

What happens to the design when two more stories are added on top of an existing six storied residential structure in Khulna?

CE-400 (project/thesis)

Supervised by:

Mr. Rayhan Md. Faysal

Assistant Professor

Department of Civil engineering, Daffodil International University

© Department of Civil Engineering

Daffodil International University

102, Sukrabad, Dhanmondi, Dhaka 1207

May 2021

SUBMITTED BY

Name	ID
Nazibullah hossain Shourov	171-47-341
Mohamed abdirisak said	173-47-606
Md. Kabirul hasan	173-47-537
Tarakur Rahman	182-47-738
Yasir Hassan Mohamud	172-47-381

This is to certify that the thesis entitled "What happens to the design when two more stories are added on top of an existing six storied residential structure in Khulna?" submitted by **Nazibullah Hossain Shourov** (171-47-341, Session Spring 2017) **Mohamed Abdirisak Said** (173-47-606, Session Fall 2017), **Md. Kabirul Hasan** (173-47-537, Session Fall 2017), **Tarakur Rahman** (182-47-738 Session Summer 2018), and **Yasir Hassan Mohamud** (172-47-381, Session Summer 2017) has been accepted as satisfactory in partial fulfillment of the requirement for the degree of **Bachelor of Science in Civil Engineering** on June 2021.

ayral

Mr. Rayhan Md. Faysal

Assistant Professor

Department of Civil engineering,

Daffodil International University

DECLARATION

It is stated that the work "What happens to the design when two more stories are added on top of an existing six storied residential structure in Khulna?" reported in this thesis has been performed under the supervision of **Mr. Rayhan Md. Faysal** Assistant Professor Department of Civil engineering, Daffodil International University. The thesis contains no material previously published or written by another person, to the best of our knowledge and belief except where due to reference were made in the thesis itself.

Mr. Rayhan Md. Faysal

Assistant Professor

Department of Civil engineering,

Daffodil International University

Nazibullah Hossain Shourov

ID: 171-47-341

Kabissul

Md. Kabirul Hasan

ID: 173-47-537

gaeion

Yasir Hassan Mohamud

ID: 172-47-381

Mohamed Abdirisak Said

ID: 173-47-606

Tarakur Rahman

ID: 182-47-738

ACKNOWLEDGMENT

First of all, we would like to thank Almighty "ALLAH" for the guidance and for the successful completion of our project. This valuable opportunity and resources was bestowed to us by the almighty with which we were able to use our skill, knowledge, and time in order to complete this project.

We are also pleased to express our deepest sincerity, generosity, and sincere gratitude to our esteemed supervisor **Mr. Rayhan Md. Faysal**, Assistant Professor at Department of Civil Engineering, Daffodil International University, Dhaka. For his indomitable help, invaluable guidance, valuable instruction, consultation, encouragement, strength, helpful advice, and giving us his valuable time to make this study possible.

Also, we would like to thank **Dr. Mohammad Hannan Mahmud Khan,** Assistant Professor, Head of the Department of Civil Engineering, and all the faculty members and staff of Daffodil International University.

We are also grateful to our fellow classmates for sharing knowledge, information and helping us in making this field study success for the Civil Engineering Department of DIU.

DEDICATED

ТО

ALMIGHTY ALLAH

&

OUR PARENTS

©Daffodil International University

ABSTRACT

The study has been conducted in the Department of Civil Engineering of Daffodil International University, Bangladesh with the objective to prepare a project and thesis with a view to partial fulfillment of the requirements for the degree of Bachelor of Science (B.Sc.) in Civil Engineering. The specific objective of the study is the analysis of residential building considering lateral forces of a six storied structure then compare the deflection caused due to wind loads and earthquake loads and then turning the set structure into eight storied and comparing the differences design and compare the change in deflection in the eight storied structure due to wind load. It was observed that the design of the structure changed in the eight storied structure design and the per floor avg. rebar cost for beams increased by 39% for beams and for columns increased by 75%. Also, the dominating force in both structure was wind due to high exposure and the deflection due to wind was more in 8 storied structure, to be exact 21% in X direction and 134% in Y-direction. The basic methodology adopted here is the sequential presentation of analysis & design of all forces of six storied buildings for earthquake and wind effect by UBC 1994, BNBC 1993, ACI, and code 318R-05 code proposed places in Khulna, Bangladesh. Data & figures are presented wherever felt necessary in a reader-friendly way. Analysis and design have been performed with ETABS. The designs of the beam, column, and slab sections were done using AutoCAD.

LIST OF ACRONYMS & ABBREVIATION

P = Axial Load of Column	V = Shear Stress
h = Slab Thickness	b = Width of Beam
d = Effective Depth of Beam	a = Equivalent Depth of Beam
Pcf = Pound per Cubic feet	Psi = Pound per Square Inch
ASTM = American Standard for Testing Material	ACI = American Concrete Institute
BNBC = Bangladesh National Building Code	DDM = Direct Design Method
PWD = Public Work Department	RCC = Reinforcement Cement Concrete
USD = Ultimate Strength Design	UBC = Uniform Building Code
LL = live load	DL = Dead load
PW = partition wall	FF = Floor finish
WL = Wind load	WX= Wind load X-direction
WY= Wind load Y-direction	EQ= Earthquake
EQX= Earth quake X-direction	EQY= Earth quake Y-direction
EQL = Earth quake load	Ag= Gross area
Ast= Area of steel	

LIST OF CONTENTS

Chapter	page
Chapter one: Introduction	1-4
1.1 Introduction	1
1.2 Background of the study	1
1.3 Objective	3
1.4 Scope of study	4
1.5 limitations	4
<u>Chapter two: Review of literature</u>	5-8
2.1 introduction	5
2.2 literature reviews	5
Chapter three: Methodology	9
3.1 Methodology	9
3.2 Work flow chart	9
Chapter four: ETABS model and section details	10-22
4.1 ETABS model details	10
4.2 Load applied on the model	15
4.2.1 Normal loads	15
4.2.2 Wind loads	15
4.2.3 Earthquake load calculations	18
4.3 Sections used	19
Chapter five: Design of beam sections	23-52
5.1 Calculations	23
5.2 Figures of the beam sections	40

5.3 Comparison of 6 floor and 8 floor design:	50
Chapter six: Design of column sections	53-64
6.1 Calculations	53
6.2 Figures of column sections	59
6.3 Comparison of 6 floor and 8 floor design:	62
Chapter seven: Design of slab	65-81
7.1 Calculations	65
7.2 Figures of slab sections	79
Chapter eight: Comparison between Wind and earthquake loads	82-88
8.1 Method of comparison:	82
8.2 Comparison of EQ and WL in 6 storied structure:	82
8.3 Comparison of EQ and WL in 8 storied structure:	85
8.4 Comparison of WL between 6 and 8 storied structure:	88
Chapter nine: Conclusion and Recommendation	89-91
Conclusion	89
Recommendation	90
Appendixes	92-99
Appendix 1	92
Appendix 2	97
References	100-101

LIST OF TABLES

Table name	Page
Table 4.2.2.1: WL calculation for 6 storied structure	16
Table 4.2.2.2: WL calculation for 8 storied structure	18
Calculation for X-Axis of 6 storied structure:	23-26
Table 5.1.1 X-axis GF #2 beam	23
Table 5.1.2 X-axis 1F #2 beam	24
Table 5.1.3 X-axis 2F #2 beam	24
Table 5.1.4 X-axis 3F #2 beam	25
Table 5.1.5 X-axis 4F #2 beam	25
Table 5.1.6 X-axis ROOF #2 beam	26
Calculation for Y-Axis of 6 storied structure:	26-30
Table 5.1.7 Y-axis GF #C beam	27
Table 5.1.8 Y-axis 1F #C beam	27
Table 5.1.9 Y-axis 2F #C beam	28
Table 5.1.10 Y-axis 3F #C beam	28
Table 5.1.11 Y-axis 4F #C beam	29
Table 5.1.12 Y-axis ROOF #C beam	29
Calculation for X-Axis of 8 storied structure:	30-34
Table 5.1.13 X-axis GF #2 beam	30
Table 5.1.14 X-axis 1F #2 beam	31
Table 5.1.15 X-axis 2F #2 beam	31
Table 5.1.16 X-axis 3F #2 beam	32
Table 5.1.17 X-axis 4F #2 beam	32
Table 5.1.18 X-axis 5F #2 beam	33
Table 5.1.19 X-axis 6F #2 beam	33

