relative value of individual components on a global scale. 

3. Iteratively add the instance with the highest maximum coverage benefit to maximize the 

coverage function. 

4. Go back to V. (representative nonredundant explanation set) 

 

As can be shown, LIME possesses all four desirable properties of an ideal model explainer.: 

Considered features 
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Chapter 3 

Data Overview 
An overview of the database used in this project is provided in this chapter. This is crucial 

because to ensure effective strategic decision-making, we can view data and information 

needed. 

3.1 Dataset of Credit Card Fraud 
The dataset includes credit card purchases made by European cardholders in September 

2013.We have used the latest third version of this dataset which is updated in march 2018. 

This dataset presents two-day transactions, of which we have 492 frauds out of 284,807 

transactions. The dataset is strongly unbalanced, accounting for 0.172 percent of all 

transactions in the positive class (fraud). 

 

It only includes numerical input variables that are the product of a transformation of a PCA. 

Unfortunately, we do not include the original characteristics and further background details 

about the data due to confidentiality problems. Features V1,V2, ,...,V28 are the key components 

obtained with PCA, 'Time' and 'Number' are the only features not transformed with PCA. 

The 'Time' feature includes the seconds in the dataset between each transaction and the first 

transaction. The 'Number' function is the Amount transaction, which can be used for example-

dependent cost-sensitive learning. The answer variable is the 'Class' function, which takes value 

1 in the case of fraud and 0 otherwise. 

 

# Time V1 … V28 Amount Class 

1 0 -1.359807134 … -0.021053053 149.62 0 

2 0 1.191857111 … 0.014724169 2.69 0 

3 1 -1.358354062 … -0.059751841 378.66 0 

4 1 -0.966271712 … 0.061457629 123.5 0 

5 2 -1.158233093 … 0.215153147 69.99 0 

… … … … … … … 

284803 172786 -11.88111789 … 0.823730961 0.77 0 

284804 172787 -0.732788671 … -0.053527389 24.79 0 

284805 172788 1.91956501 … -0.026560829 67.88 0 

284806 172788 -0.24044005 … 0.104532821 10 0 

284807 172792 -0.533412522 … 0.013648914 217 0 

 

Table 3. 1 Dataset of Credit Card Fraud 

3.1.1 Time Feature 
Time indicates the seconds which have elapsed since the first transaction. Once the values are 

graphically represented (see Figure 3.1), it can be checked that transactions that have occurred 

over a span of two days are stored in the database. The data indicates bimodal activity in which 

there is a substantial decrease in the number of transactions after a period of approximately 24 

hours. It is fair to assume that since they are night hours, this fall arose. Finally, this variable 
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is assumed to be omitted because it is not applicable to learning the model, because until the 

last transaction, the data is very similar to others. 

 

 
 

Figure 3. 1 Time Function Allocation of the Dataset 

3.1.2 Amount Feature 
The amount of cash in each transaction is a function called Amount. The highest transaction 

with this collection of data is $25,691.16, while the transaction average is $88.35. Figure 3.2 

shows that the data is mainly clustered at very low values close to zero, while the maximum 

value found is approximated by just a few transactions. The representation of the amount of 

money for each transaction (see Figure 3.3) indicates, on the other hand, certain values which 

differ from each other. These are referred to as outliers because they are transactions in which 

a significant sum of money is exchanged in this situation. These principles logically draw the 

attention of potential fraud, but this is something that fraudsters want to avoid altogether. 

Existing evidence indicates that small sums of money have also been moved by fraudsters to 

continue stealing in an undetectable way. 

3.1.3 Class Feature 
Figure 3.4 represents the feature called Class, which gives information that if the transactions 

are fraudulent or not, this variable takes value 1 in case of fraud and 0 otherwise. 

This feature shows that there is a minimum percentage of fraudulent cases which represent 

0.17% of all data. While non-fraudulent cases equal 99.83%. It is concluded that the data is 

highly imbalanced, which requires choosing appropriate measures to divide the data and make 

the training of the system effective. 
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Figure 3. 2 Amount per transaction 

 
Figure 3. 3 Tome of transaction vs amount  

 

Figure 3. 4 Transaction class distribution 

 

3.1.4 V-features 
It is also beneficial to observe the V-feature histogram representation (see figure 3.5). This 

gives a basic concept of the distribution of data. It is also necessary to check whether there is a 

significant correlation between the characteristics, particularly with regard to the class function. 

