

An Automated Detection System of Cross Site Request

Forgery (CSRF) Vulnerability in Web Applications

By

Md. Afzal Ismail

ID: 171-35-1799

A thesis submitted in partial fulfillment of the requirement for the degree

of Bachelor of Science in Software Engineering

Department of Software Engineering

DAFFODIL INTERNATIONAL UNIVERSITY

Fall – 2020

ii ©Daffodil International University

APPROVAL

This thesis titled on “An Automated detection of Cross Site Request Forgery (CSRF)

Vulnerability in Web Applications”, submitted by Md. Afzal Ismail, (Student ID: 171-

35-1799) to the Department of Software Engineering, Daffodil International University has

been accepted as satisfactory for the partial fulfillment of the requirements for the degree of

Bachelor of Science in Software Engineering and approval as to its style and contents.

iii ©Daffodil International University

DECLARATION

I hereby declere that this thesis has been done by me under the supervission of Md. Maruf

Hassan, Assistant Professor, Department of Software Engineering, Daffodil International

University. It also declere that nithor this thesis nor any part of this has been submitted

elesewhere for award of any degree.

Md. Afzal Ismail

Student ID: 171-35-1799

Batch: 22th batch

Department of Software Engineering

Faculty of Science & Information Technology

Daffodil International University

Certified by:

Md. Maruf Hassan

Assistant Professor

Department of Software Engineering

Faculty of Science & Information Technology

Daffodil International University

iv ©Daffodil International University

ACKNOWLEDGEMENT

I would first like to thank the Almighty for giving me the chance to walk through final year.

I have learnt so many things in previous years which will definitely make myself worthy in

recent days. I’m grateful to all of our fellow faculties for this. I would like to express my

immense regards to my supervisor Md. Maruf Hassan, Assistant Professor, DIU for giving

me guidelines and showing me necessary paths to do the thesis on the topic of Automatic

detection of web application vulnerability which helped me a lot. Besides my supervisor, I

acknowledge the authority of Cyber Security Center, DIU for giving my necessary supports

in need.

v ©Daffodil International University

Table of Contents
DECLARATION .. ii

ACKNOWLEDGEMENT ... iv

TABLE OF CONTANT ... v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

ABSTRACT .. ix

CHAPTER 1 ... 1

INTRODUCTION .. 1

Background .. 1

1.1 Motivation of the Research .. 2

 1.2 Problem Statement .. 3

1.3 Research Questions .. 3

1.4 Research Objectives ... 3

1.6 Research Scope .. 4

1.7 Thesis Organization ... 4

CHAPTER 2 ... 5

LITERATURE REVIEW .. 5

CHAPTER 3 ... 8

RESEARCH METHODOLOGY ... 8

3.1 CSRFD Model ... 8

3.1.1 Web Scrapping .. 9

3.1.2 Analyze the data .. 9

3.1.3 Response ...10

3.2 Algorithm and Implementation ..11

CHAPTER 4 ...14

RESULTS AND DISCUSSION...14

4.1 Discussion ..14

4.2 Analysis ..16

4.3 Performance ..16

TABLE OF CONTANT

vi ©Daffodil International University

CHAPTER 5 ...18

CONCLUSIONS AND RECOMMENDATIONS ..18

5.1 Findings and Contribution ..18

5.2 Recommendations for Future Works ...18

REFERENCES ...19

vii ©Daffodil International University

LIST OF TABLES

Table 1: Details of test applications 13

Table 2: Effectiveness of CSRFD 15

viii ©Daffodil International University

LIST OF FIGURES

Figure 1: System Architecture of CSRFD 8

Figure 2: Algorithm 11

Figure 3: Some used conditions in our solution 12

Figure 4: Potency of CSRFD 17

ix ©Daffodil International University

ABSTRACT

In the modern era of technology, the usage of web applications has become enormous. Web

applications are now dealing with much more sensitive data. As web applications dealing

with sensitive data, they are encountering lots of threats. Intruders are always trying to find

