Bangladeshi Online Market Product Classification Using Deep Learning BY

Piyal Barua ID: 172-15-10141

This Report Presented in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Computer Science and Engineering

> Supervised By Md. Abbas Ali Khan Sr. Lecturer Department of CSE Daffodil International University

> Co-Supervised By Zerin Nasrin Tumpa Lecturer Department of CSE Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY DHAKA, BANGLADESH JUNE, 2021

APPROVAL

This Project/internship titled **"Bangladeshi Online Market Product Classification Using Deep Learning"**, submitted by Name: **Piyal Barua ID: 172-15-10141** to the Department of Computer Science and Engineering, Daffodil International University has been accepted as satisfactory for the partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and Engineering and approved as to its style and contents. The presentation has been held on May, 2021.

BOARD OF EXAMINERS

Ann

Chairman

Dr. Touhid Bhuiyan Professor and Head Department of Computer Science and Engineering Faculty of Science & Information Technology Daffodil International University

12h3ps anzag-

Internal Examiner

Dr. Fizar Ahmed Assistant Professor Department of Computer Science and Engineering Faculty of Science & Information Technology

The

Internal Examiner

Md. Azizul Hakim Senior Lecturer Department of Computer Science and Engineering Faculty of Science & Information Technology Daffodil International University

1)

Dr. Mohammad Shorif Uddin Professor Department of Computer Science and Engineering Jahangirnagar University **External Examiner**

DECLARATION

I hereby declare that this project has been done by us under the supervision of **Md**. **Abbas Ali Khan, Department of CSE** Daffodil International University. I also declare that neither this project nor any part of this project has been submitted elsewhere for award of any degree or diploma.

Supervised by:

Md. Abbas Ali Khan Sr. Lecturer Department of CSE Daffodil International University

Submitted by:

Piyal Barua ID: 172-15-10141 Department of CSE Daffodil International University

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to almighty Allah for his divine blessing made me possible to complete the final thesis successfully.

I really grateful and wish my profound my indebtedness to Md. Abbas Ali Khan, Department of CSE, Daffodil International University, Dhaka. Deep Knowledge & keen interest of my supervisor in the field of "Data Mining, System Analysis and Machine learning" to carry out this thesis. His endless patience, scholarly guidance, continual encouragement, constant and energetic supervision, constructive criticism, valuable advice, reading many inferior drafts and correcting them at all stage have made it possible to complete this thesis.

I would like to express our heartiest gratitude to Professor Dr. Touhid Bhuiyan and Head, Department of CSE, for his kind help to finish my project and also to other faculty member and the staff of CSE department of Daffodil International University.

I would like to thank our entire course mate in Daffodil International University, who took part in this discuss while completing the course work.

Finally, I must acknowledge with due respect the constant support and patients of my parents and brother.

ABSTRACT

Artificial Intelligence, is becoming the most powerful sector current days, especially deep learning or machine learning where program started to learn from our world's data or experience. In future we can have an assistant in our home who can do online shopping for us, can bring the product what we tell it to bring. Online market is a vast network of current world where maximum people want to buy product without going to shopping mall. In Bangladesh approximately 2,000 e-commerce sites and 50,000 Facebook-based outlets delivering almost 30,000 products a day. It will rise day by day. In online market there are different kind of product with different categories. In this paper, I have proposed the convolutional neural network (CNN) based approach for classifying product of five different categories product with thirty tree types of subcategorical product from Bangladeshi popular online market from 1725 product images. For better research, I have used a model of CNN and identify a product with higher accuracy. Convolutional Neural Network (CNN) calculations, a machine learning system extensively applied to train program and identify product with class and subclass from given a known type picture. The outcomes model of this project can be applied to future robots or intelligent program or any kind of online ecommerce site's admin panel to detect real product identical with given title. For better outcomes and better accuracy, I used RGB color model of the picture and trained the network with powerful Nvidia GPU. The prepared model accomplished an exactness of 95.14% on test set, showing the achievability of this methodology.

TABLE OF CONTENTS

CON	NTENTS	PAGE
Board	d of Examiners	Ι
Decla	aration	1I
Ackn	owledgements	III
Abstr	ract	IV
CHA	APTER	
CHA	APTER 1: INTRODUCTION	5-12
1.1	Introduction	5
1.2	Types of Online Products	6
1.3	Machine Learning	10
1.4	Machine Learning Methods	10
1.5	CNN	11
1.6	Objectives	12
1.7	Motivation	12
1.8	Expected Outcome	12
CHA	APTER 2: BACKGROUND	13
2.1	Introduction	13
2.2	Related Work	13
CHA	APTER 3: METHODOLOGY	14-18
3.1	Methodology	14
3.2	Two type of Research Methods	14
3.3	Proposed Method	15
3.4	Research Subject and Instrumentation	16
3.5	Data Collection Procedure	16
3.6	Data Processing	18

CHAPTER 4: WORKING PROCEDURE	20-34
------------------------------	-------

4.1	Introduction	20
4.2	Required Library Installation	22
4.3	Image CSV Dataset Making	26
4.4	Dataset preparing	27
4.5	Details of Proposed Methodology	32
4.6	Train Methodology	34

CHAPTER 5: RESULT	38
CHAPTER 6: CONCLUSION	40
REFERENCES	41

LIST of FIGURE:

FIGURE	PAGE
1. Electronics Devices (Desktop-Computers)	6
2. Electronics Devices (Laptops)	6
3. Men's-Collection (Jeans, Jogger-Sweats, Man's Bag)	7
4. Men's-Collection (Shoes, Shirt, Sweater, T-Shirt)	7
5. Women's-Collection (Bags, Kurti, Salwar, Sharee)	8
6. Women's-Collection (Shoes, Skirt, Tops, Winter)	8
7. Sports Outdoors Images	9
8. Watches Accessories	9
9. Proposed Methodology	15
10. Some Collected Data from Online Marketplaces (1)	17
11. Some Collected Data from Online Marketplaces (2)	17
12. Re-arrange of File Name for Better Understanding	18
13. Processed Dataset as CSV Format (1)	19
14. Processed Dataset as Format (2)	19
15. Virtual Environment Creation	20
16. Virtual Environment Activating	20
17. Jupyter Notebook Installation	21
18. Opening Notebook	21
19. Jupyter Notebook Interface	22
20. Library Installation File	22
21. Installing OpenCV	23
22. Installing NumPy	23
23. Installing TQDM	24
24. CSV Dataset	24
25. Installing TensorFlow	25

26. Import Libraries and Categories	26
27. Processing of Images to Proper Label and CSV Output	26
28. Import Required Things	27
29. CSV Dataset	27
30. An Illustration of CNN Input Layer and Others Layer	28
31. Image's plot of Height and Width	29
32. CSV Data Read from CSV Dataset	29
33. Mean Median Formula	30
34. Resized Images for Input Layer	30
35. Final CSV File for Train-test Dataset	31
36. Sorting Out The Final CSV File	31
37. CNN Based Image Classification	32
38. Load Dataset for Training	34
39. Model Summery	34
40. Model Detailed Summery	35
41. Model Accuracy	36
42. Accuracy vs Validation-accuracy	36
43. : Loss vs Validation-loss	36
44. : Confusion Matrix	37
45. 27.37% Accuracy for Men's Watches	38
46. 21.09% Accuracy for Woman's Bag	38
47. 67.62% Accuracy for Woman's Bag	39

Chapter 1 Introduction

1.1.Introduction:

Online shopping is one of the fastest growing trends in the world. Also, online businesses are growing rapidly in Bangladesh. Although the number of internet users has been growing in the country but the number of online shoppers has not grown to that extent. Online shopping has great economic prospect. Online traders should understand the scope of the industry and for developing this economically potential industry in the country traders should realize that determinants of success not only depend on website presence, low price and product variety but also depend on service quality. In future there can be a service to automate the order process from only picture like user do not the name of a product but have the picture and he/she can have a system to upload the picture and search it on the site. For this site should have an intelligent program to identify the product with its class and sub-class. On the other hand, in future there can be a robot as an assistant who can search product from online and order on behave of us. So, this robot or program both need a way to learn about online product with its class and sub-classes. In future there can be a program which can search product from different ecommerce site and bring all product together in front of the customer. For this program it also needs to have knowledge about online product. For all of this circumstances I proposed an intelligent program which can identify and classify a product from given picture. To achieve this goal and classification, neural organization has been demonstrated to work in a way that is better than conventional classifiers in numerous cases. Combined with this advanced neural form organization, convolutional neural networks (CNN) take a picture of information and use a split layer flexibility. In this paper, we have formalized a RGB shading picture dataset of Bangladeshi famous online market product and used the dataset for detecting the product with its class and sub-class utilizing Convolutional neural network model and its algorithm.