A matrix of correlations between all features is shown in figure 3.6. This representation stresses 

that there are few class-related features and that while there are several features in the class, 



30 
©DaffodilInternationalUniversity 

There are very few important associations in the results. This implies that the characteristics 

are essentially Principal Components, the product of the previous PCA planning that the dataset 

had. 

Finally, it can be seen that the features of Time1 and Amount do not correspond with the Class 

function, so they are not important in the learning phase of the system. 

 

Figure 3. 5 Frequency for each Dataset Function 

 
Figure 3. 6 The Dataset Correlation Matrix 
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Chapter 4 

Data Sorting and Exploration 

In this chapter, we have sort out the dataset and explore to prepare the data. We will be using 

python, TensorFlow(version 2.2) and colab notebook for implementation. 

4.1 TensorFlow  
TensorFlow is a quick numerical computing library that is open source.Google developed and 

maintains it, and it's open source under the Apache 2.0 license. While there is access to the 

underlying C++ API, the API is ostensibly for the Python programming language. 

Unlike other numerical libraries for Deep Learning, such as Theano, TensorFlow was created 

with the aim of being used in both research and production systems, including Google's 

RankBrain and the fun DeepDream project. 

It can run on single-processor computers, GPUs, mobile devices, and large-scale distributed 

systems involving hundreds of machines. 

4.2 Colab  

Colaboratory, or' Colab' in shorter, itself is a Google Research product.  Colab enables anyone 

through the browser to compose as well as implement arbitrary python scripts, and is 

particularly applicable suitable for machine learning, data analysis and education. More 

technically, Colab is a hosted Jupyter notebook service that needs no configuration to use, thus 

providing free access to GPUs, including device resources. 

The open source project on which Colab is based is Jupyter. Colab allows to use Jupyter 

notebooks and share them with others without downloading, installing or running anything. 

 

4.3 Importing Packages for Data Sorting and Exploration  

Pandas to work with data, NumPy to work with arrays, scikit-learn for data split, building and 

evaluating classification models, and finally matplotlib for visualization will be the key 

packages to begin with. 

 
Figure 4. 1 Importing packages for data sorting and exploration 

4.4 Importing the data 

In order to mount the environment with google drive, we need to import drive function from 

google.colab (figure 4.2). As we import the data using the ‘pd.read_csv’ method and print the 
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data. The dataset we have used is from Kaggle Credit Card Fraud Detection. The key 

components obtained by PCA are features V1 to V28. We will disregard the time function that 

is of no use in constructing the models. Further the existing features are "Time" feature 

containing transaction time, the "Amount" feature containing the total quantity of money being 

transacted as well as the "Class" feature containing about whether or not the transaction itself 

is a case of fraud. The details of it has showed in figure 4.3. 

Input 

 
Output: 

 
Figure 4. 2 Mount the environment with google drive. 

Input: 

 
Output: 

 
Figure 4. 3 Importing the data 

4.5 Exploratory Data Analysis and Processing 

In this process, we have analyzed the data and perspire the by splitting, training and testing. In 

addition to analysis of the noisy data, we have applied PCA and StandardScaler module from 

scikit-learn preprocessing import for standardization. 

4.5.1 Cases Count 

In the figure, 4.4 we can see that there are only 492 cases of fraud out of 284,807 samples, 

which is only 0.17 per cent of the total samples in the dataset. So, we can state that the data we 

deal with is highly imbalanced. 
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Input: 

 
Output: 

 
Figure 4. 4 Determine the number of fraud and valid cases in datasets. 

Using the 'describe' method, a statistical view of both fraud and valid transaction amount data 

has generated which is shown in figure 4.5 and 4.6 

Input: 

 
Output: 

 
Figure 4. 5 Statistical view of fraud transaction amount 

Input: 

 
Output: 

 
Figure 4. 6 Statistical view of valid transaction amount 
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4.5.2 Splitting Data into X and Y Values 

We have divided the information into input parameters and output value formats in this process, 

shown in figure 4.7. And in a training set and testing set, define the value as the independent 

(X) and the dependent variables (Y). Furthermore, we divided the information into a training 

set and a testing set using the specified variables. 

4.5.3 Training and Testing The Splitting Data 

For modelling and assessing, training and testing sets are used. We use the 'train test split' 

algorithm to split the data. And the samples shown in Figure 4.8 are written. 