new ways to penetrate these applications and misuse them. The attackers use vulnerabilities

to perform those attacks. Cross site request forgery aka CSRF is one of the vital threats and

top ranked web application vulnerability. CSRF attack is a type of attack where end users

are forced to perform unwanted actions on a web application in which they are currently

authenticated. In some previous researches, several numbers of case studies are found. In

many researches, different types of models are proposed and developed. To secure the web

applications that are vulnerable to CSRF vulnerability, many more studies need to be done

in this field. Therefore, there is not enough studies on automated system to detect this CSRF

vulnerability. Therefore, the key focus of this research is to develop an automated web

application vulnerability detection model for detecting the CSRF vulnerability in web

applications. My proposed solution is to do real time scan of CSRF vulnerability in given

URL.

KEYWORDS: CSRF vulnerability, cyber security, Automated detection tool, Web

application Vulnerability.

1 ©Daffodil International University

CHAPTER 1

INTRODUCTION

Cross site request forgery is a web application vulnerability. If this vulnerability exists

in any web applications means that there is some weakness in system or it is

misconfigured. It allows an attacker to access sensitive data, modify data, perform state

changing actions etc. To make this attack possible, an attacker tricks the user and make

requests from users’ browser and to the applications where the user is currently

authenticated. Successful CSRF attack can lead to serious security breaches for both

the website as well as the end user.

Background

Over the past few years, web applications have become part and particle of the

businesses, organizations and solutions related to customer behavior. Datareportal says,

by the end of April 2021, the number of internet users are 4.72 billion and that more

than sixty percent of the world's total population[https://datareportal.com/global-

digital-overview]

Moreover, most of the internet users are somewhat related or use web applications. To

provide better service to customers as well as all clients, most of the business or

organizations are solely depending on web applications.

It is known that a pandemic situation is going on. It also encourages clients to rely more

on web applications. Datareportal also says that, the total number of internet users

2 ©Daffodil International University

around the world grew by 332 million in the past 12 months – more than 900,000 new

users each day.

As the targeted user community is huge, and getting larger day by day, web application

security has become a major issue because it constantly dealing with sensitive

information and personal data. Moreover, exploiting web application vulnerability of

web applications is increasing due to the system flaws. Cross site request forgery is a

client-side attack that allows an attacker to execute malicious code or script to the user

end and perform state changing actions or unwanted actions that the user does not

intend to perform. In this attack, the attacker may use social engineering to trick the

user into clicking something and execute malicious code. After clicking to the link, the

user may redirect to an infected site, and from that site a forge request will be delivered

to the users’ browser and gets executed.

1.1 Motivation of the Research

In present days, people are abundantly dependent on the web applications to conduct

their daily needs, to get their jobs done many people consecutively using web

applications throughout the whole day. To perform clients or users desired jobs, user

information’s are stored in web applications. This information is like honeypots to the

attackers.

The attackers can use or modify this user information and can-do various types of jobs

if they wanted to, which attacks the attacker to attack on a system through a

vulnerability and Cross site request forgery is one of them.

According to the Open Web Application Security Project also known as OWASP, If

the user who has been attacked is responsible for some administrative work for any web

application, attacking that user can leads serious damage and compromise that web

3 ©Daffodil International University

application through CSRF attack[https://owasp.org/www-community/attacks/csrf]

To detect CSRF vulnerabilities, there are some solutions or models out there but each

solution has some limitations. In other word, we can say that the solutions are not

dynamic enough to detect all types of CSRF vulnerabilities as the attack can be placed

by various methods.

1.2 Problem Statement

After studying and analyzing previous works about CSRF Vulnerability detection it has

found that, there is least research methodologies that has the capability to automatically

detect the vulnerability efficiently and there's scope to do some improvement on this

field.

The existing solutions are facing difficulties in identifying false positive/negative result

to improve the accuracy.

1.3 Research Questions

With having this background, motivation and problem statement in mind, I pose the

following questions:

Question 1: Is my proposed solution can effectively detect Cross site request

forgery vulnerability?