1.2. Types of online products:

i) Electronic-Devices: Electronics devices are the most commonly sold product and the largest market in online market of Bangladesh. As we live in age of technology electronics product covers the vast area of online market alone. There are many kinds of electronics product in the online market. So, I put electronics product as a class and variation of this product as sub-class like Laptops, Security-Cameras-System, Desktop-Computers, Smartphones and Tablet.

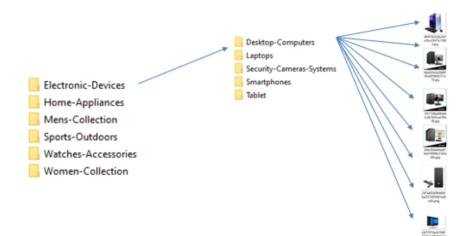


Fig 1. Electronics Devices (Desktop-Computers)

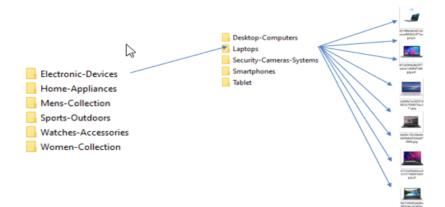


Fig 2. Electronics Devices (Laptops)

ii) Men's-Collection: From a search the reality is that some 47.6 million or 30 percent of the total 158.5 million people in Bangladesh are young (10-24 years), and it will be between 10 and 19 percent by 2050. [6] So man's collection is generally seen in maximum ecommerce marketplace. Here I collected data from various sub-category like Jeans, Joggers-Sweats, Man's Bag, Men's shoes, Shirt, Sweater and T-Shirt.

Fig 3. Men's-Collection (Jeans, Jogger-Sweats, Man's Bag)

Fig 4. Men's-Collection (Shoes, Shirt, Sweater, T-Shirt)

iii) Women-Collection: Like man, woman collection is one of the top goods sold in ecommerce market place. Most of the woman are now habituated with online ecommerce market in Bangladesh. In this category of collections, I collected data on some most commonly found sub categories like Bags, Kurti, Salwar-Kamiz, Saree, Shoes, Skirt, Tops and Winter collections.

Fig 5. Women's-Collection (Bags, Kurti, Salwar, Sharee)

Fig 6. Women's-Collection (Shoes, Skirt, Tops, Winter)

iv) Sports-Outdoors: Sports goods have large number of sales in online ecommerce market. Since sports is a famous topic from hundreds of years as a result various sports item sold to the market place like Badminton-Rackets, Bikes, Cycling-Machines, Dumbbells, Fitness-Accessories, Teamsports and Treadmills.

Fig7. Sports Outdoors Images.

 v) Watches-Accessories: Watches are commonly sold in ecommerce market. In this category I collected different types of watches images from online marketplace like kid's-watches, Man's watches and woman's watches.

Fig8. Watches Accessories.

- **1.3. Machine Learning:** AI is the use of Artificial Intelligence (AI) which gives structures the ability to naturally take and improve reality without undoubted change. AI focuses on the development of PC systems that can access information and use it for self-discovery. Machine learning (ML) is an investigation of PC statistics that naturally evolve through experience. It is considered a man-made piece of information. AI statistics create a model based on the knowledge of the model, known as "data preparation", to solve expectations or to choose without having to customize without hesitation to do so. Machine learning statistics are used in a variety of applications, for example, email filtering and PC view, where it is difficult or ineffective to create traditional statistics to play required routes.
- **1.4. Machine Learning Methods:** In machine learning, high performance is expressed in standard categories. Two of the most widely used methods of machine learning are supervised learning algorithm training based on model knowledge and information that has been marked by humans, as well as supervised learning that gives the algorithm anonymous information to allow it to form within its knowledge. We should investigate these methods in more detail.

- I. Supervised Learning: Supervised learning is an AI instructional learning skill that marks a contribution to a yield based on knowledge that produces a pair-by-two model. It derives strength from marked preparation data that includes a wide range of preparatory models. [7] In supervised learning, PCs are provided with sample data sources marked with their appropriate yields. The motive of this strategy is for a statistic to have a "learning" option by comparing its actual yield with the "taught" fruits of finding errors, and to adjust the model accordingly. [8] The adaptability that is controlled thus uses examples to anticipate word ratings for other non-label information.
- **II. Unsupervised Learning:** Unregulated learning (UL) is a form of AI that searches for unpredictable examples in a database that has no previous names and at least has human control. Instead of supervised reading (SL) which often uses personalized data, self-study, otherwise called engagement tends to show the intensity of opportunities beyond input. [10] In unsupervised reading, data is not labeled, so the learning algorithm is left to find shared features within its information. Since non-labeled information is more abundant than tagged information, electronic learning methods that promote self-study are more important.

1.5. CNN: The convolutional neural organization (CNN) is probably the most popular form of in-depth learning, a form of machine learning in which a model shows how to perform an action directly from images, video, text, or audio.[2] CNN is especially useful in finding make-up in photos to see articles, faces, and scenes. They sync directly from image information, use examples to edit images and clear the requirement for manual extraction.[4] A dynamic neural organization can have tens or even layers where each learns how to distinguish the highlights of the image. Channels are used in each photo preparation for various purposes, and the yield of each image displayed is used as a contribution to the next layer. Channels can start out as basic elements, for example, jewelry and fringes, and a rise in a multi-faceted environment is a remarkable highlight.

1.6. Objective:

- In this work, our main goal is to create a model that can identify product categories and sub-categories, these days machine Reading is becoming a popular method of image editing.
- In this work, we used CNN model with some algorithm, we trained our model using the dataset for identifying product perfectly.
- **1.7.** Motivation: Online marketplace has large number of effects in our economy. In the future, there can be a service to automate the order process from only a picture like a user do not the name of a product but have the picture and he/she can have a system to upload the picture and search it on the site. This site should have an intelligent program to identify the product with its class and sub-class. On the other hand, in the future, there can be a robot as an assistant who can search products online and order on behave of us. So, this robot or program both need a way to learn about the online products with its class and sub-classes. In future there can be a program which can search product from a different eCommerce site and bring all product together in front of the customer. For this program, it also needs to have knowledge about online products. For all of these circumstances, I proposed an intelligent program that can identify and classify a product from a given picture. In this paper, we have formalized an RGB shading picture dataset of a Bangladeshi famous online market product and used the dataset for detecting the product with its class and sub-class utilizing the Convolutional neural network model and its algorithm.

1.8. Expected Outcome: Different kinds of products are available in the online market now a days. In this project, I want to make a program that can identify products with its class and subclass. Like if I give a picture of cloth as input the program should have that ability to tell that the input picture category and sub-category.

Chapter 2 Background

2.1 Introduction:

Different kinds of products have different kinds of category and subcategory. Identifying the product from by image processing is a process for recognizing the product image. For identifying product, we need a machine learning technic which need a collection of data of images based on product category and sub-category. In order to reset initially, we need a specific image and select this image as the default data for other conditions such as data collection, data redesign, data selection, and accuracy. Various types of work analysis strategies will be discussed. In this chapter are details about current work, related work, research summary, and details about the scope of our work. Here is a brief description of our target and the challenges we faced.

2.2 Related Work:

Now a day's image reorganization researcher has been performed and develop system to recognize the disease of fruit leaves. In various research-Machine Vision based system is performed through K-Means clustering, some experiment has been performed by them to show the utility of the propose expert system. By this system the disease attacked region segment out from the capture image. In this work they have achieved 90% accuracy classification. In another research which was performed to recognize shopping mall products. In this research, researcher proposed model based on Multiclass SVM which gave a fruitful result. Image recognition by image processing techniques is very important to identify product. To recognize the product image processing can be utilized. In our work we use CNN to classify the images He has got 99% accuracy but it was without any extraction. Another machine vision-based fruit classification has been proposed by Sung, Sung, Jae-Kyung, Park, Sang-Min, Sin, Sang-Yun, Kim, Yung-Bok (Received: 2017.05.02 Accepted: 2017.06.09 Published: 2017.06.30) [1]. In this research they have used SVM system. We are going to use CNN because when data is in huge quantity, this CNN algorithm can classify data or image layer by layer.