Input: 

 
Output: 

 
Figure 4. 7 Splitting data into X and Y values 

Input: 

 
Output: 

 
Figure 4. 8 Training and testing the splitting data 
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4.5.4 Analyze the noisy test and Train Data 

From Figure 4.9, we have pointed out how many noisy training and test sets are by applying 

PCA. 

Input: 

 
Output: 

 
Figure 4. 9 Training dataset after PCA Applied  

4.5.5 Standardize the noisy test and Train Data 

To minimize and standardize noisy data by applying StandardScaler from sci-kit-learn 

preprocessing. In addition to visualizing the PCA standardized dataset conducted in Figure 

4.10 

Input: 
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Output: 

 
Figure 4. 10 Standardized dataset of training after PCA 
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Chapter 5 

Modeling 

Artificial Neural Network (ANN) and none different types of classification models have been 

developed in this section, namely Decision Tree, K-Nearest Neighbors (KNN), Logistic 

Regression, Support Vector Machine (SVM), Random Forest, Neural Network Supervised 

(MLPClassifier), Ridge Classification, AdaBoost Classification and Naive Bayes. These are 

the most common models used to solve classification problems, although there are several more 

models that we can use. All of these models have been developed using the algorithms given 

by the sci-kit-learn package. We only used the Keras for the ANN model. 

5.1 Artificial Neural Network (ANN) 

In order to build an Artificial Neural Network model, we have developed and compiled the 

model with keras package. 

5.1.1 Develop Keras Model 

We used "sequential" models to construct the neural network. This top-down approach helps 

to create and play with the form and layers of the Neural net architecture. The first layer will 

have the amount of characteristics that can be corrected using "input dim" In this situation, we 

set it at 40. 

It is not a very simple process to build Neural Networks. Before a successful model is 

constructed, there are many trials and failures that take place. Using the "Dense" class in Keras, 

we have created a Completely Connected network structure. The Neuron is the first statement 

that the dense layer has to give.  

Using the activation statement, the activation function can be set. In this case, we have used 

the 'Rectified Linear' Unit as the activation function. Other options such as "Sigmoid" or 

"TanH" are available, but "RELU" is a more general option and a better one. 

5.1.2 Compiling The Model 

The next step after model specification is compiling the model. For model compilation, 

TensorFlow is used. Compilation is the phase in which parameters for model training and 

forecasts are set. In the context, CPU/GPU or distributed memories can be used. 

We have defined a loss function which is used for the various layers to calculate weights. The 

optimizer changes the rate of learning and goes through different weight sets. We used "Binary 

Cross Entropy" as the loss function in this instance. We used "ADAM" in the case of the 

optimizer, which is an effective stochastic gradient descent algorithm. 
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It is used very widely for tuning. Finally, since it is a classification question, the classification 

accuracy, accuracy, recall and Matthews correlation coefficient(MCC) identified by the metrics 

argument will be collected and published. For MCC, we have the principles summarized. 

The process of building the ANN model has shown in figure 5.1 and 5.2 

Input: 

 
Output: 

 
Figure 5. 1 Developing sequential model (ANN model) 

 
Figure 5. 2 Compiling sequential model (ANN Model) 
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5.2 Decision Tree 

To construct the model, we used the 'DecisionTreeClassifier' algorithm. We have listed the 

'max depth' within the algorithm to be '4' which implies that we allow the tree to split four times 

and the 'criterion' to be 'entropy' which is most similar to the 'max depth' but specifies when the 

tree should stop splitting. Finally, in the 'tree-Pred' variable, we have installed and stored the 

expected values. Shown in figure 5.3 

 
Figure 5. 3 Construction of Decision Tree model 

5.3 K-Nearest Neighbors (KNN) 

Using the 'KNeighborsClassifier' algorithm, we developed the model and mentioned the 

'n_neighbors' as '5'.The value of the 'n_neighbors' is chosen at random, but it can be selected 

optimistically by iterating the set of outcomes, followed by fitting and storing values that have 

predicted into the 'knn_Pred' vector. Figure 5.4 shows the Construction of K-Nearest Neighbors 

(KNN) model. 

 
Figure 5. 4 Construction of K-Nearest Neighbors (KNN) model 

5.4 Logistic regression 

For logistic regression, by using the 'LogisticRegression' algorithm, we kept the model in a 

more simplified way and, as usual, fitted and stored the predicted variables in the 'lr_red' 

variable. Construction of Logistic regression model has shown in figure 5.5 

 
Figure 5. 5 Construction of Logistic regression model 
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5.5 Support Vector Machine (SVM) 

Using the 'SVC' algorithm, we designed the Support Vector Machine model and we did not 

specify anything inside the classifier as we planned to use the 'rbf' kernel as the default kernel. 