Question 2: Is my implemented tool providing better accuracy considering the

false negative and false positive analysis with the compared existing solution?

1.4 Research Objectives

• To propose an automated solution which can identify cross site request

vulnerability

4 ©Daffodil International University

• To implement a solution named "CSRFD" based on the proposed solution

• To evaluate the potency of our designed tool "CSRFD"

1.6 Research Scope

The experimental processes have conducted on several types of web applications

including banking sites, entertainment category sites, blogs, shopping etc. Hence, there

is some complications regarding cyber security issues and cyber laws. For this reason,

we can’t test our experiment on every site available on the internet. In that case, we

have tested with some demo sites owned by me and my friends.

1.7 Thesis Organization

In this research, APA referencing system has been used in this document. The paper

has been furnished with five chapters which is described below:

Chapter 1: Research background, motivation, problem statement, objectives and

scopes are discussed here.

Chapter 2: In this chapter the discussion about the existing related works

performed. Also figured out the research gap.

Chapter 3: The discussion about the research methodology has been covered in this

chapter.

Chapter 4: Result analysis and discussion of the proposed model will be covered in

this chapter.

Chapter 5: Findings, conclusion and the future work will be covered in this

segment.

5 ©Daffodil International University

CHAPTER 2

LITERATURE REVIEW

In this section, there will be discussion about the previous researches and findings about

Cross site request forgery vulnerabilities/attacks which is focused both on server side

and client side of the web applications. Cross site request forgery is a client-side attack

where users tricked into doing some actions or perform unwanted activities.

There's a vulnerability called Cross-site scripting in the web application. The reason

behind this vulnerability is improper input validation. This vulnerability creates so

many problems. These problems can be happened for both server-side and client side

of that web application with the help of CSRF attacks. (Nadar, V. M. et al. 2018). V.

M. Nadar et al. developed an intensified detecting model which can detect CSRF

attacks. There work also can detect Session Management attacks and Broken

Authentication attacks within the same simulation environment. Their work has only

checked for the malicious script (V. M. Nadar et al. 2018).

The Open Web Application Security Project also known as OWASP has listed SQL

injection, CSRF and XSS vulnerabilities as the most frequently exploited

vulnerabilities. An intruder or attacker fixes the target or victim user and try to executes

malicious JavaScript in the target's browser. By approaching an attack with this process,

the attacker never directly targets his victim. When the attacker approaches, he actually

exploits a vulnerability in a web application which the targeted victim uses. The

malicious script that an attacker wants to execute is a key factor in these types of attack.

If the attacker has become successful and plants the malicious script successfully and

executed, the attacker might get the access to sensitive information such as sessionID,

the cookies and so on. (Nagpal, Chauhan et al. 2017).Nagpal et al. developed a system

6 ©Daffodil International University

engine which detects SQL injection and stored CSRF attacks. Their study only works

for web applications based on php. (Nagpal, Chauhan et al. 2017).

The CSRF vulnerability lies in a web application where basically state changing actions

are performed. Hence, to detect the vulnerability, it is very important to track where

and when a security related state change action is performed within the web application.

(Liu, Shen et al. 2020).Liu et al. developed a CSRF vulnerability detection model based

on graph data mining which can only detect the vulnerability accurately if a state

changing attack happens. (Liu, Shen et al. 2020).

Web applications usually use one type token which is called secret validation token to

prevent CSRF attacks. Using the secret validation token is a well stablished server-side

protection to give protection and mitigate the Cross-site request forgery attacks. The

token basically works by validating the token information which is send along with the

other information to the http request to determine that the request is coming is actually

coming from an authorized user or not.(Laila, Moustafa,.2018). Laila and Moustafa

have developed a web browser extension for mitigating CSRF attacks.(Laila,

Moustafa,.2018).