Chapter 3 Methodology

3.1 Methodology:

In this section, we focus on the proposed model of our experiment to order various online products, their types, and category of online products. A typical cycle of online products using CNN in-depth comes from the image structure in Figure 11. The experimental work is comprised of the basic steps outlined below in the paragraph

3.2 Two type of Research Methods:

Usually, there are a few methods used for the proposal, the two most common methods being the method of quantity and quality research.

- I. Quantitative Research Method: Quantitative Research methods have been developed in conventional science to test virtual reality. The strategy is well-known in the social sciences, which includes experimental research, formal strategies, mathematical strategies, and solar panels. A measurement strategy is used to measure the number of people who feel, think or act with a specific purpose in mind.
- II. Qualitative Research Method: On the other hand, multidisciplinary research methods also emerged socially to facilitate the professional investigation of social and social realities. This approach is based on job research, content analysis testing, and ethnography i.e., the part of the population that provides scientific exposure to individual community orders. Sources of information on these methods include direct and indirect insight, meetings, and polling stations, and expert opinion and feedback. Appropriate research methods used to obtain information on individual behavior, behavior, the framework of respect, concern, motivation, desire, culture, or lifestyle. It is used in the same way to advise business selection, method development, documentation, and testing. In addition, it includes the investigation of any informal matter including customer submissions frameworks, reports, media cuts. This recommendation function crosses the independent testing strategy and the details are based on the visual take on the existing structure and presence report.

3.3. Proposed Methodology:

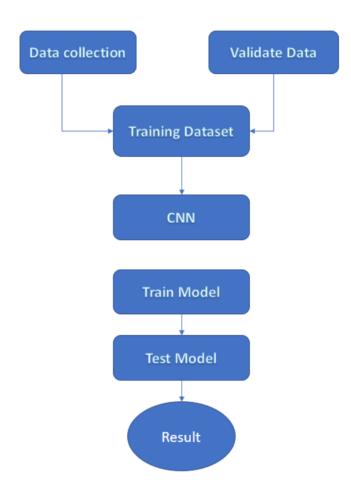


Fig 9. The proposed methodology

3.4 Research Subject and Instrumentation:

This project work can provide a clear idea of the research area in this section that we will use and design, complete data collection, relevant o data, and model training, and then the model app will work. To complete our work, we have used the Windows platform. In the course of our work, we have used the Python editing language and used many library packages - Tqdm, matplotlib, PyPlot, OpenCV, Python CSV, Sklearn, Numpy, and Tensorflow 2.3.0. We used the visual environment and Jupyter notebook. We chose python because this programming language is very reliable in quick testing of any complex algorithm and machine learning applications. If we do not use the physical environment, then we have to deal with many problems with the installation of libraries, packages. To avoid this problem, we have used virtual environment.

3.5 Data collection procedure:

In this work, we have made a new data set by collecting imaged from the online marketplace and store them in a sequence of their category and subcategory for training the proposed network. We have collected leaf images from a different online eCommerce site. All of the images are in JPG format and obviously, the resolution is not the same. In our data set we have about 1752 images with 5 categories products like "Electronic-Devices", "Men's-Collection", "Sports-Outdoors", "Watches-Accessories", "Women-Collection" and 33 subcategories like "Desktop-Computers", "Laptops", "Security-Cameras-Systems", "Smartphones", "Tablet", "jeans", "Joggers-Sweats", "Man's-bags", "men's-shoes", "shirts", "sweater", "t-shirt", "Badminton-Rackets", "Bikes", "Cycling-Machines", "Dumbbells", "Fitness-Accessories", "Team-sports", "Women-Sunglasses", "women's-watches", "Bags", "Kurti", "salwar-kamiz", "saree", "shoes", "skirt", "tops", "winter". Out of 1752 images, 80% of data for training and 20% for testing.

09e4f519	6adb18e	47d0ff87	23800b8c	5dd1984	54b40be	6a84fd8f	1fa34b0b	d40e2d0	6a84fd8f	d40e2d0	7a1c8f17	6ea31c50	1a74f786	b538fabd	177c8f52	4052366d	b707b03
1b10b8e	253ac469	8602fed8	adada56	5f18c229	2aa9a6a0	628370e2	72f468a4	12e08d4	628370e2	12e08d4	72b14255	7759e1ce	642bbd3	1b4a964f	e4d0c3e2	e7570675	1dcdfdd
e45dcf46	4ecfe745	62775312	68ce65de	5d5f6a3b	074d2785	90579c54	fd7d6bb	db14b64	90579c54	db14b64	ee33f9bc	259c9f9e	38b16899	081543f6	58e112f5	0a16fa86	787e9511
412226f	6ed1cc	0e5dac	517b06	bb2489	a89144	185713	e161d9	2b10f0	185713	2b10f0	08004f8	2a76c4f	245fc51	d4f64e	3f8447a	b02219	fde2f8d
19f738e7	7c66b69c	0628d437	4578d400	a1618607	8a683188	e6cbe121	439413fd	ddaf17ff	83d7e72	5cad095a	bf28a34f	43e3cb4e	7209771d	a65e5165	61efa94c	68a73f05	4aa0ad53
861c1cf0	ea37d603	d4675029	02fec9a7	2ee35b26	131d6228	af4952de	d5c228cc	40ad683c	bf2624de	a38d494e	506ffbb8	3e32bd9	16157689	0df18655	8d08c6b	17596d97	53e8c142
17f22ea4	5fc2d38f	17187952	4f99ed06	969f23ae	dead563	c1d5444c	71ee28a0	eec0f80c	ef2d50e9	ccfebcaa	41256df2	334002cb	f777445c	ca24af13	d7efeae0	c1139a69	1502dce5
dbfbc7	30b119	2a5e73	1481de	e88b0a	9b9392	83664e	f518153	2e4199	3848a3	32e388	43c579	b4b3c3	a6e5a5	24fa07	5e75ac	deb429	c16ff81
899753ce	ac8a232b	7ee31568	bc2f7ece	942ddfd	a8a4e442	5cc696ed	4e8a667a	73244cc9	90767d50	29822505	336e71d	7a0056d1	c9ce3c0e	d25b155	e50f92b2	cf824305	43a701ef
2d7792ce	08401a33	9cb313d	55a70424	b8768219	403cf269	a74f7236	45343960	ac6e1e07	ad1ac12c	febb62c1	da34f5ee	11e0c087	2f9bd6a0	b9276708	0e9846d9	bfbf62dc	a96882bc
44745748	2a2444ca	bb6f467e	32528ce5	96691ed2	7a2b331	51c99faf	3f1566e8	cdabe8fe	ee4b9046	64c7f2df	baf8599d	ae87474e	de03ef8c	c1a0efad	104a6c47	c48ae90d	46b926d
70a4b9	a9a912	142757	48d9a4	1654f92	de6e92	cd2471	82b4f1	b7a32a	d52053	d307a0	df1382	a1c640	180d68	14d933	4334bd	8fa65b	a9c0f96
6d96e889	93f3ef96	4846079b	923de9e1	d3f194ae	a2502fb4	b342ec52	88add1f5	a035f913	3f8fe595	bbb368c	4fc43b2f	f9ba2725	19601cb9	9d665536	72658399	b3cd75fe	8caca5d2
cd2c81fe	b73f0ff0	399ad1f7	d5acd85	6f82ae17	dad2bf5	5ff344ce	a48dd17	84630bac	49deefca	d162a638	1e254d07	11a702de	e81784ff	7e797501	b9bf8ac4	c263de05	d1487444
7f7273eb	b21d110	14fce23c	d66970e3	f1c1e0f4	d876bf17	dff55c70	c36946bc	d41354ce	00c0eec2	a94f09b7	f56c7a6e	f892047d	3fcbc29f	7d3dbed	40dcc94	c25fa044	65827f62
2c38ed	7ba712	60002e	de6760	5b500d	e4d0f0	56c4cb	52cff7f	d03bd7	97f0880	5af2079	b2a560	5acb10	e1be14	52947af	b19083	c2990b	b93542
ad1a76f3	eef09e6f	b573c497	a221e70a	29082038	3f9a23b4	7ecd7cb	d30a88df	d6d5dff4	6f37e87c	942e7b10	d56bd57	f1422d25	90662b2e	cfe06c44	752b0ef4	19d6ecce	e7a0b5e9
ba3c4b7	d8a2573	c2843eeb	a6dd299	280a5008	e89c4f44	7515c441	2ee90a11	8a9c8cd0	795fd125	8fa1f271f	868cc325	b8002ffd	c0710e5a	761d4bf8	5c29d069	84d2025f	b9880cf1
c97f5445	b05e8987	f2a8c7bf	abbc62cf	bd94a2e	4ab30611	42642765	6211c023	21a114c2	a1486993	dfbf8cda	e977643f	0d38bac	276fb918	d4742e53	acf63467	80a09ee9	e434d3bf
6693e5	c827ce	351da0	809cdb	2f66fce	6c54a8	cb23de	c7c6d1	5183b3	8db04d	326563	f0b8e2	bb1558	5eb995	216785	b1c527	1f49e6c	4ca87f
cd668a66	66f4f45d	1e25fab9	98df2d27	39febb91	67155ebc	acccd773	ab200ffd	7a3088ea	e05b5236	82679f18	80532409	d293ac63	ada18749	53d4f461	99ae0311	30b00a87	a585f5be
2ecda117	3592469b	a539eeb	e1d729b	2e3b30e5	293c25ea	1392f256	7d79dec	464a127b	01ac5206	574196e2	738c0694	dd8e0c9	cdd58f0e	15d8dcd	ba7ca850	4bb639e	2fce6aeff
c089cf41	21a36631	d278381c	66a748b3	474efee7	712ee1c7	5634f423	d3a59e44	4b159f04	ed35d05	00a0a245	38100c69	70bf24de	1a19b753	02e39b85	d098fc84	19889569	1210fef2
68a66a	7ecf6fc	153d18	bea301	053a15	b5b071	64e276	8c80ee	906727	b968ad	8bcc61	3a1587	aeac78	ad8c07	215c74	80c3ce	1793ec	38bddf
7c871715 h2c0a622	b04314c4	49c28e0f	c37501e3 8800b607	53d76ab	45869d02 0b2c7059	7121a409	5a2e4891	8ae14b69 58f23faf2	96eac3df 228-60fd	5006d0e5	1f5eb9b8 09ada224	48af07f9 0aa5dc1	8e8b72b 177209b0	e0191e50 0=0=031f	f5dc0ac6	d0444fce	ebce254a