After that, forward to fitting the model, we preserved the predicted values in 'svm Pred'. 

Support Vector Machine (SVM) model Construction has shown in figure 5.6. 

 
Figure 5. 6 Support Vector Machine (SVM) model construction. 

5.6 Random forest 

We developed a random forest model using the 'RandomForestClassifier' algorithm and 

specified the 'max_depth' to be 4, much like how we built the model of the decision tree. 

Finally, the values are adapted and stored in the 'rfc_Pred '. Notice that the key difference 

between the decision tree and the random forest is that, while the random forest uses randomly 

selected features to create different models, the decision tree uses the entire dataset to construct 

a single model. That's why the random forest model versus a decision tree is used. In figure 

5.7, construction has demonstrated. 

 
Figure 5. 7 Random Forest model construction 

5.7 Naive Bayes 

For naïve bayes model we have used GaussianNB, which implies for classification. We have 

fitted and stored the final prediction by the model in “NBC_pred”,which is shown in figure 5.8. 

 
Figure 5. 8 Construction of Naïve Bayes classification model. 

5.8 Neural Network Supervised (MLPClassifier) 
We built a Neural Network Supervised model using the 'MLPClassifier' algorithm. We've 

also introduced parameters solver, alpha, hidden_layer_sizes, and random_state. After that, 
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the expected values are fitted and stored in the 'nns_pred' vector. The construction of a Neural 

Network Supervised model is shown in Figure 5.9. 

 
Figure 5. 9 Construction of Neural Network Supervised (MLPClassifier) model. 

5.9 Ridge Classification 
RidgeClassifier was used to build Ridge Classification models, as the name suggests. The 

model's final prediction has been fitted and stored in "RC_pred," as shown in figure. 5.10 

 
Figure 5. 10 Construction of Ridge Classification model. 

5.10 AdaBoost Classification 
The 'AdaBoost Classification' algorithm is used to build an AdaBoost Classification model. N 

estimators parameter has also been introduced. Then you fit and store the expected values in 

the 'AdBC_pred' vector. Figure 5.11 illustrates the structure of an AdaBoost classification 

model. 

 
 Figure 5. 11 Construction of AdaBoost Classification model. 
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Chapter 6 

Model Evaluation 

We have evaluated our constructed models in this chapter using the evaluation metrics given 

by the scikit-learn package. But we used the ANN model metrics function from the keras 

package. The accuracy, f1, recall, precision, Matthew’s correlation coefficient (MCC) and 

finally the confusion matrix are the assessment metrics we have used. Additionally, we have 

used lime for model interpretation. 

6.1 ANN Model Evaluation 

To evaluate the ANN model, we have used evaluate method form keras package. (figure 6.1). 

AS classification metrics can't handle a mix of binary and continuous targets. 

Input: 

 
Output: 

Figure 6. 1 ANN Model Evaluation. 

 

6.2 Recall 
The fraction of the related records that are effectively recovered is a recall. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) ∩ (𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)|

(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)
 

For example, recall is the number of correct results, divided by the number of results that should 

have been returned, for a text search on a collection of documents. 

Remembering is called sensitivity in binary classification. It can be interpreted as a probability 

that the query will retrieve a suitable document. 

It is negligible to maintain recall of 100 percent by returning all documents in response to any 

question. Thus the, recall is not always enough, however the number of non-relevant records 

must also be calculated, for example, by measuring the accuracy as well. For measuring recall, 

we have used recall metrics from keras for our ANN model (fig 5.2)and for our six classifier 

model "recall_score" method from the scikit-learn package(6.2) to do it in python. 

Input: 
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Output: 

 
Figure 6. 2 Recall Score of six different classification models by the scikit-learn package. 

After reviewing the chapter 6.1 and 6.2, found recall scores have listed in Table 6.1. 

# Model Recall score 

1 Artificial Neural Network (ANN) 0.7755101919174194 

2 Random Forest 0.7755102040816326 

3 K-Nearest Neighbors (KNN) 0.7857142857142857 

4 Logistic Regression 0.5816326530612245 

5 Support Vector Machine (SVM) 0.6122448979591837 

6 Naive Bayes Classifier 0.8163265306122449 

7 Decision Tree 0.7755102040816326 

8 Neural Network Supervised (MLPClassifier) 0.8061224489795918 

9 Ridge Classification 0.4387755102040816 

10 AdaBoost Classification 0.7653061224489796 

Table 6. 1 Recall score of our models 

6.3 Precision 

The accuracy is the fraction of documents obtained that are important to the query: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) ∩ (𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)|

(𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)
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For instance, accuracy is the number of correct results, divided by the number of all returned 

results, for a text search on a collection of documents. 