Table 5.1.20 X-axis ROOF #2 beam	34
Calculation for Y-Axis of 8 storied structure:	35-39
Table 5.1.21 Y-axis GF #C beam	35
Table 5.1.22 Y-axis 1F #C beam	35
Table 5.1.23 Y-axis 2F #C beam	36
Table 5.1.24 Y-axis 3F #C beam	36
Table 5.1.25 Y-axis 4F #C beam	37
Table 5.1.26 Y-axis 5F #C beam	37
Table 5.1.27 Y-axis 6F #C beam	38
Table 5.1.28 Y-axis ROOF #C beam	38
Calculation for 6 storied structure:	53-55
Table 6.1.1: Calculation of CC	53
Table 6.1.2: Calculation of CEX	54
Table 6.1.3: Calculation of CI	55
Calculation for 8 storied structure:	56-58
Table 6.1.4: Calculation of CC	56
Table 6.1.5: Calculation of CEX	57
Table 6.1.6: Calculation of CI	58
Calculation for Long direction of 6 storied structure:	65-69
Table 7.1.1: Data for long direction	66
Table 7.1.2: Slab calculation for long direction	68-69
Calculation for Short direction of 6 storied structure:	70-73
Table 7.1.3: Data for short direction	70
Table 7.1.4: Slab calculation for short direction	72-73
Calculation for Long direction of 8 storied structure:	73-76

Table 7.1.1: Data for long direction	74
Table 7.1.2: Slab calculation for long direction	75-76
Calculation for Short direction of 8 storied structure:	76-78
Table 7.1.3: Data for short direction	76

Table 7.1.4: Slab calculation for short direction	77-78
Tuble 7.1.4. Shab calculation for short direction	11 10

LIST OF FIGURES

Figure name	Page
Fig1.2.1: Building collapse due to typhoon.	2
Fig1.2.2: Building collapse due to Earthquake	2
Fig4.1.1: ETABS model of 6 storied building	10
Fig4.1.2: ETABS model of 6 storied building with longitudinal reinforcement	12
Fig4.1.3: ETABS model of 8 storied building	13
Fig4.1.4: ETABS model of 8 storied building with longitudinal reinforcement	14
Fig4.3.1: Beam failures of GF	20
Fig4.3.2: Beam failures of 1F	20
Fig4.3.3: Beam failures of 2F	20
Fig4.3.4: Beam failures of 3F	21
Fig4.3.5: Beam failures of 4F	21
Beam figures for 6 storied structure	40-45
Fig 5.2.1: Beam rod detailing for X-axis GF-4F	40
Fig 5.2.2: Beam rod detailing for X-axis ROOF	40
Fig 5.2.3: Beam Cross section for X-axis GF-ROOF	41
Fig 5.2.4: Beam rod detailing for Y-axis GF-2F	42
Fig 5.2.5: Beam Cross-sections for Y-axis GF-2F	42
Fig 5.2.6: Beam rod detailing for Y-axis 3F	43
Fig 5.2.7: Beam Cross-sections for Y-axis 3F	43
Fig 5.2.8: Beam rod detailing for Y-axis 4F	44
Fig 5.2.9: Beam rod detailing for Y-axis ROOF	44
Fig 5.2.10: Beam Cross-sections for Y-axis 4F-ROOF	45
Beam figures for 8 storied structure	46-49
Fig 5.2.11: Beam rod detailing X-axis	46
Fig 5.2.12: Beam Cross-sections for X-axis	47

Fig 5.2.13: Beam rod detailing Y-axis	48
Fig 5.2.14: Beam Cross-sections for Y-axis	49
Fig 5.3.1: Chart of different size bars used per floor in the structures	50
Fig 5.3.2: Beam cost per linear foot	51
Fig 5.3.3: Chart of Prices to design per floor of 6Floor and 8Floor designs	52
Fig 6.2.1: Column rod detailing of CC, CEX and CI for all floors	59
Fig 6.2.2: Column Cross-sections of CC, CEX and CI for all floors	59
Fig 6.2.3: Column rod detailing of CC and CEX for top 4 floors and CI for all	60
floors	
Fig 6.2.4: Column rod detailing of CC and CEX for bottom 4 floors	60
Fig 6.2.5: Column Cross-sections of CC and CEX for top 4 floors and CI for all	61
floors	
Fig 6.2.6: Column Cross-sections of CC and CEX bottom 4 floors	61
Fig 6.3.1: Chart of Longitudinal reinforcement requirement increase of 8floor	62
structure	
Fig 6.3.2: Column cost per linear foot	63
Fig 6.3.3: Chart of Prices to design per floor of 6Floor and 8Floor designs	64
Moment diagram of 6 storied structure:	
Fig 7.1.1: Moments on slab 1-9 Long direction	67
Fig 7.1.2: Moments on slab 1-9 Short direction	71
Moment diagram of 8 storied structure:	/1
Fig 7.1.3: Moments on slab 1-9 Long direction	74
Fig 7.1.4: Moments on slab 1-9 Short direction	77
Fig 7.2.1: Slab section	79
Fig 7.2.2a: Section A-A	80
Fig 7.2.2b: Section A-A	81
Fig 7.2.3: Section B-B	81
Fig 8.2.1: Deflection of 6 storied structure due to Wind-WX load	82
Fig 8.2.2: Maximum deflection point in WX of 6 storied structure.	82

Fig 8.2.3: Deflection of 6 storied structure due to Wind-WY load	83
Fig 8.2.4: Maximum deflection point in WY of 6 storied structure.	83
Fig 8.2.5: Deflection of 6 storied structure due to Earthquake-EQX load	84
Fig 8.2.6: Maximum deflection point in EQX of 6 storied structure.	84
Fig 8.2.7: Deflection of 6 storied structure due to Earthquake-EQY load	84
Fig 8.2.8: Maximum deflection point in EQY of 6 storied structure.	84
Fig 8.2.9: Deflection of 8 storied structure due to Wind-WX load	85
Fig 8.2.10: Maximum deflection point in WX of 8 storied structure.	85
Fig 8.2.11: Deflection of 8 storied structure due to Wind-WY load	86
Fig 8.2.12: Maximum deflection point in WY of 8 storied structure.	86
Fig 8.2.13: Deflection of 8 storied structure due to Earthquake-EQX load	87
Fig 8.2.14: Maximum deflection point in EQX of 8 storied structure.	87
Fig 8.2.15: Deflection of 8 storied structure due to Earthquake-EQY load	87
Fig 8.2.16: Maximum deflection point in EQY of 8 storied structure.	87

1.1 INTRODUCTION:

It is well known that we as students are only taught only the basics of designing and load calculations during our study. But as the world is constantly evolving so do the design procedures and methods of calculations. In order to achieve a successful professional practice one must be well trained in special designing skills and codified procedures. To understand and keep knowledge of this rapid development and engage safely in innovative design, engineers need basic understanding of the new procedures through grounding in basic performance of concrete and steel structures and how they can be designed safely, economically and efficiently.

This knowledge creates a base foundation on new design procedures and familiarizes engineers with current design procedures.

1.2 BACKGROUND OF THE STUDY:

The world is rapidly evolving and the population of it is increasing day by day. To accommodate most people in one economic structure, maintaining the safety regulations is the greatest challenge a civil engineer has to face in this modern world.

Most of the modern economic structures are made of R.C.C (Reinforced cement concrete) to simplify design procedures. The main goal of a structural engineer is to design the structures in a way that the strength of the structure must be safe against collapse and serviceable in use. Safety requirements indicate that the structure must be adequate to support all loads that may act on it during the design period.

There are mostly two types of load a structural system has to carry:

- Vertical loads due to gravity (consists of dead loads and live loads).
- Lateral loads due to wind action on building sides and earthquake loads.

The wind forces differ a considerable amount with the location in a maximum of 100-year intervals. In Bangladesh, the annual average wind speed at 30 m height along the coastal belt is above 5 m/s. Wind speed in northeastern parts is above 4.5 m/s while inland wind speed is around

3.5 m/s for the most part. But during tropical cyclones (like sidr) the wind speed in the coastal area increases a significant amount. Sidr had an average wind speed of 215 km/h.