Fig10. Some collected data from online marketplaces

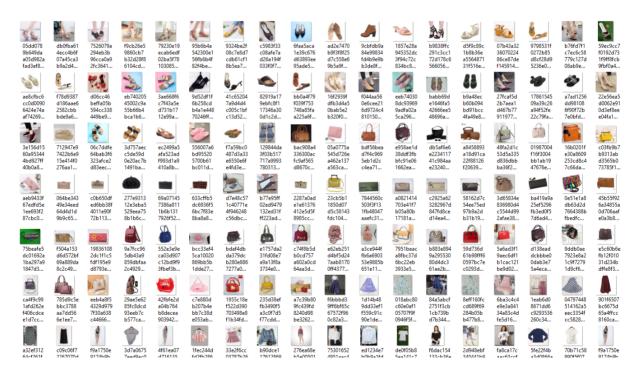


Fig11. Some collected data from online marketplaces

3.6 Data processing:

When we collected our images, those images were not in a suitable format to use for image processing and this is difficult for us to correct it one by one. So, we have used a program to sort the images and give them a suitable format to use for the processing. This is an important think to rearrange the data for training and to get better accuracy. Before the data processing our data, size and format is in unorganized. Even the name of the data is not ok for making csv file for furthered use. So, we made a way to organize all the images by their classes and subclasses and rearrange them in a suitable manner where csv has the column of proper image name and path of the image that we can use those data for future process. Also, the height and the width data are processed to save in the csv file for future analysis. If we have all the data with a proper format in csv we can rearrange that data with Panda's library of python and anything need to add or modify for the dataset it will be very easier to manipulate those data. After sorting this we have got our data format organized. Hare is a sample of organized and modified data set. Data/Image name also accepted now. And from the csv file any time anyone can tell the information about the

Fig12. Re-arrange of file name for better understanding

Image information like image category, sub-category, image height and width also. Also from this information we can analysis and sort out data we need, even also we can visualize data pattern with proportional to its height and weight.

А	В	С	D	E	F
FileName	Product	Index	width	height	
Electronic-Devices-Desktop-Computers-1-2.jpg	Desktop-Computers	1	550	600	
Electronic-Devices-Desktop-Computers-1-3.jpg	Desktop-Computers	1	675	675	
Electronic-Devices-Desktop-Computers-1-4.jpg	Desktop-Computers	1	680	800	
Electronic-Devices-Desktop-Computers-1-5.jpg	Desktop-Computers	1	500	500	
Electronic-Devices-Desktop-Computers-1-6.jpg	Desktop-Computers	1	500	500	
Electronic-Devices-Desktop-Computers-1-7.jpg	Desktop-Computers	1	626	626	
Electronic-Devices-Desktop-Computers-1-8.jpg	Desktop-Computers	1	344	466	
Electronic-Devices-Desktop-Computers-1-9.jpg	Desktop-Computers	1	1200	1200	
Electronic-Devices-Desktop-Computers-1-10.jpg	Desktop-Computers	1	720	960	
Electronic-Devices-Desktop-Computers-1-11.jpg	Desktop-Computers	1	588	771	
Electronic-Devices-Desktop-Computers-1-12.jpg	Desktop-Computers	1	600	600	
Electronic-Devices-Desktop-Computers-1-13.jpg	Desktop-Computers	1	500	500	
Electronic-Devices-Desktop-Computers-1-14.jpg	Desktop-Computers	1	1920	1920	
Electronic-Devices-Desktop-Computers-1-15.jpg	Desktop-Computers	1	626	626	
Electronic-Devices-Desktop-Computers-1-16.jpg	Desktop-Computers	1	626	626	
Electronic-Devices-Desktop-Computers-1-17.jpg	Desktop-Computers	1	720	1280	
Electronic-Devices-Desktop-Computers-1-18.jpg	Desktop-Computers	1	1200	1200	

Fig13. Processed dataset as csv format (1)

A		~	~	-	
Women-Collection-salwar-kamiz-28-147.jpg	salwar-kamiz	28	700	600	
Women-Collection-salwar-kamiz-28-148.jpg	salwar-kamiz	28	720	720	
Women-Collection-salwar-kamiz-28-149.jpg	salwar-kamiz	28	680	680	
Women-Collection-salwar-kamiz-28-150.jpg	salwar-kamiz	28	680	680	
Women-Collection-salwar-kamiz-28-151.jpg	salwar-kamiz	28	800	600	
Women-Collection-salwar-kamiz-28-152.jpg	salwar-kamiz	28	720	720	
Women-Collection-salwar-kamiz-28-153.jpg	salwar-kamiz	28	1000	725	
Women-Collection-salwar-kamiz-28-154.jpg	salwar-kamiz	28	950	577	
Women-Collection-salwar-kamiz-28-155.jpg	salwar-kamiz	28	1060	799	
Women-Collection-salwar-kamiz-28-156.jpg	salwar-kamiz	28	2048	1446	
Women-Collection-salwar-kamiz-28-157.jpg	salwar-kamiz	28	1577	1200	
Women-Collection-salwar-kamiz-28-158.jpg	salwar-kamiz	28	1280	1044	
Women-Collection-salwar-kamiz-28-159.jpg	salwar-kamiz	28	1440	1080	
Women-Collection-salwar-kamiz-28-160.jpg	salwar-kamiz	28	800	600	
Women-Collection-salwar-kamiz-28-161.jpg	salwar-kamiz	28	756	593	
Women-Collection-salwar-kamiz-28-162.jpg	salwar-kamiz	28	1500	1125	
Women-Collection-salwar-kamiz-28-163.jpg	salwar-kamiz	28	960	720	
Women-Collection-saree-29-164.jpg	saree	29	960	1280	
Women-Collection-saree-29-165.jpg	saree	29	1200	1200	
Women-Collection-saree-29-166.jpg	saree	29	800	800	
Women-Collection-saree-29-167.jpg	saree	29	600	600	
Women-Collection-saree-29-168.jpg	saree	29	748	640	
Women-Collection-saree-29-169.jpg	saree	29	450	330	
Women-Collection-saree-29-170.jpg	saree	29	800	800	
Women-Collection-saree-29-171.jpg	saree	29	734	719	

Fig14. Processed dataset as csv format (2)

Chapter: 4 Working procedure

4.1 Introduction:

Here we have discussed the working process from the first step. Brief description of environment setting, activation, Installing Jupyter Notebook. First of all, A virtual environment is a tool that helps to keep dependencies required by different projects separate by creating isolated python virtual environments for them. So, we will create virtual environment and activate that for our work.