Precision takes into account all the documents obtained, but it can also be assessed at a 

specified cut-off rank, taking into account only the system's highest return performance. At n 

or P/n, this calculation is called precision. Precision is used for recall, the percent of all related 

documents that is returned by the scan. In order to provide a single calculation for a system, 

the two measurements are often used together in the F1 Score (or f-measure). For our six 

classifier model " precision_score" framework from the scikit-learn package(fig 6.3)and for 

ANN model (fig 5.2) we used precision metrics from keras for calculating precision to do it in 

python. 

Input:  

 

Output: 

 
Figure 6. 3 precision score of six different classification models by the scikit-learn package. 

After analyzing chapter 6.1 and 6.3, the precision scores contained in Table 6.2 

# Model Precision score 

1 Artificial Neural Network (ANN) 0.8539325594902039 

2 Random Forest 0.987012987012987 

3 K-Nearest Neighbors (KNN) 0.9390243902439024 

4 Logistic Regression 0.8636363636363636 

5 Support Vector Machine (SVM) 0.967741935483871 

6 Naive Bayes Classifier 0.05956813104988831 

7 Decision Tree 0.8636363636363636 

8 Neural Network Supervised 

(MLPClassifier) 

0.797979797979798 

9 Ridge Classification 0.8269230769230769 
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10 AdaBoost Classification 0.9146341463414634 

Table 6. 2 precision score of our models 

6.4 Accuracy score 
One of the most basic assessment criteria that is commonly used to test classification models 

is the accuracy score. The precision score is determined by simply dividing the model's number 

of accurate predictions by the model's overall amount of predictions (can be multiplied by 100 

to transform the result into a percentage). Generally, it can be expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

The six different classification models (Random Forest, KNN, Logistic Regression, SVM, 

Naive Bayes Classifier, Decision Tree) we created to check the accuracy score. We have used 

accuracy metrics by keras for ANN model (fig 5.2) and for six classifier model(fig 6.4) 

'accuracy_score' method given by the scikit-learn package to do it in python. 

 

Input:  

 
Output: 

 
Figure 6. 4 Accuracy score of six different classification models by the scikit-learn package. 

 

After evaluating the chapter 6.1 and 6.4 the accuracy score, we have found has appointed in 

table 6.3 

 

# Model Accuracy score 

1 Artificial Neural Network (ANN) 0.017450230196118355 

2 Random Forest 0.9995962220427653 

3 K-Nearest Neighbors (KNN) 0.9995435553526912 

4 Logistic Regression 0.9991222218320986 

5 Support Vector Machine (SVM) 0.9992977774656788 

6 Naive Bayes Classifier 0.9775113233383659 
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7 Decision Tree 0.999403110845827 

8 Neural Network Supervised (MLPClassifier) 0.9993153330290369 

9 Ridge Classification 0.9988764439450862 

10 AdaBoost Classification 0.9994733330992591 

Table 6. 3 Accuracy score of models 

6.5 F1 Score 
One of the most common assessment metrics used for evaluating classification models is the 

F1 score or F-score. It can be generally described as the harmonic mean of both the accuracy 

and recall of a model. It is determined by dividing the model's precision product and recalling 

the value obtained by adding the model's accuracy and recall and eventually multiplying the 

result by 2. It is possible to express it as: 

𝑓1 𝑠𝑐𝑜𝑟𝑒 = 2(
(𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
) 

The F1 score has calculated in python using the scikit-learn package's 'f1_score' function for 

six classifier model(fig 6.5) and for ANN model we have calculated manually(fig 5.2). 

Input:  

 
Output: 

 
Figure 6. 5 F1 score of six different classification models by the scikit-learn package. 