Wind loading competes with seismic loading as the dominant environmental loading for structures. Both of these forces produce an equal amount of damages to the structures in a long time period. Although large damaging earthquakes happen less often than severe wind storms. But many wind storms on earth are small and localized. In tropical oceans, most severe wind events occur (like cyclones, hurricanes, and typhoons). When these wind events make landfills in coastal areas the effects can be devastating. Also, earthquakes are responsible for the damages of a lot of structures. In Dhaka city, the effects of a huge earthquake will be devastating mostly in old towns as the structures there are old and closely erected to other structures. Damage to one structure has potential to damage the neighboring structures. Also in recent years, there is a trend of making skyscrapers in Dhaka city which if not designed properly can be a victim of a large disaster.

Fig1.2.1: Building collapse due to typhoon.

Fig1.2.2: Building collapse due to Earthquake

This study is an attempt to compare the effect of lateral forces on a residential building.

Structural engineering has been in use for ages, and one of the best ancient structures was the Pyramid of Giza that was constructed within the 26th century BC. The main structures during the medieval period were the pyramids since the form of the pyramids is essentially stable. Theoretical knowledge about the structures was limited, and construction techniques were supported by experience only. As a result, the produced structures were inefficient and expensive. But thanks to the rapid development of society and increase in population humans needed to adopt advanced

technologies and construction methods to satisfy their got to be accommodated and therefore the consideration of advanced, economic, and safe structure came into existence.

Generally, a concrete structure is made of a set of frames consisting of several vertical and horizontal members. That's why it is also known as a frame structure. According to the definition of BNBC, there are 3 types of frame structures:

- Any building having the height less than 65 feet is called as low rise building.
- Any building having the height of 70-75 feet is called a medium rise building (typically 8 storied buildings).
- Any building having a height more than 75 feet is called a high rise building (typically more than 8 stories).

The structural design of a building is usually carried out considering the earthquake load and wind load.

1.3 OBJECTIVE:

The objectives of this project are:

- To analyze the effect of lateral forces on a residential building.
- To compare design between a similar structure with 6 floors and 8 floors.
- To find out dominating lateral force (i.e. weather wind force or earthquake force)
- To compare changes in deflection due to wind of similar structures after adding extra floors.
- To get basic knowledge in designing concrete structures using advanced ETABS software.

1.4 SCOPE OF STUDY:

The general scope of this study is to gain general knowledge about designing structures using advanced software such as ETABS. This study will also help to learn about the effects of lateral forces affecting the structures and compare between those forces.

We will also understand how extra floor loads affect the structure in design and understand the design codes better.

1.5 LIMITATIONS:

A detailed overall analysis of the structure could not be done due to the shortage of time. Only two beam sections from each floor were designed (one on the x-axis and one on the y-axis), only 3 columns were designed (the columns bearing the most load), only slab of GF was designed (the slab bearing the most moment). The design of stairs and footings was completely skipped.

The BNBC 1993 was used so the study may be outdated and old software was used (i.e., ETABS V.9.6.0) to comply with the recommendation of the BNBC 1993 code.

This study was conducted for a theoretical scenario so the dimensions of the structure were mostly unrealistic.

This study was conducted for residential buildings. A study of other structures was not conducted because it would create a large variation and cost time.

In this study, no cost estimation was done.

2.1 INTRODUCTION

There are sufficient studies presented by scholars, during which they performed detailed studies on wind and earthquake loads working on the structures and explained various sorts of methods, and used different software for the analysis of such buildings. The detailed description of such studies are presented below.

2.2 LITERATURE REVIEWS

Dr. K. R. C. Reddy and Sandip A. Tupat (2014) did a study on a comparative of wind and earthquake loads to decide the design loads of a multistoried building. The significance of the research is to estimate the design loads of a structure when subjected to wind and earthquake loads in every earthquake zone. The research design made use of an equivalent lateral load method for the calculation of the forces on the structures. The research considered the wind load as stochastic and time-dependent. It estimated wind load based on the design wind speed of that zone with a variation of 20%. He made the analysis on the low, medium, and high rise buildings. The wind forces are constant up to the third floor and have increased beyond the Third floor at a constant rate. The wind pressure increased as the height of the building increased. As the zone factor increases the earthquake forces also increase gradually. He concluded that wind loads are more critical than the earthquake loads. [1]

Khaled M. Heiza (2012) made a study on the effects of lateral Loads induced from wind and earthquakes in the design of reinforced concrete structures, especially for high–rise buildings. They made use of the Egyptian code of practice for calculating loads and forces on the High Rise building. They developed a computer program to analyze the structural behavior under wind and earthquake lateral loads acting on the structure. For performing analysis he took different heights of structures with different Floor weights, boundary conditions and also considered different seismic Zone factors and also different wind zones. A computer program has been developed to analyze the reinforced concrete buildings under the effect of wind and earthquake loads. The program calculates the flexibility of vertical members that resist wind and earthquake loads. He considered a twelve-story building for the analysis. It also calculates the center of mass and the

center of rigidity of the building. Moments, lateral shear forces and the additional shear forces due to torsion on each vertical element resisting lateral load at each floor are also calculated. The wind is more effective than an earthquake for tall buildings when minimum design factors are considered, while an earthquake is found to be more effective for short Buildings. The wind effect increases rapidly when the height of the building Increases. The total shear force and the moment at the base result from seismic analysis when loads acting normal to the short side can be greater than the other direction. [2]

Hemil M .Chauhan, Manish Pomal, and Gyayak Bhuta (2013), presented a study on the comparative study of wind forces on high-rise buildings. For analysis, they used ETABS software with four terrain categories and six different wind Speeds. They performed both the analysis on 60m and 120m buildings. In static analysis, both buildings give almost the same values of shear forces & bending Moments. IS present code gives increased values of base shear compared to IS Draft code. IS Draft code gives more accurate and more direct than present code for estimating response parameters such as acceleration and Force. [3]

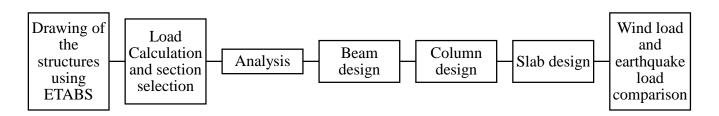
M.D. Kevadkar and P. B. Kodag (2013) have done studies of the susceptibility of the lateral Load forces on the structure. For this analysis, an R.C.C structure is modeled using the computeraided program E-TABS to find out the effective lateral Load system during an earthquake. They modeled a 13 storied building for Carrying out the analysis using pushover analysis. They concluded that steel bracings reduce flexure and shear demands on beams and columns and Transfer the lateral load through axial load mechanism. The lateral displacement of the building is reduced by 40 to 60 % by the use of a shear Wall Type-III and X Type steel bracing system. Steel bracings can be used as an alternative to the other strengthening techniques available as the total Weight of the structure changes significantly. Shear wall has more story shear as compared to steel bracing but there is a 10 to 15% difference in lateral Displacement between shear wall and steel bracing. Shear wall and steel bracing increase the level of safety since the demand curve intersects near the elastic domain. The capacity of the steel braced structure is extra as compared to the shear wall structure. Steel bracing has more margin of Safety against collapse as compared with shear wall. According to M.D. Kevadkar and P. B. Kodag, the structure in high seismic areas may be admitted to the severe damage. Along with load due to gravity, the structure has to withstand lateral load which can develop high stresses. Nowadays, shear walls in R.C structure and steel bracings

in steel structure are the most popular systems to resist lateral load due to earthquakes, wind, and blast. [4]

According to the researcher **Erdal**, **Irtem**, **Kaan Turker**, **and Umut Hasgul** (2007), to make a realistic evaluation related to heavy damage and collapse reasons of reinforced concrete buildings during the severe earthquake using the Turkish Earthquake Code the SAP2000 Structural Analysis program is used Pushover analyses are carried out to determine the nonlinear behavior of the buildings under earthquake loads. To determine the performance of the building, displacements rather than forces are used. [5]

According to Zahra, Tatheer, and Yasmeen Zehra (2012), the existing building in Karachi and the susceptibility of high-rise buildings to severe earthquakes that may occur in the near future. As the earthquake zone has increased after the Bhuj earthquake the high-rise buildings are analyzed using the computer-aided software E-TABS. For carrying out the analysis of a building with a moment-resisting frame with a shear wall and a beam column moment resisting frame is considered for comparison of the high rise building. He clearly observed that the buildings in the higher seismic zone require a greater amount of steel to increase the stiffness of the members when subjected to higher seismic forces. The interior columns demand more steel reinforcement to support the higher seismic forces during higher seismic activity and require quite a higher amount of reinforcement. [6]