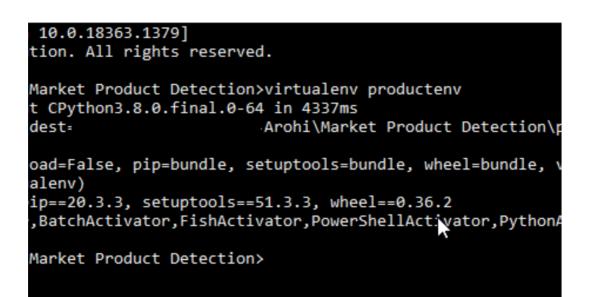


Fig15: Virtual Environment Creation

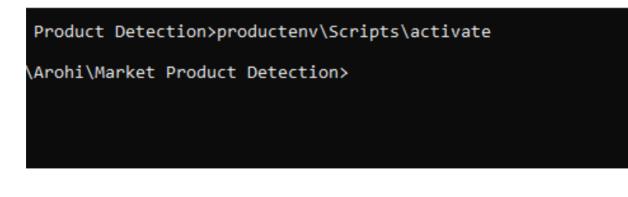


Fig16: Virtual Environment Activating

After creating and activating the virtual environment, we installed the **Jupyter Notebook**. Project Jupyter is a project and community whose goal is to "develop open-source software, open-standards, and services for interactive computing across dozens of programming languages". It was spun off from IPython in 2014 by Fernando Pérez. All steps included here

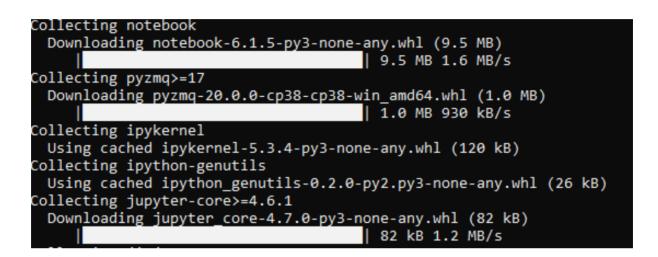


Fig17: Jupyter Notebook Installation

Fig18: Opening Notebook

So, if we browse at <u>http://127.0.0.1:8888/?token=<generated_token</u>> we will see the notebook interface and there we can work for our project.

After opening the notebook panel, we will see a interface where we can create ipynub format file with python 3 environment

Files Running Clusters			
ielect items to perform actions on them.		Upload	New 🗸 🎗
	Name 🗸	Notebook:	:e
Co dataset		Python 3	
		Other: Text File	
Comodels		Folder	
D pdf		Terminal	
D productenv		2 months ago	
C screenshot		2 months ago	
P image_csv_dataset_macker.ipynb		2 months ago	29.3 kB
🗌 🧧 library_install.ipynb		2 months ago	18.9 kB
Est_model.ipynb		2 months ago	1.57 MB
🗌 🧧 train_dataset_preparing.ipynb		2 months ago	132 kB
🗌 🛢 train_model.ipynb		2 months ago	70.8 kB

Fig19: Jupyter Notebook Interface

This a sample of Jupyter notebook interface. Here we have created our python file and started to work implementation.

4.2 Required Library Installation: library_install.ipynb is the file name from where we installed all our required library and setup the project library needed.

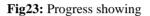
Files	Running Clusters
Select it	ems to perform actions on them.
0	
	🗅 dataset
	🗅 logs
	🗅 models
	🗅 pdf
	C productenv
	🗅 screenshot
	image_csv_dataset_macker.ipynb
	Ibrary_install.ipynb
	test_model.ipynb
	train_dataset_preparing.ipynb
	train_model.ipynb

Fig20: Library Installation File

4.2.1 OpenCV – Computer Vision is a process by which we can understand any images and videos and this is understandable and how this image will be used. This is widely used in Artificial Intelligence. OpenCV is a library of computer vision, machine learning, and image processing. This is used for any type of recognition such as image recognition, facial recognition, hand vision, self-care driving, traffic counting, medical image analysis, object recognition, etc. When incorporating various libraries, for example, NumPy, python is equipped to prepare an OpenCV collection structure for investigation.

In [1]:	!pip install opencv-python
	Collecting opencv-python Using cached opencv_python-4.5.1.48-cp38-cp38-win_amd64.whl (34.9 MB) Collecting numpy>=1.17.3 Downloading numpy-1.20.1-cp38-cp38-win_amd64.whl (13.7 MB) Installing collected packages: numpy, opencv-python Successfully installed numpy-1.20.1 opencv-python-4.5.1.48
	WARNING: You are using pip version 20.3.3; however, version 21.0.1 is available. You should consider upgrading via the 'D:\Professional\DIU\Arohi\Market Product Detection\productenv\Scripts\python.exe -m pip installupgrade pip' command.

Fig21: Installing OpenCV


4.2.2 NumPy: This is a python library used to work by the same members. Here we use version 20.0.3 of NumPy. NumPy is 50x faster to remove any of the same members. NumPy array is called ndarray. This provides many support functions that are very easy to work with ndarray. Our collected images have a value, height range. This was a list and this was modified by NumPy.

```
!pip install numpy
Requirement already satisfied: numpy in d:\professional\diu\arohi\market product detection\productenv\lib\site-packages (1.20.
1)
WARNING: You are using pip version 20.3.3; however, version 21.0.1 is available.
You should consider upgrading via the 'D:\Professional\DIU\Arohi\Market Product Detection\productenv\Scripts\python.exe -m pip
install --upgrade pip' command.
```

Fig22: Installing NumPy

4.2.3 Tqdm: Tqdm is a Python library that allows you to output a smart progress bar by wrapping around any iterable. A tqdm progress bar not only shows you how much time has elapsed, but also shows the estimated time remaining for the iterable.

```
!pip install tqdm
Collecting tqdm
Downloading tqdm-4.59.0-py2.py3-none-any.whl (74 kB)
Installing collected packages: tqdm
Successfully installed tqdm-4.59.0
WARNING: You are using pip version 20.3.3; however, version 21.0.1 is available.
You should consider upgrading via the 'D:\Professional\DIU\Arohi\Market Product Detection\productenv\Scripts\python.exe -m pip
install --upgrade pip' command.
```


4.2.4 CSV: A CSV file (Comma Separated Values file) is a type of plain text file that uses specific structuring to arrange tabular data. Because it's a plain text file, it can contain only actual text data—in other words, printable ASCII or Unicode characters. The structure of a CSV file is given away by its name. Python csv is used for arrange the tabular data.

in-conection-tops-4%269-1bg	tops	32	2222
n-Collection-tops-32-270.jpg	tops	32	1119
n-Collection-winter-33-271.jpg	winter	33	600
n-Collection-winter-33-272.jpg	winter	33	681
n-Collection-winter-33-273.jpg	winter	33	1200
n-Collection-winter-33-274.jpg	winter	33	2000
n-Collection-winter-33-275.jpg	winter	33	1004
n-Collection-winter-33-276.jpg	winter	33	1200
n-Collection-winter-33-277.jpg	winter	33	1502