After evaluating the chapter 6.1 and 6.5 the f1 score that we have found has appointed in table 

6.4 

# Model F1 score 

1 Artificial Neural Network (ANN) 0.04267265275120735 

2 Random Forest 0.8685714285714285 

3 K-Nearest Neighbors (KNN) 0.8555555555555556 

4 Logistic Regression 0.6951219512195121 

5 Support Vector Machine (SVM) 0.75 

6 Naive Bayes Classifier 0.11103400416377515 



47 
©DaffodilInternationalUniversity 

7 Decision Tree 0.8172043010752688 

8 Neural Network Supervised (MLPClassifier) 0.8020304568527918 

9 Ridge Classification 0.5733333333333333 

10 AdaBoost Classification 0.8333333333333334 

Table 6. 4 F1 score of models 

6.6 Matthews Correlation Coefficient (MCC) 
The Matthews correlation coefficient (MCC) is often used in machine learning as an indicator 

of the consistency for multiclass and  binary classifications. It takes into consideration true / 

false positives and negatives and is commonly known as a neutral measurement which could 

be used even though the groups are of quite various sizes. The MCC is in essence a 

correlation coefficient value between -1 and +1. A coefficient of +1 reflects a perfect 

prediction, 0 an average random prediction and -1 an inverse prediction. The figure is also 

known as the phi coefficient. 

The MCC can be determined directly from the confusion matrix using the formula: 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√((𝑇𝑃 + 𝐹𝑃) × (𝐹𝑁 + 𝑇𝑁) × (𝐹𝑃 + 𝑇𝑁) × (𝑇𝑃 + 𝐹𝑁))

 

Where,True Positive(TP), True Negative(TN), False Negative(FN) and False Positive(FP) 

The MCC score has calculated in python using the scikit-learn package's 

“matthews_corrcoef” function for six classifier model (fig 6.6) and for ANN model we have 

calculated manually(fig 5.2). 

 

Input:  

 
Output: 

 
Figure 6. 6 Matthews correlation coefficient (MCC) score of six different classification 

models by the scikit-learn package. 
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After evaluating the chapter 6.1 and 6.6 the Matthews correlation coefficient (MCC) score that 

we have found has appointed in table 6.5 

# Model MCC score 

1 Artificial Neural Network (ANN) 0.04267265647649765 

2 Random Forest 0.8747121626683524 

3 K-Nearest Neighbors (KNN) 0.8587387603689554 

4 Logistic Regression 0.708352596990073 

5 Support Vector Machine (SVM) 0.769449263019846 

6 Naive Bayes Classifier 0.21690316877855267 

7 Decision Tree 0.81809330663897 

8 Neural Network Supervised (MLPClassifier) 0.8016979038656407 

9 Ridge Classification 0.6018960204490671 

10 AdaBoost Classification 0.836392916286224 

Table 6. 5 Matthews correlation coefficient (MCC) score of models. 

6.7 Confusion Matrix 

Usually, a confusion matrix is a visualization of a classification model that indicates how well 

the model has predicted the outcomes as opposed to the original ones. Typically, the expected 

outcomes are stored in a variable that is then transformed into a correlation table. The confusion 

matrix is plotted by using the correlation table in the form of a heatmap.  

Input:  

 
Output:  

 
Figure 6. 7 Confusion Matrix of ANN model 
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Input:  

 

Output: 

 
Figure 6. 8 Plotting Confusion Matrix heatmap of ANN model 

 

 

Input:  

 
Output: 

 
Figure 6. 9 Confusion Matrix of Random Forest model 

Input: 



50 
©DaffodilInternationalUniversity 

 
Output: 

 
Figure 6. 10 Plotting Confusion Matrix heatmap of Random Forest model 

 

Input:  

 
Output: 
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Input:  

 
Figure 6. 11 Confusion Matrix of KNN model 

 

Output: 

 
Figure 6. 12 Plotting Confusion Matrix heatmap of KNN model 

 

Input:  

 
Output: 

 
Figure 6. 13 Confusion Matrix of Logistic Regression model 
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Input:  

 
Output: 

 
Figure 6. 14 Plotting Confusion Matrix heatmap of Logistic Regression model 

Input:  

 
Output: 

 
Figure 6. 15 Confusion Matrix of Support Vector Machine (SVM) model 

Input:  
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Output: 

 
Figure 6. 16 Plotting Confusion Matrix heatmap of Support Vector Machine (SVM) model 

 

Input:  

 
Output: 

 
Figure 6. 17 Confusion Matrix of Naive Bayes Classifier model 

Input:  
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Output: 

 
Figure 6. 18 Plotting Confusion Matrix heatmap of Naive Bayes Classifier model 

 

Input:   

 
Output: 

 
Figure 6. 19 Confusion Matrix of  Neural Network Supervised (MLPClassifier) model 
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Input:   

 
Output: 