To perform a CSRF attack, the attacker does not need to modify anything within the

user's response or request. It will be enough for the attacker if the user visits the

malicious websites of the attacker and from this malicious website, the attack will be

launched. The author's also included that, if any web application is vulnerable to CSRF

attack, the web application will be eventually exploitable by any malicious websites on

the web.(Stefano, Conti et al.2019).Stefano et al. developed a solution using machine

learning for the black box detection of CSRF vulnerability.(Stefano, Conti et al.2019).

7 ©Daffodil International University

Contemplating the previous works best of my knowledge, and the nature of the works,

there are minimal number of works to detect cross site request forgery vulnerability or

attack automatically. Furthermore, most of the works are to detect the attack not the

vulnerability. Therefore, a system is proposed to automatically detect CSRF

vulnerability.

8 ©Daffodil International University

CHAPTER 3

RESEARCH METHODOLOGY

In this section, the system architecture of CSRFD is discussed. This section is mainly

divided into two major parts. In the first section there is discussion about the work flow

diagram and about the model in it. In the second section, the discussion will be about

the algorithm of my proposed solution.

3.1 CSRFD Model

The workflow diagram in the figure 3.1 demonstrate the system architecture of my

proposed solution.

Figure 3.1: System architecture of CSRFD

9 ©Daffodil International University

This section is divided into three sub-section named:

- Web scrapping

- Analyze the data

- Response

3.1.1 Web Scrapping

To implement a CSRF vulnerability detector we have first used a web scrapping

technique to extract data from URL. Web scrappers work by collecting URLs of the

pages from which pages we wanted the data. In scrapping, it makes a request to the

targeted URL and fetch necessary data and gives us the room to save that data into CSV

files or in other formats. In CSRFD, we have used Beautifulsoup(BS4) to extract data

from URL. It will first take the targeted URL and make a request to that URL.

Thereafter, it will fetch necessary data and save it in a CSV file.

3.1.2 Analyze the data

In scrapping section, we have saved the data into CSV file. It is time to use that data.

The system will open the CSV file and read the data from that file.

Subsequently reading that data, the system will look for CSRF tokens. As far as CSRF

vulnerability is concerned, to prevent CSRF vulnerability, it is best method to use a

secret token that the attacker cannot get. An attacker may get the sessionID but we need

an additional token along with that sessionID which will be total unknown to the

attacker. Hence, the attacker cannot misuse the sessionID. Here is the key thing, to

mitigate this vulnerability, a very much common and renowned approach is to use

CSRF tokens, or we can say Anti CSRF tokens. Web applications are usually developed

based on frameworks, and various frameworks offer various types of CSRF tokens or

anti CSRF tokens. According to the portswigger, a CSRF token is a type of token which

10 ©Daffodil International University

is unique and secret, which is an unpredictable value that an attacker cannot guess. The

value is generated by the server-side on the web application. This CSRF token is placed

in the client-side of the web application in such way that it included with every

upcoming http request that the user has made.(https://portswigger.net/web-

security/csrf/tokens)

These tokens are present in the hidden field and encrypted in such way that attackers

cannot guess the actual data. Moreover, this value changes with every request. Hence,

the attackers have no chance to reuse a previous piece of token data.

Here, two major conditions have encountered.

1. If a web application using CSRF tokens, it will free from CSRF vulnerabilities.

2. The token of that field has to change with every request.

Hence, in our system, we will first look for the csrf tokens, and if the token found, we

will again send the request to that url and check that the previous value of the token is

matching with the current token value or not.

3.1.3 Response

Based on the conditions, our proposed system will give necessary responses. There is

some difference in the naming convention of that CSRF token or anti CSRF token. For

example, .NET framkework uses the name “requestverificationtoken”. On the other

hand, Laravel framework use this token as "_token”, Rubi uses as “authenticity_token”.

Most commonly used framework these days Django uses it as “csrfmiddlewaretoken”

etc.

 In our system, it will first look for the token, if the token is not found than the site may

vulnerable to CSRF attacks. But if the token exists, the web application may not be

https://portswigger.net/web-security/csrf/tokens
https://portswigger.net/web-security/csrf/tokens

11 ©Daffodil International University

vulnerable to CSRF. However, to make sure that the web application is actually free

from CSRF vulnerability, we have to check for the randomness of that token. In that

case, we need to check if the token value is changing with every request or not.