Fig24: CSV Dataset

4.2.5 TensorFlow 2.3.0: TensorFlow is a python library developed by Google. Here we use it to build our core model. This is an open library and this will work very quickly. This library is an all-encompassing database that we can use for image processing, data processing, image classification, model recognition, natural language processing. This is a very powerful framework that performance uses a series of nodes and each node will display mathematical performance. Throughout a series of nodes, a graph can be generated. With tensor flow installation small libraries installed. In our project, we used version 2.3.0 version of TensorFlow because it happened to be different from the graphics card. Therefore, we are using version 2.3.0.

```
Collecting werkzeug>=0.11.15
Using cached Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB)
Collecting wrapt>=1.11.1
Using cached wrapt=1.12.1-cp38-cp38-win_amd64.whl
Installing collected packages: pyasn1, rsa, pyasn1-modules, oauthlib, cachetools, requests-oauthlib, google-auth, werkzeug, ten
sorboard-plugin-wit, protobuf, numpy, markdown, grpcio, google-auth-oauthlib, abs1-py, wrapt, termcolor, tensorflow-estimator,
tensorboard, scipy, opt-einsum, keras-preprocessing, h5py, google-pasta, gast, astunparse, tensorflow
Attempting uninstall: numpy
Found existing installation: numpy 1.20.1
Uninstalling numpy-1.20.1
Successfully uninstalled numpy-1.20.1
Attempting uninstall: scipy
Found existing installation: scipy 1.6.1
Uninstalling scipy-1.6.1:
Successfully uninstalled scipy-1.6.3
cachetools-4.2.1 gast-0.3.3 google-auth-1.27.1 google-auth-oauthlib-0.4.
3 google-pasta-0.2.0 grpcio-1.36.1 h5py-2.10.0 keras-preprocessing-1.1.2 markdown-3.3.4 numpy-1.18.5 oauthlib-3.1.0 opt-einsum
oard-plugin-wit-1.8.0 tensorflow-2.3.0 tensorflow-estimator-2.3.0 termcolor-1.1.0 werkzeug-1.0.1 wrapt-1.12.1
```

Fig25: Installing TensorFlow

4.2.6 Sklearn (**Scikit-learn**): This library provides a range of supervised and unsupervised learning algorithms via a consistent interface in Python. The library is built upon the SciPy (Scientific Python) that must be installed before you can use scikit-learn. Extensions or modules for SciPy care conventionally named SciKits. As such, the module provides learning algorithms and is named scikit-learn. Although the interface is Python, c-libraries are leverage for performance such as numpy for arrays and matrix operations, LAPACK, LibSVM and the careful use of cython. The library is focused on modeling data. It is not focused on loading, manipulating and summarizing data. For these features, refer to NumPy and Pandas.

4.3 Image CSV Dataset Making: Initially we need make a csv dataset from our collecting collection of images and label them with a suitable name that can be understandable easily and can find class and subclasses from that name also find the sequence number of that image from that name. First, we need to import all the necessary libraries for that particular work. Then we store all our category and sub category in variable that can be useful for data labeling.

In [1]: import os import cv2 import numpy as np from tqdm import tqdm In [2]: CATGORIES= ["Electronic-Devices","Mens-Collection","Sports-Outdoors","Watches-Accessories","Women-Collection"] AllSubCat = [["Desktop-Computers","Laptops","Security-Cameras-Systems","Smartphones","Tablet"], ["jeans","Joggers-Sweats","man_s-bags","men_s-shoes","shirts","sweater","t-shirts"], ["Badminton-Rackets","Bikes","Cycling-Machines","Dumbbells","Fitness-Accessories","Team-sports","Treadmills"], ["Kid_S-watches","Kids-Sunglasses","Men_S-watches","Mens-sunglasses","Women-Sunglasses","women_S-watches"], ["Bags","kurti","salwar-kamiz","saree","shoes","skirt","tops","winter"]] dsDirectory = "dataset/main-images/" trainDsDirectory = "dataset/train-data/"

Fig26: Import Libraries and Categories

Then we combined all the subcategories and as we know the category and subcategory, we know the specific location of the images that we store in their categorical and sub-categorical folder. From that then we sperate all images as their category and sub-category and store them in another folder name image-dataset. This folder contains all the images of all kind of category and sub-categorical product image and as well as the information was saved in csv file.

Fig27: Processing of Images to proper label and csv output

4.4 Dataset preparing: The main work of any machine learning project is to make train and test set which we called our target dataset preparing. For that first of all we need to import all necessary libraries and our previously generated csv file mentioned in 4.3.

Fig28: Import Required Things

Here, required library packages have been installed. Panda is used for visualizing the data. Matplotlib is used to plot the data by visualizing on graph. Sklearn used for train test data set splitting. Keras module from TensorFlow used for image processing. Then the system will read the csv file and give the out with 1211 number of images and 5 columns csv file. 1st row was the column name and after that index, width and height come in front.

	FileName	Product	Index	width	height
0	Electronic-Devices-Desktop-Computers-1-2.jpg	Desktop-Computers	1	550	600
1	Electronic-Devices-Desktop-Computers-1-3.jpg	Desktop-Computers	1	675	675
2	Electronic-Devices-Desktop-Computers-1-4.jpg	Desktop-Computers	1	680	800
3	Electronic-Devices-Desktop-Computers-1-5.jpg	Desktop-Computers	1	500	500
4	Electronic-Devices-Desktop-Computers-1-6.jpg	Desktop-Computers	1	500	500

Fig29: csv dataset

Then we have taken all the height and width and we have gotten rows of 1211 height and width from the images. We need both height and width because input layer of TensorFlow depends on it and all images has not the same height and width. So we need to analyze that for correct input layer.

Input Layer is consisting of neurons. Every input is called neuron.

- i) Input layer transfers data directly to the hidden main layer where the information is amplified by loads of the main covered layer.
- ii) The installation layer conveys information about the startup function before transferring it. The details are then enhanced by hidden principal responsibilities.
- iii) The data layer has its own responsibilities that duplicate the information that comes up. The background information then conveys the details of the consolidation function before transferring it. Details are then enhanced by the basic burdens of basic encryption.

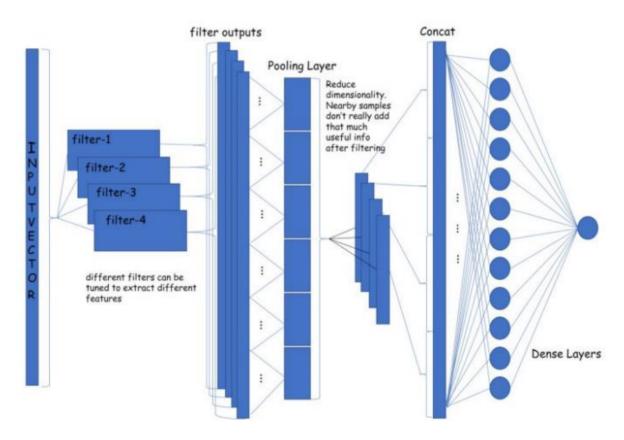


Fig29: An illustration of CNN input layer and others layer

Now we plot the data with proportional to all image's height and width so that we can understand and select a perfect combination of image height and width for input layer. Here we made scatter plotting for better analysis.

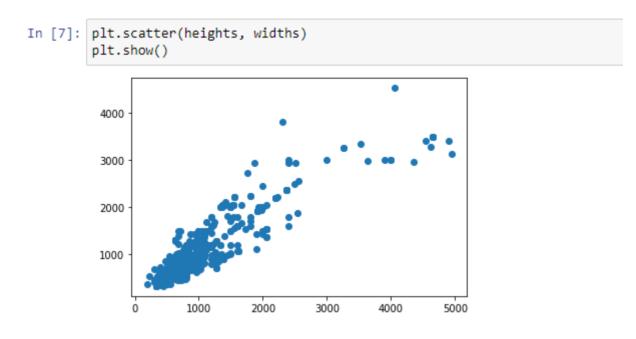


Fig30: Image's plot of height and width

From the above figure we can see that our dataset image has no regular or similar size from each other. So, we need to make a choice for selection. Maximum images are between height and width of 3000 pixel so if we can plot a figure of image which height and width is between 3000 pixel that will be more visible for seeing that image plotting of most of the images. After plotting height and width of those images we get a good plot view.

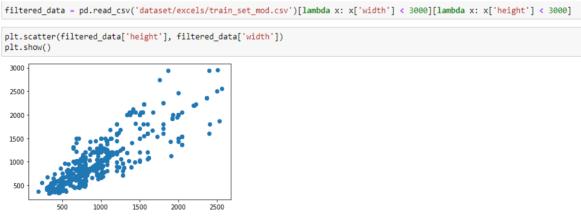


Fig31: csv data read from csv dataset

Now, we need to calculate mean and median value from that images to select the perfect image height and width for input layer and also, we need to take care about the layer size because of the limitation of GPU processing for image classification in TensorFlow. We know that the "mean" is the "average" you're used to, where you add up all the numbers and then divide by the number of numbers. The "median" is the "middle" value in the list of numbers. To find the median, your numbers have to be listed in numerical order from smallest to largest, so you may have to rewrite your list before you can find the median.