 
Figure 6. 20 Plotting Confusion Matrix heatmap of  Neural Network Supervised 

(MLPClassifier) model 

 

Input:   

 
Output: 

 
Figure 6. 21 Confusion Matrix of Ridge Classification model 
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Input:   

 
Output: 

 
Figure 6. 22 Plotting Confusion Matrix heatmap of Ridge Classification model 

 

 

Input:   

 
Output: 

 
Figure 6. 23 Confusion Matrix of AdaBoost Classification model 
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Input:   

 
Output: 

 
Figure 6. 24 Plotting Confusion Matrix heatmap of AdaBoost Classification model 

Input:  

 
Output: 

 
Figure 6. 25 Confusion Matrix of Decision Tree model 
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Input:  

 
Output: 

 
Figure 6. 26 Plotting Confusion Matrix heatmap of Decision Tree model 

Understanding the confusion matrix:  

Let's take the Decision Tree model's confusion matrix as an example. Check out the first row 

which is for transactions in the test set whose real fraud value is 0. The fraud value of 56864 

of them is 0, as you can measure. And out of these 56864 non-fraud operations, 56852 of them 

were correctly predicted by the classifier as 0 and 12 of them as 1. This means that the real 

churn value was 0 in the test set for 56852 non-fraud transactions, and the classifier correctly 

predicted those as 0 too. We can assume that the non-fraud transactions were pretty well 

identified by our model. 

The second row, let's look at it. It seems like there have been 98 transactions with a fraud value 

of 1. 76 of them were correctly predicted by the classifier as 1, and 22 of them wrongly as 0. It 

is possible to view the wrongly expected values as the model's mistake. 
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6.8 Lime 
LIME, an algorithm that can faithfully clarify the predictions of any classifier or regressor by 

localizing it with an interpretable model. 

 
Figure 6. 27 Generate LIME explanation 

Input:   

 
Output: 

 
Figure 6. 28 ANN model's array value for predict_proba 

 

Input:   

 
Output: 

 
Figure 6. 29 ANN model interpretation by lime 

Input:   
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Output: 

 
Figure 6. 30 KNN model interpretation by lime 

Input:   

 
Output: 

 
Figure 6. 31 Random Forest model interpretation by lime 

Input:   

 
Output: 

 
Figure 6. 32 Logistic Regression model interpretation by lime 
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Input:   

 
Output: 

 
Figure 6. 33 SVM model interpretation by lime 

Input:   

 
Output: 

 
Figure 6. 34 Naive Bayes Classifier model interpretation by lime 

 

Input:   

 
Output: 
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Figure 6. 35 Decision Tree model interpretation by lime 

 

Input:   

 
Output: 

 
Figure 6. 36 Neural Network Supervised (MLPClassifier) model interpretation by lime 

Input:   

 
Output: 

 
Figure 6. 37 Ridge Classification model's array value for predict_proba 
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Input:   

 
Output: 

 
Figure 6. 38 Ridge Classification model interpretation by lime 

 

Input:   

 
 

Output: 

 
Figure 6. 39 AdaBoost Classification model interpretation by lime 

 

Let's take the AdaBoost Classification model's lime as an example. The explanation consists 

of three parts: 

1. The prediction probabilities appear to the left most section. 

2. 10 main features are returned in the middle section. It would be in 2 orange/blue colors 

for the binary classification task. Attributes are valid for fraud and blue support classes 

in orange support class. The relative importance of these features is the float-point 

numbers on the horizontal bars. 

3. Color coding across sections is consistent. It includes the actual values of the top five 

variables. 
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Chapter 7 

Results and Discussion 
In the training and testing sets, we have skewed our results. An under-sampling 

technique was used to balance the data. To compare our ten classification models, we 

used Accuracy, F1-Score, Recall, Precision, and Matthew’s correlation coefficient 

(MCC).All classifier results and comparisons are shown in Table 7.1. 

 Table 7. 1 Results and Comparisons of ten classification models 

 

In table 7.1, we have got heights recall score 0.8061224489795918 from Neural 

Network (Supervised) model. And have got almost same recall score from ANN 

(0.7755101919174194), Random forest (0.7755102040816326) and Decision tree 

(0.7755102040816326) model. In addition have got the lowest value from Ridge 

Classification 0.4387755102040816. 