Hirde, Suchita, and Vinay Magadum (2014) presented a study on the strictness of earthquake forces against wind forces for multistory RCC structure. The main purpose is to dissect the multistory structure set in wind zone VI and compare its performance to the structures set in zone V. The analysis is carried out using the software ETABS. They observed that the effect of both earthquake forces and wind forces on multistory structures increases with an increase in height of the structure. It's observed that base shear and story drift is less in the case of wind analysis for G 5 and G 10 structures whereas for G 15 and G 20 rearing it's other in the case of wind analysis. Effect of earthquake forces compared with the effect of wind forces on the performance of multistory structures set in seismic zone V and wind zone VI, earthquake is less effective than wind effect for towering structures. Since towering structures are more flexible and for short structures, earthquake is plant to be more effective. Hence the strictness of wind forces increases


from medium- rise to high- rise structures than that of earthquake forces. The structure should be design for more severe weight to achieve safer design [7]

So, as there are no studies conducted for design a six storied structure in Khulna, Bangladesh using BNBC 1993 considering lateral loads in mind and comparing the deflection caused due to earthquake and wind load on the structure and comparing the effect of adding two extra stories in a structure we decided we will conduct this study to understand about the outcomes.

3.1 METHODOLOGY:

A fictional six-storied edge-supported slab structure building was provided. Its plan and elevation were drawn. ETABS software was used for the analysis and design of the project. The calculation was done as per ACI, BNBC, and UBC codes and the portal frame method has been used for analysis using ETABS software and sections were selected. The wind load calculation on the structure was done as per BNBC 1993 and UBC 1994 (co-efficient, wind speed, etc.). The calculation was first done manually to get accurate loads on the building using ETABS the analysis was done and matched with the manually calculated wind loads. Earthquake load on the structure was done mostly by ETABS. Then the beam, column and slab were designed. And at last the wind-load and earthquake-load effects were compared.

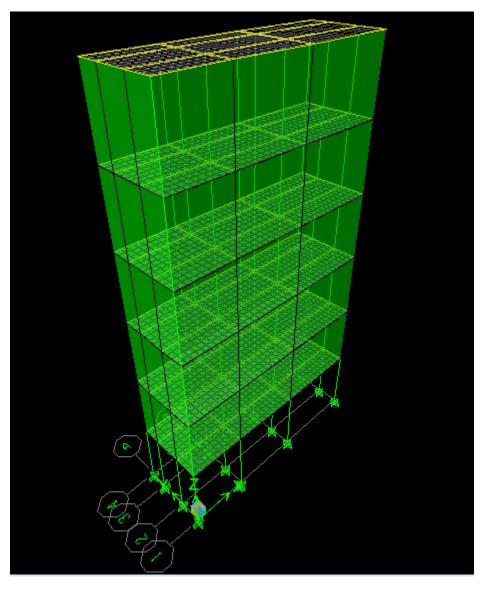
3.2 WORK FLOW CHART:

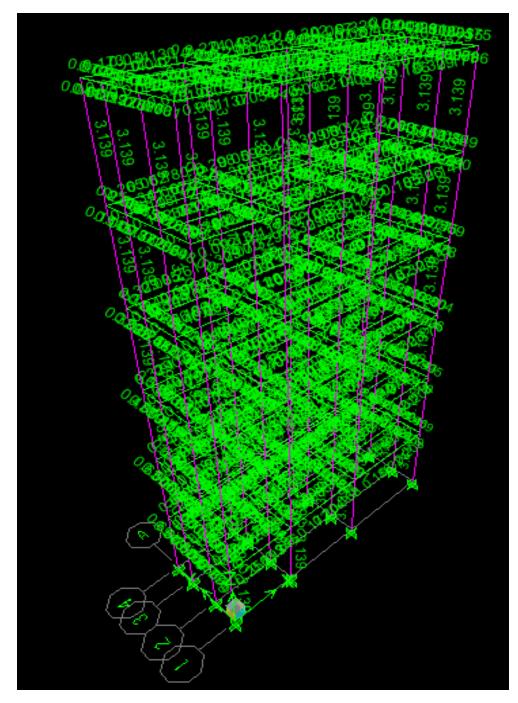
CHAPTER FOUR: ETABS MODEL AND SECTION DETAILS

4.1 ETABS MODEL DETAILS:

The structures were designed for "Khulna" where wind speed is 238km/h and Earthquake zone is Zone 1 with Z=0.075

Below the model for our 6 storied building is shown:

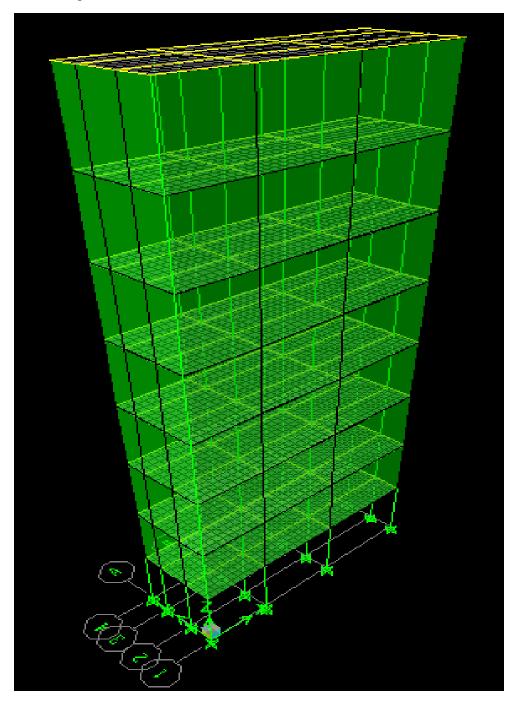



Fig4.1.1: ETABS model of 6 storied building

In the figure the distance between sections in Y-axis are:

1-2 is 1.25m, 2-3 is 1.5m and 3-4 is 1m

In the figure the distance between sections in X-axis are:


A-B is 3m, B-C is 3.75m and C-D is 4.5m

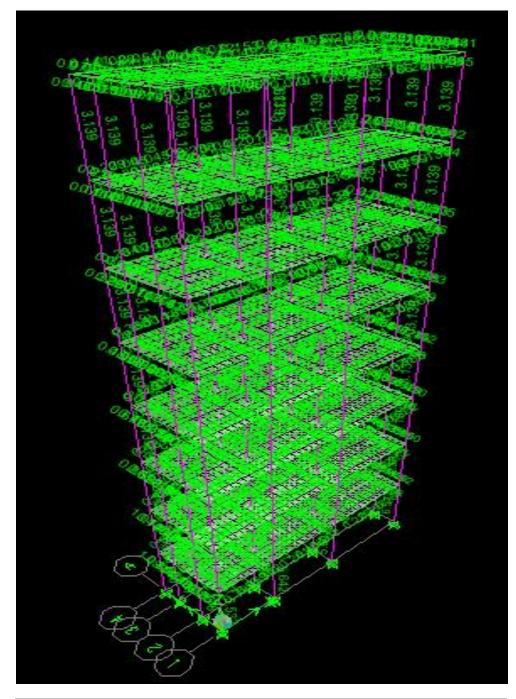

Below the 6 storied model with longitudinal rebar percentage is shown:

Fig4.1.2: ETABS model of 6 storied building with longitudinal reinforcement

Below the model for our 8 storied building which was designed by adding two extra floors on our old 6 storied building is shown:

Fig4.1.3: ETABS model of 8 storied building

Below the 8 storied model with longitudinal rebar percentage is shown:

Fig4.1.4: ETABS model of 8 storied building with longitudinal reinforcement

4.2 LOADS APPLIED ON THE MODEL

4.2.1 NORMAL LOADS:

Here are the loads that were applied to the structure

Loads	
LL	3 KN/m ²
PW	2.5 KN/m ²
FF	1.5 KN/m ²

4.2.2 WIND LOADS:

Here are the calculations for wind load at our 6 storied structure:

From BNBC 1993 we get,

Exposure condition	Basic wind speed, V _b	Velocity to pressure co- efficient, Cc	Structural importance co-efficient CI	Sustained wind pressure qz	Gust co- efficient Cg	Pressure, P _{z-x}	Pressure, Pz-y	
А	238 km/h	47.2x10 ⁻⁶	1	2.6736 C _z KN/m ²	1.363	4.0968 C _z KN/m ²	5.3072 C _z KN/m ²	
	147.918 mph							
Wind direction-X				Wind direction-Y				
	B=	3.75m		B= 11.25m				
	L= 1	11.25m		L= 3.75m				
	h=	17.5m		h= 17.5m				
	L/	B= 3		L/B= 0.3				
	h/E	B= 4.6		h/B= 1.5				

 $C_p = 1.10$

 $C_p = 1.425$

WL calculation for 6 storied structure: the calculation was done using BNBC 1993 (Section 2.4)

	Table 4.2.2.1: WL calculation for 6 storied structure									
Wind pressure calculation			X-dir			Y-dir				
	Height				Floor	Floor			Floor	Floor
Floor	(m)	Cz	P _{z-x}	Area	level	level	P _{z-y}	Area	level	level
Floor	from	CZ	(KN/m ²)	(m ²)	force	force	(KN/m ²)	(m ²)	force	force
	GL				(KN)	(kip)			(KN)	(kip)
1F	3.5	0.368	1.508	13.125	19.788	4.448	1.953	39.375	76.901	17.287
2F	7	0.442	1.811	13.125	23.767	5.343	2.346	39.375	92.365	20.764
3F	10.5	0.531	2.175	13.125	28.552	6.419	2.818	39.375	110.964	24.945
4F	14	0.604	2.474	13.125	32.477	7.301	3.206	39.375	126.218	28.374
Roof	17.5	0.668	2.737	6.563	17.959	4.037	3.545	19.688	69.796	15.690
			Total force along X direction		27.548]	Total force	e along Y direction	107.060	

Maximum allowable deflection for 6 floors:

h/500 0.035 m 1.378 in

Here are the calculations for wind load at our 8 storied structure:

From BNBC 1993 we get,

Exposure condition	Basic wind speed, V _b	Velocity to pressure co- efficient, Cc	Structural importance co-efficient C ₁	Sustained wind pressure q _z	Gust co- efficient Cg	Pressure, P _{z-x}	Pressure, Pz-y
А	238 km/h	47.2x10 ⁻⁶	1	2.6736 C _z KN/m ²	1.333	3.9844 C _z KN/m ²	5.0786 C _z KN/m ²
	147.918						
	mph						

Wind direction-X	Wind direction-Y
B= 3.75m	B= 11.25m
L= 11.25m	L= 3.75m
h= 25.5m	h= 25.5m
L/B= 3	L/B= 0.3
h/B= 6.8	h/B= 2.26
C _p = 1.118	C _p = 1.425

WL calculation for 8 storied structure: the calculation was done using BNBC 1993 (Section 2.4)

	Table 4.2.2.2: WL calculation for 8 storied structure									
	Wind pressure calculation			X-dir			Y-dir			
	Height				Floor	Floor			Floor	Floor
Eleca	(m)	C ₂	P _{z-x}	Area	level	level	P _{z-y}	Area	level	level
Floor	from	Cz	(KN/m ²)	(m ²)	force	force	(KN/m ²)	(m ²)	force	force
	GL				(KN)	(kip)			(KN)	(kip)
1F	3.5	0.368	1.466	13.125	19.245	4.326	1.869	39.375	73.589	16.543
2F	7	0.442	1.761	13.125	23.115	5.196	2.245	39.375	88.387	19.869
3F	10.5	0.531	2.116	13.125	27.769	6.242	2.697	39.375	106.184	23.870
4F	14	0.604	2.407	13.125	31.586	7.101	3.067	39.375	120.782	27.152
5F	17.5	0.668	2.662	13.125	34.933	7.853	3.393	39.375	133.580	30.029
6F	21	0.725	2.889	13.125	37.914	8.523	3.682	39.375	144.978	32.591
Roof	25.5	0.783	3.120	6.563	20.474	4.602	3.977	19.688	78.288	17.599
			Total force along X direction 43.8			43.844	Total for	rce along	direction	167.653

Maximum allowable deflection for 8 floors:

h/500 0.051 m 2.001 in

4.2.3 EARTHQUAKE LOAD CALCULATIONS

Both of the structure was designed for Khulna. So, according to BNBC 1993:

Earth quake load							
Soil type	S3	S=1.5					
Zone	Zone 1	Z=0.075					
Importance factor	1						

EQL calculation: No manual calculation was done. ETABS was used to apply the load on the structure. The application process was similar to BNBC 1993 (Section 2.5).

4.3 SECTIONS USED:

Column selections							
Name	Sign	Dimensions (W X D)					
Corner columns	Cc	450mm X 450mm					
Internal columns	Ci	450mm X 450mm					
External columns (X-dir)	Cex	450mm X 450mm					
External columns (Y-dir)	Cey	450mm X 450mm					

Below the sections used in the 6 storied structure to support the loads are shown:

Beam selections								
Name	Sign	Dimensions (W X D)						
Internal beam (X-dir)	s Bix	300mm X 350mm						
Internal beam (Y-dir)	s Biy	300mm X 300mm						
External beam (X-dir)	Bex	300mm X 300mm						
External beam (Y-dir)	Bey	300mm X 300mm						
Material properties	Sla	Slab thickness						
Fc= 3.5ksi	Mem	Membrane= 150mm						
Fy= 60ksi	Ben	Bending= 125mm						

After the addition of two extra floors at our 6 storied structure it was noticed that many of our beams at Xdirection failed. Below are the figures of the floors on which the beams failed:

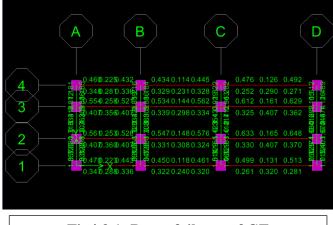


Fig4.3.1: Beam failures of GF

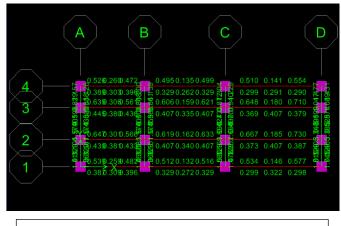
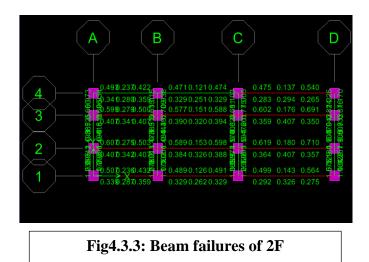
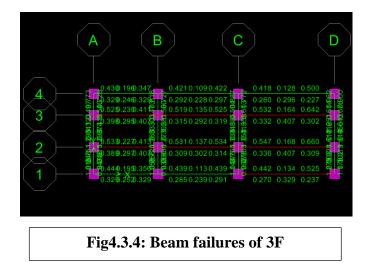
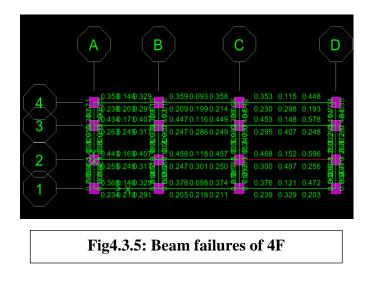





Fig4.3.2: Beam failures of 1F

This occurred due to O/S #45 Shear stress due to shear force and torsion together exceeds maximum allowed. There are many ways to solve this, but we increased the sections of internal and external Beams at X-direction.

Below the new sections used in the 8 storied structure to support the loads are shown:

Column selections										
Name	Sign	Dimentions (W X D)								
Corner columns	Cc	450mm X 450mm								
Internal columns	Ci	450mm X 450mm								
External	Cex	450mm X 450mm								
columns (X-dir)	COA									
External	Cev	450mm X 450mm								
columns (Y-dir)	209									

	Beam selections											
Name	Sign	Dimentions (W X D)										
Internal beams (X-dir)	Bix	400mm X 450mm										
Internal beams (Y-dir)	Biy	300mm X 300mm										
External beams (X-dir)	Bex	300mm X 450mm										
External beams (Y-dir)	Bey	300mm X 300mm										

Material properties	Slab thickness
Fc= 3.5ksi	Membrane= 150mm
Fy= 60ksi	Bending= 125mm

NOTE: Clear cover to rebar Centre in both 6 floor and 8 floor structure for beam was 87.5mm and for column was 62.5mm.