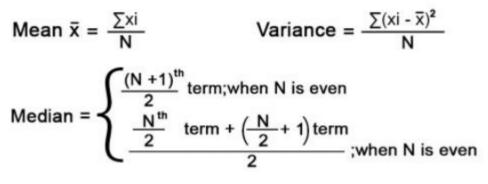


Fig31: mean median formula

After did the calculation we got mean and median value where we got the image mean height of 639 and width 666. So, all of our image's array should be converted to that height and width for TensorFlow input layer. Now we can resize all images and store them in variable.

Fig32: resized images for input layer

Now we did label and made a new csv file for training set. The label represents the justify of outcomes of the dataset images. As we have 33 types of outcomes, we need to make label for 33 types of outcomes. After preparing all the requirement we can save the training dataset for future use.

	Filename	Product	Desktop- Computers	Laptops	Security- Cameras- Systems	Smartphones	Tablet	jeans	Joggers- Sweats	man_s- bags	Women- Sunglasses	women_S- watches	Bags	kurti	salwar- kamiz	Si
0	Electronic- Devices- Desktop- Computers- 1-2.jpg	Desktop- Computers	1	0	0	0	0	0	0	0	0	0	0	0	0	
1	Electronic- Devices- Desktop- Computers- 1-3.jpg	Desktop- Computers	1	0	0	0	0	0	0	0	0	0	0	0	0	
2	Electronic- Devices- Desktop- Computers- 1-4.jpg	Desktop- Computers	1	0	0	0	0	0	0	0	0	0	0	0	0	
3	Electronic- Devices- Desktop- Computers- 1-5.jpg	Desktop- Computers	1	0	0	0	0	0	0	0	0	0	0	0	0	
4	Electronic- Devices- Desktop- Computers- 1-6.jpg	Desktop- Computers	1	0	0	0	0	0	0	0	0	0	0	0	0	
5 rows × 35 columns																
																•

Fig33: Final csv file for train-test dataset

Now we dropped out the extra two layer named "Filename" and "Product" from csv file as they are not important for training and both test set.

Fig34: Sorting out the Final csv file

4.5 Details of Proposed Methodology

4.5.1 Convolutional neural Network (CNN) is a type of neural network. This is specialized in in-depth learning using the perceptron, AI unit calculation, managed learning, breaking down various types of information. CNN operates a large part of the work depends on the contributions to diversify project acceptance and works wonderfully with local-related information.[13] We can apply to photos, split prediction issues, face recognition, object recognition, etc. There are a few layers of image collection, for example, the first layer of CNN's layer of information. This layer will read pixel images to pixel. The various types of layering will put the images in a reliable system.

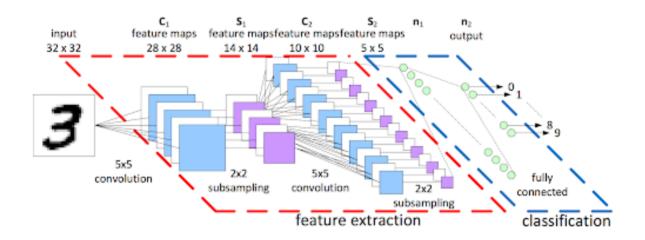


Fig35: CNN based image classification

4.5.2 Pooling layer: Pooling layer is an indirect layer that separates part of the information and reduces the number of parameters, controls overload and the most important data is stored. We can show the size of the PoolingLayer which can eliminate unnecessary highlights and maintain basic highlights. Here are three types of integration layer MaxPooling, AveragePooling, and MinPooling.

- MaxPooling: Selects the most important value contained in the merge window. In CNN
 engineering MaxPooling is often used to earn outstanding points on the grounds that
 MaxPooling offers the best because of the AveragePooling and MinPooling layer.
- AveragePoing: Selects only the average amount contained in the merge window.
- MinPooling: Selects only a small amount contained in the merge window

4.5.3 Flatten layer: Flatten layer in the middle of the convolutional layer and a perfectly aligned frame, there is a 'Smooth' layer. Switching over all 2-dimensional clusters into a 1D element vector, this function is called smooth. This smooth structure creates a coherent vertical vector to be applied to the thick layer of the final layer.

4.5.4 Fully connected layer: Fully connected layer s the last phase of the CNN organization, talking about the vector of the information component. The FC layer includes loads, priorities, and neurons. It connects neurons one layer to neurons in another layer. The FC layers also assemble the entire neuron to order accurately and precisely each detail. It is used to organize images between different categories by arrangement. FC layers can be derived from Multilayer Perceptron (MLP) where every neuron has a complete connection with the entire beginning of the previous layer.

4.6 :Train Methodology

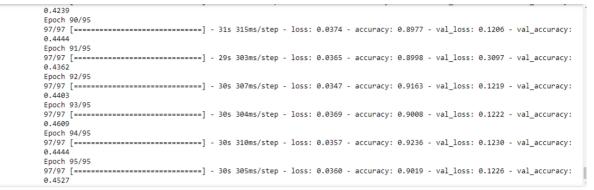
In this context, we will discuss how to train. With training, the machine will understand the data I have to enter the learning. So how to train, how to train data, and how to process it is described here. First we loaded our pre-saved dataset model and then tmake a tensorflow model for training.

In [2]:	<pre>import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout,BatchNormalization,Conv2D,MaxPool2D,MaxPooling2D from tensorflow.keras.preprocessing import Adam from tensorflow.keras.preprocessing import image import numpy as np import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm from tensorflow.keras import layers</pre>
In [3]:	<pre>#product_classification_compressed_processed_train_test_set_01 data = np.load('Dataset/train_test_set/product_classification_compressed_processed_train_test_set_02.npz') x_train = data['x_train'] x_test = data['x_train'] y_train = data['y_train'] y_test = data['y_test']</pre>

Fig37: Load dataset for training

Then we made a train model for tensorflow with four different hidden conv layer for the training. So the total model has 8,788,785 of Total params, 8,788,177 of Trainable params and 608 of Non-trainable params.

batch_normalization_4 (Batch	(None,	64)	256
dropout_4 (Dropout)	(None,	64)	0
	(None,	33)	2145
<pre>====================================</pre>	======		
·			\square


Fig38: Model summery

Model: "sequential"

Layer (type)	Output Shape	Param #
block1_conv1 (Conv2D)	(None, 937, 964, 16)	448
conv2d (Conv2D)	(None, 935, 962, 16)	2320
batch_normalization (BatchNo	(None, 935, 962, 16)	64
block1_pool (MaxPooling2D)	(None, 467, 481, 16)	0
dropout (Dropout)	(None, 467, 481, 16)	0
block2_conv1 (Conv2D)	(None, 467, 481, 32)	4640
block2_conv2 (Conv2D)	(None, 467, 481, 32)	9248
batch_normalization_1 (Batch	(None, 467, 481, 32)	128
<pre>block2_pool (MaxPooling2D)</pre>	(None, 233, 240, 32)	0
dropout_1 (Dropout)	(None, 233, 240, 32)	0
block3_conv1 (Conv2D)	(None, 233, 240, 64)	18496
block3_conv2 (Conv2D)	(None, 233, 240, 64)	36928
block3_conv3 (Conv2D)	(None, 233, 240, 64)	36928
batch_normalization_2 (Batch	(None, 233, 240, 64)	256
block3_pool (MaxPooling2D)	(None, 116, 120, 64)	0
dropout_2 (Dropout)	(None, 116, 120, 64)	0
block4_conv1 (Conv2D)	(None, 116, 120, 128)	73856
block4_conv2 (Conv2D)	(None, 116, 120, 128)	147584
block4_conv3 (Conv2D)	(None, 116, 120, 128)	147584
batch_normalization_3 (Batch	(None, 116, 120, 128)	512
block4_pool (MaxPooling2D)	(None, 58, 60, 128)	0
dropout_3 (Dropout)	(None, 58, 60, 128)	0
block5_conv1 (Conv2D)	(None, 58, 60, 256)	295168
block5_conv2 (Conv2D)	(None, 58, 60, 256)	590080
block5_conv3 (Conv2D)	(None, 58, 60, 128)	295040
block5_pool (MaxPooling2D)	(None, 29, 30, 128)	0
flatten (Flatten)	(None, 111360)	0
dense (Dense)	(None, 64)	7127104
batch normalization 4 (Batch	(None, 64)	256
bacch_hor maiizacion_4 (bacch		
dropout_4 (Dropout)	(None, 64)	0

Fig39: Model detailed summery

In training session we got different accuraccy level in different time. We used a batch size of 10 and we trained the model about 95 epoch of times and got the final accuracy 90.18% which is really acceptable and standard for image classification.