 

# Model Recall  

score 

Precision  

score 

Accuracy  

score 

F1  

score 

MCC  

score 

1 Artificial 

Neural 

Network 

(ANN) 

0.7755101919

174194 

0.8539325594902

039 

0.01745023

0196118355 

0.0426726527

5120735 

0.04267265

647649765 

2 Random Forest 0.7755102040

816326 

0.9870129870129

87 

0.99959622

20427653 

0.8685714285

714285 

0.87471216

26683524 

3 K-Nearest 

Neighbors 

(KNN) 

0.7857142857

142857 

0.9390243902439

024 

0.99954355

53526912 

0.8555555555

555556 

0.85873876

03689554 

4 Logistic 

Regression 

0.5816326530

612245 

0.8636363636363

636 

0.99912222

18320986 

0.6951219512

195121 

0.70835259

6990073 

5 Support Vector 

Machine 

(SVM) 

0.6122448979

591837 

0.9677419354838

71 

0.99929777

74656788 

0.75 0.76944926

3019846 

6 Naive Bayes 

Classifier 

0.8163265306

122449 

0.0595681310498

8831 

0.97751132

33383659 

0.1110340041

6377515 

0.21690316

877855267 

7 Decision Tree 0.7755102040

816326 

0.8636363636363

636 

0.99940311

0845827 

0.8172043010

752688 

0.81809330

663897 

8 Neural 

Network 

(supervised) 

0.8061224489

795918 

0.7979797979797

98 

0.99931533

30290369 

0.8020304568

527918 

0.80169790

38656407 

9 Ridge  

Classification 

0.4387755102

040816 

0.8269230769230

769 

0.99887644

39450862 

0.5733333333

333333 

0.60189602

04490671 

10 AdaBoost 

Classification 

0.7653061224

489796 

0.9146341463414

634 

0.99947333

30992591 

0.8333333333

333334 

0.83639291

6286224 
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From Random Forest model we have got heights precision score 0.987012987012987. 

Followed by SVM model 0.967741935483871 and lowest 0.797979797979798 from 

Neural Network (Supervised) model. 

 

The heights and almost similar accuracy score we have got from models, Random 

Forest (0.9995962220427653) and KNN (0.9995435553526912). Afterwards, 

Decision Tree 0.999403110845827 and AdaBoost Classification 

0.9994733330992591. Unexpectedly, From ANN model we have got the lowest 

accuracy score of 0.017450230196118355. 

 

For F1 score, Random forest model gives the heights value of  0.8685714285714285. 

And then 0.8555555555555556 by KNN model. The lowest value from ANN model 

which is 0.8555555555555556. 

 

Matthews Correlation Coefficient (MCC) score of 0.8747121626683524 is the heights 

value by Random forest model. Followed by KNN model (0.8587387603689554) 

which is the second heights value among the models. And 0.04267265647649765 is the 

lowest score by ANN model.  
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Chapter 8 

Conclusions 

This study examines the comparative performance in the binary category of imbalanced 

credit card fraud data of the Artificial Neural Network (ANN) Decision Tree, K-Nearest 

Neighbors (KNN), Logistical Regression, Support Vector Machine (SVM), Random 

Forest, Neural Network Supervised (MLPClassification), Ridge, AdaBoost and Naive 

Bayes. The reason why these ten techniques are investigated is because they were less 

comparable in past writings. 

However, a further study is underway to compare other techniques for single and 

ensemble using our approach. The paper summarizes the contribution as follows: 

1. Ten classifiers based on different machine learning techniques (ANN, Decision 

Tree, KNN, Logistic Regression, SVM, Random Forest, Neural Network 

Supervised (MLPClassifier), Ridge Classification, AdaBoost Classification, and 

Naive Bayes) are trained on real-world credit card transaction data, and their 

performance on credit card fraud detection is evaluated and compared using several 

relevant metrics. 

2. A hybrid approach is used to sample the extremely imbalanced dataset, with the 

positive class being oversampled and the negative class being under sampled, 

resulting in two sets of data distributions. 

3. The accuracy, f1, recall, precision, Matthew's correlation coefficient (MCC), and 

finally the confusion matrix are used to evaluate the ten classifiers' output on the 

two sets of data distributions. In addition, we used lime to interpret the models. 

Classifier performance varies depending on the evaluation metric. The results of the 

experiment show that the Random forest outperforms the other models in all metrics 

except recall in the 10:90 data distribution. The effect of hybrid sampling on the 

performance of binary classification of imbalanced data is demonstrated in this 

analysis. Future research may look at meta-classifiers and meta learning approaches for 

dealing with highly skewed credit card fraud data. Other sampling methods' results may 

also be studied. 
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