5.1 CALCULATIONS:

For time constraints only two beam sections from every floor of both structures were designed in this study. One in the X-axis and One in the Y-axis.

The beams were selected based on the highest reinforcement requirement.

Below the Calculations for 6storied structure are shown:

(Note: For design of beam sections Bending m11 Modifier, Bending m22 Modifier, Bending m12 Modifier was taken as 1 instead of 0.00000001)

CALCULATION FOR X-AXIS OF 6 STORIED STRUCTURE:

₽¥₩	4070.137 2840.247		90.212	0.308 0	.426 000000000000000000000000000000000000	0.49 0.24 0.24			—¥ ∞			
	X-axis GF #2 beam											
reinfor	Maximum reinforcement needed Bar selected to be used				Maxi reinfore nee	cement	201 501	ected to be used	Number of Bar provided			
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	Positive side(in ²)		Area(in ²)	provided			
Left	0.498	4	0.2	3	Left	0.284	4	0.2	2			
Middle	0.137	4	0.2	2	Middle	0.407	4	0.2	3			
Right	0.495	4	0.2	3	Right	0.275	4	0.2	2			

Table 5.1.1: X-axis GF #2 beam:

Table 5.1.2 X-axis 1F #2 beam:

	0.429	0.115	0.443	0,907 0,908	0.502	0.138	0.536	1 0 0 8 1.0 0 8
2 0.299 0.247 0.300 2 1	0.228	0.305	0.225	2649 2734	0.262	0.407	0.272	1374 1824

	X-axis 1F #2 beam												
Maximum reinforcement needed		Bar selected to be used		Number of Bar provided	Maximum reinforcement needed		Bar selected to be used		Number of Bar provided				
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided				
Left	0.502	4	0.2	3	Left	0.299	4	0.2	2				
Middle	0.159	4	0.2	2	Middle 0.407		4	0.2	3				
Right	0.536	4	0.2	3	Right	0.3	4	0.2	2				

Table 5.1.3 X-axis 2F #2 beam:

02 0.407 0.130 0.407	0.407	0.104	0.407	0.70 0.78	0.453	0.130	0.506	0:90 0:90
0.223 0.211 0.243 5 5	0.203	0.303	0.199	8596 8600	0.253	0.407	0.241	0689 0661

	X-axis 2F #2 beam													
Maximum reinforcement needed		Bar selected to be used		Number of Bar	Maxi reinfor nee	cement		cted to be sed	Number of Bar provided					
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	Positive side(in ²)		Area(in ²)	provided					
Left	0.453	4	0.2	3	Left	0.253	4	0.2	2					
Middle	0.13	4	0.2	2	Middle	0.407	4	0.2	3					
Right	0.506	4	0.2	3	Right	0.243	4	0.2	2					

Table 5.1.4 X-axis 3F #2 beam:

0.407 0.094 0.154 0.191	0.321 🔂	0.407	0.092	0.407	0.50) 0.58)	0.407	0.120	0.466	0.68) 0.68)
0.154 0.191	0.173 🙀 👸	0.172	0.301	0.167	329	0.257	0.407	0.230	377 364

	X-axis 3F #2 beam													
Maximum reinforcement needed		Bar selected to be used		Number of Bar provided	Maximum reinforcement needed		Bar selected to be used		Number of Bar provided					
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided					
Left	0.407	4	0.2	3	Left	0.257	4	0.2	2					
Middle	0.12	4	0.2	2	Middle	0.407	4	0.2	3					
Right	0.466	4	0.2	3	Right	0.23	4	0.2	2					

Table 5.1.5 X-axis 4F #2 beam:

B B C C C C C C C C C C C C C	1 1 1 1 1 1 1 1 1 1	0.078	0.394	0.309	0.407	0.111	0.429	0.40.1 0.405
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.13	5 0.300	0.136	18555 18520	0.257	0.407	0.218	38 2 14 38329

	X-axis 4F #2 beam												
Maximum reinforcement needed		Bar selected to be used		Number of Bar provided	Maximum reinforcement needed		200 3010	ected to be sed	Number of Bar provided				
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	Positive side(in ²)		Area(in ²)	provided				
Left	0.407	4	0.2	3	Left	0.257	4	0.2	2				
Middle	0.111	4	0.2	2	Middle	0.407	4	0.2	3				
Right	0.429	4	0.2	3	Right	0.218	4	0.2	2				

Table 5.1.6 X-axis ROOF #2 beam:

107 107 107 107 107 107 107 107 107 107	0.308	0.069	0.350	0.202 0.207	0.407	0.091	0.407	0.308 0.328
	0.142	0.303	0.119	12837	0.262	0.407	0.262	13635 1693

			2	X-axis RO(OF #2 bea	m					
Maxi reinfore nee	••••••	Bar selected to be used		Number of Bar provided	Maximum reinforcement needed		reinforcement		Bar selected to be used		Number of Bar provided
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided		
Left	0.407	4	0.2	3	Left	0.262	4	0.2	2		
Middle	0.091	4	0.2	2	Middle	0.407	4	0.2	3		
Right	0.407	4	0.2	3	Right	0.262	4	0.2	2		

Stirrups design:

(Note: value of shear reinforcement was very low so minimum shear reinforcement was provided)

We use #3 bars as stirrups. According to SMRF:

Spacing of stirrups for first and last L/3 is d/4 = (13.8-3.48)/4 = 2.5 in c/c

For middle part spacing of stirrups are d/2 = 5 in c/c

CALCULATION FOR Y-AXIS OF 6 STORIED STRUCTURE:

Table 5.1.7 Y-axis GF #C beam:

0.891 0.220 0.682	0.820	0.272 0.825	0.	560	0.791
0.845 0.220 0.716	0.810	0.329 0.808	0.	592	0.756

				Y-axis GF	f #C beam	l			
reinford	aximum Bar selected to be Number Maximum forcement used of Bar reinforcement needed needed needed needed				r reinforcement needed			ected to be sed	Number of Bar provided
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided
Left	0.891	5	0.31	3	Left	0.845	5	0.31	3
Middle	0.272	5	0.31	2	Middle	0.329	5	0.31	3
Right	0.825	5	0.31	3	Right	0.808	5	0.31	3

Table 5.1.8 Y-axis 1F #C beam:

0.897 0.221 0.649	0.907 0.310 0.927	0.498 0.758
0.802 0.221 0.731	0.908 0.329 0.907	0.569 0.685

				Y-axis 1F	#C beam				
Maxi reinfor nee	cement	200 0010	Bar selected to be used of Bar provided Maximum reinforcement needed		reinforcement Bar selected to be used			Number of Bar provided	
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided
Left	0.907	5	0.31	3	Left	0.908	5	0.31	3
Middle	0.31	5	0.31	2	Middle	0.329	5	0.31	3
Right	0.927	5	0.31	3	Right	0.907	5	0.31	3

Table 5.1.9 Y-axis 2F #C beam:

0.740 0.185 0.48 <mark>6</mark>	0.774	0.266	0.801	0.345	0.6 <mark>0</mark> 1
0.615 0.185 0.60 <mark>0</mark>	0.783	0.329	0.781	0.440	0.503

				Y-axis 2F	#C beam				
Maxi reinfore nee		Bar selected to be used		Number of Bar provided	Maximum reinforcement needed		Bar selected to be used		Number of Bar provided
Negative	side(in ²)	No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided
Left	0.774	5	0.31	3	Left	0.783	5	0.31	3
Middle	0.266	5	0.31	2	Middle	0.329	5	0.31	3
Right	0.801	5	0.31	3	Right	0.781	5	0.31	3

Table 5.1.10 Y-axis 3F #C beam:

0.539 0.137 0.329	0.573	0.195	0.602	0.253	0.418
0.397 0.137 0.436	0.586	0.292	0.582	0.329	0.329

				Y-axis 3F	#C beam				
Maxi reinford need	cement	used of E		Number of Bar provided	Maximum reinforcement needed		Bar selected to be used		Number of Bar provided
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided
Left	0.573	5	0.31	2	Left	0.586	5	0.31	2
Middle	0.195	5	0.31	2	Middle	0.292	5	0.31	2
Right	0.602	5	0.31	2	Right	0.582	5	0.31	2