Based on the responses, we can come to an interpretation about the web application.

3.2 Algorithm and Implementation

In this section, we will describe the central algorithm of our system CSRFD. The figure

3.2.1 shows the algorithm of our solution -

Figure 3.2.1: Algorithm

First of all, the system will take the seed URL. Now, it will check whether the URL is

given in an appropriate format or not. If the format of URL is wrong, it will throw an

exception to provide the URL in the correct format. The correct format will be shown

in that exception.

12 ©Daffodil International University

If the URL is valid and the format is appropriate, then the web scrapper will take the

seed URL and send request to that targeted URL. In our system, the Beautifulsoup, A

python-based library will do the scrapping for our system. The version of Beautifulsoup

that we have used to develop our system is BS4 version. After sending a request to that

targeted URL, the web scrapper will fetch the data from that web application that we

will need.

After fetching that data, we will open a CSV file to store data, and necessary data will

be stored in that CSV file. Now, it will read that CSV file and store necessary data in a

list. Promptly, the system will check for conditions, and based on that condition, it will

give us response. The conditions that will be checked described in the “CSRFD Model”

section.

Figure 3.2.2 will give a glance over some of the base conditions that are used in our

solution.

Figure 3.2.2: Some used conditions in our solution

Test suite setup:

There are 22 web applications be selected to perform our tests. Here, we have collected

some commonly used web applications by some users and included own site to perform

works. Table 1 indicating the application names and the types of that application. While

implementing our tool CSRFD, we have used a normal computer running on 64-bit

Windows 10. The spec sheet kind of looks like this (1.80 GHz, Intel i7, 8GB RAM).

13 ©Daffodil International University

Table 1: Details of test applications

Application Type

YTS Entertainment (Movie)

Zedge Personalization

Rokomari Online Book store

Netflix Streaming site

Programming World Blog

Standard Chattered Online Banking

Charismatic Online Cloth store

Brac bank Online Banking

Artstation Showcasing Platform

Facebook Social Site

Sundorban Courier Courier Service

DailyMotion Video Sharing

Twitter Social platform

Digital Photography School Learning

fmovies Free streaming site

7lakesbeauty Beauty Shop

Mayo Clinic Hospital

freepik Resource site for graphics

LaReve Clothing store

EB medicine Evidence based medical help

DiabaticExpo Health

BMIobject Architecture Designing

14 ©Daffodil International University

CHAPTER 4

RESULTS AND DISCUSSION

In this section, we have discussed about the results. Analysis and discussion about the

implemented CSRFD experiment will be covered.

4.1 Discussion

The results of our experiment are listed in the Table 2. In that table, there is two main

columns, where column 1 will refer to the application name, and column 2 is referring

to the results of our experiment. Column 2 is divided into 3 sections.

The first section is called “Successful”. In this portion, we will consider that is our

automated tool successfully detects or not. The second section is called “False Positive”

and in this section we will consider that is our tool showing any non – vulnerable

application vulnerable. In the third section named “False negative” is basically a

consideration about is our tool showing any vulnerable site non-vulnerable or not.

15 ©Daffodil International University

Table 2: Effectiveness of CSRFD

Application

Detection

Successful False Positive False Negative

YTS ✓

Zedge ✓

Rokomari ✓

Netflix ✓

Programming World ✓

Standard Chattered ✓

Charismatic ✓

Brac bank ✓

Artstation ✓

Facebook ✓

Sundorban Courier ✓

DailyMotion ✓

Twitter ✓

Digital Photography

School

✓

fmovies ✓

7lakesbeauty ✓

Mayo Clinic ✓

freepik ✓

LaReve ✓

EB medicine ✓

DiabaticExpo ✓

BMIobject ✓

16 ©Daffodil International University

4.2 Analysis

Web applications are usually restricted their operations/options based on the user type

and user authentication. For example, A web application may have a case scenario

where without being logged in, the user cannot access some of the services that the

application provides. Hence, in our system we cannot perform the experiment on each

forms of web applications because of proper authentication. So, the concept is that,

checking in the Sign up or sign in forms. The justification for the concept is that, our

system works based on token analysis and these tokens are need to placed in each form

where post request applies.