Fig40: Model accuracy

Then we plot an accuracy vs validation accuracy matrix graph to ensure the model stability. Also, we plot a loss vs validation-loss graph for better understand our model loss.

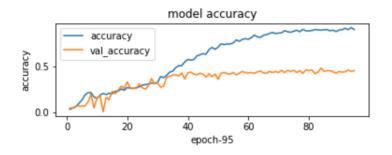


Fig41: accuracy vs validation-accuracy

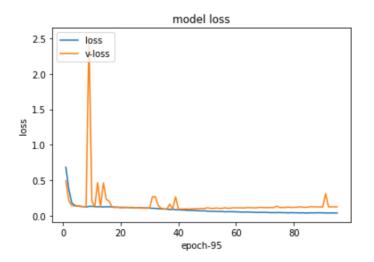


Fig42: loss vs validation-loss

Also, we know that confusion matrix is a tabular way of visualizing the performance of your prediction model. Each entry in a confusion matrix denotes the number of predictions made by the model where it classified the classes correctly or incorrectly. So, in our product classification we also populate a confusion matrix.

```
fig, ax = plot_confusion_matrix(conf_mat=cm2)
plt.rcParams['figure.figsize'] = [10, 5]
plt.rcParams['figure.dpi'] = 200
plt.show()
```

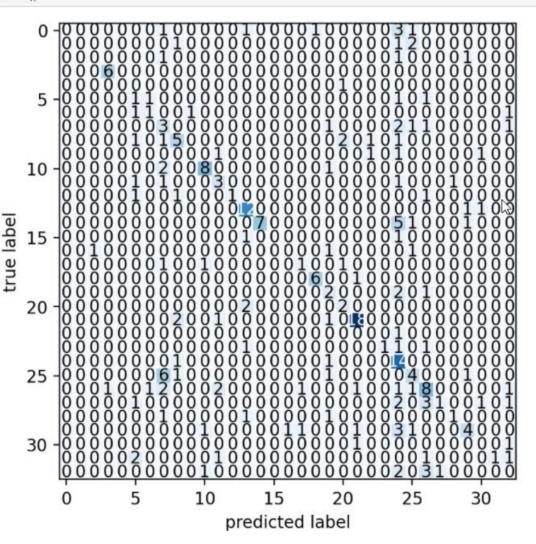


Fig43: confusion matrix

Chapter 5 Results and Discussion

Now we have got the result for the recognition of 3 product. Here is the result for 1st product which we know as Men's Watches and it should be in Watches-Accessories category. So, our model predicts the image correctly with 27.37% accuracy. This image is a random men's watches collected from google search and this image not was in any of our collected data.

Fig44: 27.37% accuracy for Men's Watches

Here is the result for 2nd product which we know as Bags and it should be in Women-Collection category. So, our model predicts the image correctly with 21.09% accuracy. This image is a random woman's bag collected from google search.

Fig45: 21.09% accuracy for Woman's Bag

Here is the result for 3rd product which we know as Bags and it should be in Women-Collection category. So, our model predicts the image correctly with 67.62% accuracy. This image is a random woman's bag collected from google search this image not was in any of our collected data.

Fig47: 67.62% accuracy for Woman's Bag

Chapter 6

CONCLUSION

7.1 Conclusion: In this project we tried to make identifier of online market product classification with category and sub-category. Our CNN layer was complex and that's why we got better result with low accuracy and the standard training accuracy for the model. If we have more data for every sub-category the result accuracy will be higher and the project will work better that now in future.

7.2 Future work: In future anyone can learn and make some project from this complex project and it can be applied with many programs which are for online market and this will be useful for product identification without human hands.

7.2 Requirement Accessories:

After the description of our CNN methodology and completely trained our model, that model was trained in a machine which configuration is given below:

- Operating System (Windows 10)
- Hard Disk (1TB)
- Ram (16 GB)
- GPU (NVidia 6GB GTX-1660)

References:

[1] Deep learning-based product image classification system and its usability evaluation for the O2O shopping mall platform by Sung, Jae-Kyung, Park, Sang-Min, Sin, Sang-Yun, Kim, Yung-Bok Received: 2017.05.02 Accepted: 2017.06.09 Published: 2017.06.30 https://doi.org/10.7236/JIIBC.2017.17.3.227

[2] Ayesha Islam, M.S., Foysal, F.A., Neehal, N., Karim, E. and Hossain, S.A., 2018. InceptB: a CNN Based classification approach for recognizing traditional Bengali games. Procedia computer science, 143, pp.595-602.

[3] Kyu-dong Kim, Yung-mok Yu, Jeong-lae Kim, "A Study on the Influence of Mobile Commerce Characteristics Perception on Mobile Shopping Intentions", JIIBC 2013-6-39, 2013. DOI: https://doi.org/10.7236/JIIBC.2013.13.5.297

[4] Gi-Ryong Choi, Hye-Wuk Jung and Jee-Hyoung Lee "Contents-based Image Retrieval System Design of Shopping", Proceedings of KIIS Spring Conference, Vol. 22, No. 1, 2012

[5] Yeon-gyu Kim, Eui-young Cha, "Streamlined GoogLeNet Algorithm Based on CNN for Korean Character Recognition", J. Korea Inst. Inf. Commun. Eng. Vol. 20, No. 9: 1657-1665, Sep 2016. DOI: https://doi.org/10.6109/jkiice.2016.20.9.1657 https://doi.org/10.6109/jkiice.2016.20.9.1657

[6] A Comparative Analysis of the Employment Situation in Bangladesh. Potential Sectors and Required Policies for Employment by MD. MAHIR FAYSAL (AUTHOR). Term Paper, 2017, 19 Pages, Grade: A https://www.grin.com/document/373854

[8] Stuart J. Russell, Peter Norvig (2010) Artificial Intelligence: A Modern Approach, Third Edition, Prentice Hall ISBN 9780136042594.

[9] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine Learning, the MIT Press ISBN 9780262018258.

[10] Hinton, Geoffrey; Sejnowski, Terrence (1999). Unsupervised Learning: Foundations of Neural Computation. MIT Press. ISBN 978-0262581684.

[11] Chen J, Lei J. Research on Color Image Classification Based on HSV Color Space. International Conference on Instrumentation and Measurement, Computer, Communication and Control. 2012: 944–947.

[12] Natale FGB, Boato G. Detecting Morphological Filtering of Binary Images. IEEE Transactions on Information Forensics and Security. 2017; 12: 1207–1217

[13] Chen, T., et al.: MXNET: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

[14] He, X., Liao, L., Zhang, H., et al.: Neural collaborative filtering. In: WWW 2017, pp. 173–182 (2017)

[15] Jo, J.; Lee, S.; Lee, C.; Lee, D.; Lim, H. Development of Fashion Product Retrieval and Recommendations Model Based on Deep Learning. Electronics 2020, 9, 508. https://doi.org/10.3390/electronics9030508

Bangladeshi Online Market Product Classification Using Deep Learning

ORIGINA	LITY REPORT	
	5% 14% 4% 12%	-
PRIMAR	SOURCES	
1	dspace.daffodilvarsity.edu.bd:8080	5%
2	Submitted to Daffodil International University Student Paper	3%
3	www.coursehero.com	2%
4	towardsdatascience.com	1%
5	machinelearningmastery.com	1%
6	www.theindependentbd.com	<1%
7	Submitted to BRAC University	<1%
8	dokumen.pub Internet Source	<1%
9	"Innovative Data Communication Technologies and Application", Springer	<1%

10	en.wikipedia.org	<1%
11	simple.wikipedia.org	<1%
12	Andreas François Vermeulen. "Industrial Machine Learning", Springer Science and	<1%
	Business Media LLC, 2020 Publication	
13		<1%