Based on this concept, we have performed our experiment. Total number of 22 web

applications have taken and the result is satisfactory. From table 2, we can see that

among these 22 web applications, our system detects vulnerability successfully in 20

web applications. The false positive number is also minimal. The number is only 2. But

the number of false positive is 0(Zero). That means, if our system gives us response

that a web application is not vulnerable, the experimental results refers the web

application is expected to be safe. Moreover, if it is showing a response to the web

application vulnerable, it is very likely to be vulnerable, but we need to keep in mind

that the response may be a false positive that sometimes.

4.3 Performance

Our proposed system CSRFD detects successfully 20 web applications over 22 web

applications. The Figure 4.3.1 illustrate the potency of our experiment

17 ©Daffodil International University

Figure 4.3.1: Potency of CSRFD

The effectiveness of our tool CSRFD achieved 90.91 percent accuracy with 9.09

percent of false positive and 0(zero) percent of false negative rate. For an analytical

type tool such as CSRFD, the performance is acceptable.

18 ©Daffodil International University

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Findings and Contribution

An automated tool is implemented to detect the Cross-site request forgery vulnerability.

The implemented solution uses a web scrapper to fetch data and find vulnerabilities

within the web form. This tool can perform a crucial role in the detection of Cross-site

Request Forgery vulnerability. The effectiveness of this tool is 90.91 percent.

Sufficiency of that tool is acceptable considering the other solutions.

5.2 Recommendations for Future Works

Our future plan is that to construct a Finite state automata (FSM) for this detection

model. We will try to integrate machine learning with this model. The expectation is,

integration of machine learning with this work will lead us to make a more usable tool.

19 ©Daffodil International University

REFERENCES

Farah, T., Shojol, M., Hassan, M., & Alam, D. (2016, July). Assessment of

vulnerabilities of web applications of Bangladesh: A case study of XSS &

CSRF. In 2016 sixth international conference on digital information and

communication technology and its applications (DICTAP) (pp. 74-78).

IEEE.

Lalia, S., & Moustafa, K. (2019, April). Implementation of Web Browser

Extension for Mitigating CSRF Attack. In World Conference on Information

Systems and Technologies (pp. 867-880). Springer, Cham.

Liu, C., Shen, X., Gao, M., & Dai, W. (2020, September). CSRF Detection

Based on Graph Data Mining. In 2020 IEEE 3rd International Conference

on Information Systems and Computer Aided Education (ICISCAE) (pp.

475-480). IEEE.

Nadar, V. M., Chatterjee, M., & Jacob, L. (2018). A Defensive Approach for

CSRF and Broken Authentication and Session Management Attack. In

Ambient Communications and Computer Systems (pp. 577-588).

Springer, Singapore.

20 ©Daffodil International University

Nagpal, B., Chauhan, N., & Singh, N. (2017). SECSIX: Security engine for

CSRF, SQL injection and XSS attacks. International Journal of System

Assurance Engineering and Management, 8(2), 631-644.

Soleimani, H., Hadavi, M. A., & Bagherdaei, A. (2017, September). WAVE:

Black Box Detection of XSS, CSRF and Information Leakage

Vulnerabilities. In 2017 14th International ISC (Iranian Society of

Cryptology) Conference on Information Security and Cryptology (ISCISC)

(pp. 19-24). IEEE.

Total Number of internet user worldwide | Datareportal. Retrieved May 14 from,

https://datareportal.com/global-digital-overview

The CSRF detection cheat sheet | OWASP. Retrieved May 03 from,

https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

 Web Security CSRF token | Portswigger. Retrieved April 20 from,

https://portswigger.net/web-security/csrf/tokens

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

21 ©Daffodil International University

22 ©Daffodil International University