Table 5.1.11	Y-axis 4F	#C beam:
--------------	-----------	----------

0.329 0.085 0.15	0.359	0.116	0.387	0.059	0.303
0.219 0.085 0.329	0.374	0.211	0.365	0.210	0.128

	Y-axis 4F #C beam												
Maximum reinforcement needed		Bar selected to be used		Number of Bar provided	Maxi reinfore nee	cement	200 0010	cted to be sed	Number of Bar provided				
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	Positive side(in ²)		Area(in ²)	provided				
Left	0.359	4	0.2	2	Left	Left 0.374		0.2	2				
Middle	0.116	4	0.2	2	Middle 0.211		4	0.2	2				
Right	0.387	4	0.2	2	Right	0.365	4	0.2	2				

Table 5.1.12 Y-axis ROOF #C beam:

0.185 0.037 0.037	0.232 0.054	0.276	0.025	0.112
0.061 0.088 0.128	0.277 0.169	0.275	0.124	0.037

	Y-axis ROOF #C beam												
Maximum reinforcement needed		200 0010	cted to be sed	Number of Bar provided	Maxi reinfor nee		Bar selected to be used		Number of Bar provided				
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	Positive side(in ²)		Area(in ²)	provided				
Left	0.232	4	0.2	2	Left	0.277	4	0.2	2				
Middle	0.054	4	0.2	2	Middle 0.169		4	0.2	2				
Right	0.276	4	0.2	2	Right	Right 0.275		0.2	2				

Stirrups design:

(Note: value of shear reinforcement was very low so minimum shear reinforcement was provided)

We use #3 bars as stirrups. According to SMRF:

Spacing of stirrups for first and last L/3 is d/4 = (11.81-3.48)/4 = 2in c/c

For middle part spacing of stirrups are d/2 = 4 in c/c

CALCULATION FOR X-AXIS OF 8 STORIED STRUCTURE:

0.634 0.227 0.557	0.588	0.127	0.645	<mark>1.26</mark> 1.26	0.713	0.145	0.742	1.50 1.50
	0.265	0.269	0.256	12.805	0.302	0.425	0.379	12243

	X-axis GF-2.0 #2 beam												
reinfor	Maximum reinforcement needed Bar selected to be used		Number of Bar	Maxi reinforo neeo	cement	ent Bar selected to be used		Number of Bar					
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided				
Left	0.713	5	0.31	3	Left 0.456		5	0.31	2				
Middle	0.227	5	0.31	2	Middle 0.425		5	0.31	2				
Right	0.742	5	0.31	3	Right	Right 0.379		0.31	2				

Table 5.1.13 X-axis GF #2 beam:

Table 5.1.14 X-axis 1F #2 beam:

000000000000000000000000000000000000	0.631	0.128	0.653	1.48 1.49	0.683	0.158	0.749	1.80 1.80
0.430 0.311 0.401	0.297	0.280	0.299	2903 2986	0.327	0.414	0.352	2250-

	X-axis 1F-2.0 #2 beam												
reinford	Maximum reinforcement needed Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be		Number of Bar					
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No. Area(in ²)		provided				
Left	0.683	5	0.31	3	Left 0.43		5	0.31	2				
Middle	0.242	5	0.31	2	Middle 0.414		5	0.31	2				
Right	0.749	5	0.31	3	Right	0.401	5	0.31	2				

Table 5.1.15 X-axis 2F #2 beam:

0.629 0.214 0.428 0 0.342 0.263 0.351 0 0 0.342 0.263 0.351	0.595	0.118	0.601	1.36 1.40	0.601	0.154	0.749	1.6(1.7(
🔓 💑 0.342 0.263 0.351 🚉 👸	0.268	0.269	0.273	633 648	0.323	0.414	0.312	948 922

X-axis 2F-2.0 #2 beam												
Maxi reinfore nee	cement	Bar selected to be used		Number of Bar	Maxi reinforo neeo	cement	Bar selected to be		Number of Bar			
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No. Area(in ²)		provided			
Left	0.629	5	0.31	3	Left	Left 0.342		0.2	2			
Middle	0.214	5	0.31	2	Middle 0.414		4	0.2	3			
Right	0.749	5	0.31	3	Right 0.351		4	0.2	2			

Table 5.1.16 X-axis 3F #2 beam:

0.561 0.176 0.329	0.542	0.107	0.532	1,10 1.16	0.513	0.146	0.744	1,40 1.46
0.240 0.223 0.286 2	0.240	0.270	0.247	5649 5084	0.308	0.414	0.263	7.914

	X-axis 3F-2.0 #2 beam												
Maxi reinfore nee	cement	Bar selected to be used		Number of Bar			reinforcement used		Number of Bar				
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided				
Left	0.561	5	0.31	3	Left	Left 0.308		0.2	2				
Middle	0.176	5	0.31	2	Middle 0.414		4	0.2	3				
Right	0.744	5	0.31	3	Right	Right 0.286		0.2	2				

Table 5.1.17 X-axis 4F #2 beam:

0.479 0.133 0.228 0 0	0.478	0.094	0.455	0.9	0.423	0.135	0.686	t t
0.479 0.133 0.228 0 0 0.158 0.193 0.212 0 0 0.158 0.193 0.212	0.205	0.271	0.214	9 75 6	0.286	0.414	0.225	1893 1893

				X-axis 4F-2	2.0 #2 bear	n					
reinford	Maximum reinforcement needed		Bar selected to be used		reinford	Maximum reinforcement needed		reinforcement Bar selected to be used			Number of Bar
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided		
Left	0.479	5	0.31	3	Left	0.286	4	0.2	2		
Middle	0.135	5	0.31	2	Middle	0.414	4	0.2	3		
Right	0.686	5	0.31	3	Right	0.225	4	0.2	2		

Table 5.1.18 X-axis	5F #2 beam:
---------------------	-------------

	0.406	0.080	0.376	0.60 0.60	0.335	0.121	0.615	0.80 0.82
R R 0.388 0.085 0.132 8	0.167	0.271	0.175	01.820 01.424	0.284	0.415	0.202	1536- 1537-

			2	X-axis 5F-2	2.0 #2 bear	n			
Maxi reinfore nee	cement	Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be used		Number of Bar
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided
Left	0.406	5	0.31	2	Left	0.284	4	0.2	2
Middle	0.121	5	0.31	2	Middle	0.415	4	0.2	3
Right	0.615	5	0.31	2	Right	0.202	4	0.2	2

Table 5.1.19 X-axis 6F #2 beam:

\overline{oVa}	27 0.065 0 08 0.166 0	-	38	0.272	0.289 0.141 2.0 #2 bear	0.2 0.2		118 0.5 407 0.1	
reinfor	mum cement ded		ected to be sed	Number of Bar	Maxi reinford need	cement		ected to be used	Number of Bar
Negative	side(in ²)	No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided
Left	0.34	5	0.31	2	Left	0.286	4	0.2	2
Middle	0.118	5	0.31	2	Middle	0.407	4	0.2	3
Right	0.599	5	0.31	2	Right	0.197	4	0.2	2

Table 5.1.20 X-axis ROOF #2 beam:

0.204 0.041 0.067	0.253	0.052	0.259	0.2(0.3(0.264	0.082	0.416	0.3(0.3(
0.068 0.183 0.078	0.134	0.281	0.125	8 835 9337	0.287	0.447	0.231	8093

			X-	axis ROOI	F-2.0 #2 be	am			
Maxi reinfore nee		Bar selected to be used		Number of Bar	Maximum reinforcement needed		~	ected to be used	Number of Bar
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided
Left	0.264	4	0.2	3	Left	0.287	4	0.2	2
Middle	0.082	4	0.2	2	Middle	0.447	4	0.2	3
Right	0.416	4	0.2	3	Right	0.231	4	0.2	2

Stirrups design:

(Note: value of shear reinforcement was very low so minimum shear reinforcement was provided)

We use #3 bars as stirrups. According to SMRF:

Spacing of stirrups for first and last L/3 is d/4 = (11.81-3.48)/4 = 4in c/c

For middle part spacing of stirrups are d/2 = 7 in c/c

CALCULATION FOR Y-AXIS OF 8 STORIED STRUCTURE:

Table 5.1.21 Y-axis GF #C beam:

		74 0.323 25 0.323	1.048		0.330 1.2 0.384 1.2	61	0.802 0.833	1.200 1.163	
Maxi reinfore nee	cement		ected to be used	Number of Bar	Maxi reinford need	mum cement		ected to be used	Number of Bar
Nega side		No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided
Left	1.374	5	0.31	5	Left	1.325	6	0.44	4
Middle	0.33	5	0.31	2	Middle	0.384	6	0.44	4
Right	1.273	5	0.31	5	Right	1.261	6	0.44	4

Table 5.1.22 Y-axis 1F #C beam:

		4 0.329 9 0.329	1.086).393 1.5).451 1.5 .0 #C beau	11	0.735 0.799	1.1 <mark>67</mark> 1.0 <mark>96</mark>	
Maxi reinfore nee	cement		ected to be ised	Number of Bar	Maxin reinford need	cement		ected to be used	Number of Bar
Nega side		No.	Area(in ²)	provided	Positive	side(in ²)	No.	Area(in ²)	provided
Left	1.487	5	0.31	5	Left	1.497	6	0.44	4
Middle	0.393	5	0.31	2	Middle	0.451	6	0.44	4
Right	1.526	5	0.31	5	Right	1.511	6	0.44	4

TABLE 5.1.23 Y-AXIS 2F #C BEAM:

<mark>.9</mark> 88	
. <mark>8</mark> 94	
	. 8 94

			Y	Y-axis 2F-2	.0 #C bea	m			
Maxi reinfore nee	cement	Bar selected to be used		Number of Bar	Maxi reinforo neeo	Bar selected to be used		_	Number of Bar
C	ative (in ²)	No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided
Left	1.383	5	0.31	5	Left	1.402	6	0.44	4
Middle	0.373	5	0.31	2	Middle	0.433	6	0.44	4
Right	1.433	5	0.31	5	Right	1.417	6	0.44	4

TABLE 5.1.24 Y-AXIS 3F #C BEAM:

1.027 0.25	50 0.64 <mark>9</mark>	1.170	0.329	1.221	0.415	0.797	
0.884 0.25	50 0.784	1.195	0.383	1.205	0.517	0.688	

Y-axis 3F-2.0 #C beam												
Maxi reinfor nee	cement	Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be used		Number of Bar			
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided			
Left	1.17	5	0.31	4	Left	Left 1.195		0.31	4			
Middle	0.329	5	0.31	2	Middle	0.383	5	0.31	4			
Right	1.221	5	0.31	4	Right	1.205	5	0.31	4			

Table 5.1.25 Y-axis 4F #C beam:

0 <mark>.791 0.197 0.45</mark> 9	0.908 0.329 0.956	0.329	0.601	
0.638 0.197 0.60 <mark>6</mark>	0.936 0.329 0.940	0.383	0.483	

			2	Y-axis 4F-2	.0 #C bea	m			
Maxi reinfor nee	cement	Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be used		Number of Bar
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided
Left	0.908	5	0.31	4	Left	0.936	4	0.31	4
Middle	0.329	5	0.31	2	Middle	0.329	4	0.31	4
Right	0.956	5	0.31	4	Right	0.94	4	0.31	4

TABLE 5.1.26 Y-AXIS 5F #C BEAM:

0.553 0.141 0.32 <mark>9</mark>	0.637 0.237 0.680	0.178 0.405	
0.397 0.141 0.424	0.667 0.323 0.665	0.329 0.329	

			Y	Y-axis 5F-2	.0 #C bear	m			
Maxi reinfor nee	cement	Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be used		Number of Bar
Nega side	ative (in ²)	No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided
Left	0.637	4	0.2	4	Left	0.667	4	0.2	4
Middle	0.237	4	0.2	2	Middle	0.323	4	0.2	4
Right	0.68	4	0.2	4	Right	0.665	4	0.2	4

TABLE 5.1.27 Y-AXIS 6F #C BEAM:

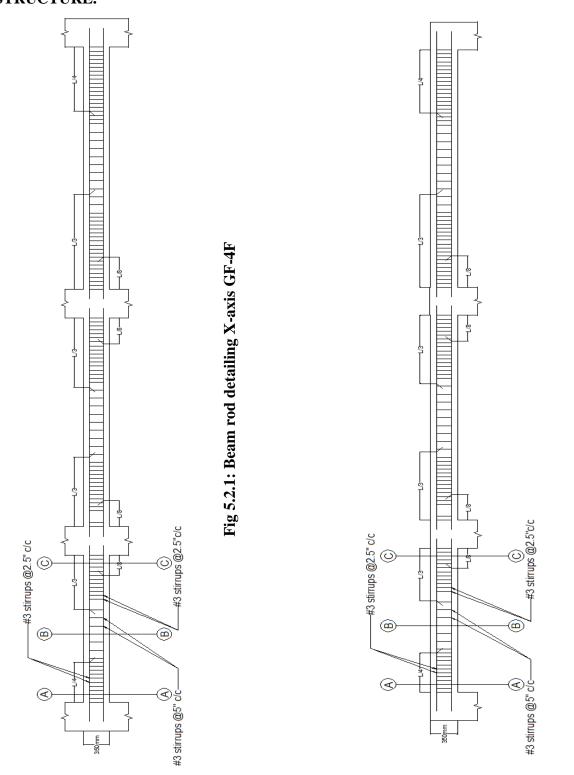
0.392 0.142 0.431	0.055	0.282
0.423 0.226 0.413	0.162	0.0 <mark>99</mark>

	Y-axis 6F-2.0 #C beam												
Maxi reinford need	cement	Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be used		Number of Bar				
Nega side		No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided				
Left	0.392	4	0.2	3	Left	Left 0.423		0.2	3				
Middle	0.142	4	0.2	2	Middle	0.226	4	0.2	3				
Right	0.431	4	0.2	3	Right	0.413	4	0.2	3				

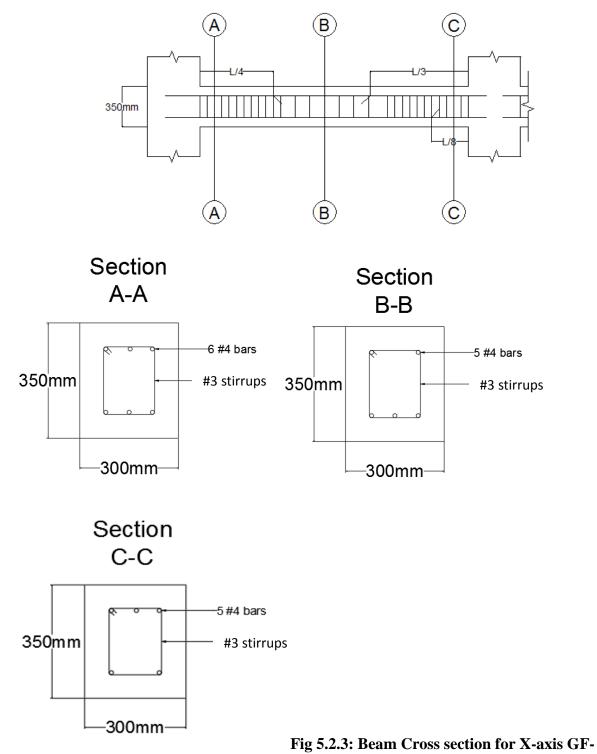
TABLE 5.1.28 Y-AXIS ROOF #C BEAM:

0 <mark>.178 0.035 0.03</mark> 5	0.253 0.063 0.309	0.050 0.099
0.059 0.093 0.137	0.319 0.179 0.317	0.164 0.033

	Y-axis ROOF-2.0 #C beam											
reinfor	imum cement ded	Bar selected to be used		Number of Bar	Maximum reinforcement needed		Bar selected to be used		Number of Bar			
Negative	side(in ²)	No.	Area(in ²)	provided	Positive side(in ²)		No.	Area(in ²)	provided			
Left	0.253	4	0.2	2	Left	Left 0.319		0.2	2			
Middle	0.063	4	0.2	2	Middle	0.179	4	0.2	2			
Right	0.309	4	0.2	2	Right	0.317	4	0.2	2			


Stirrups design:

(Note: value of shear reinforcement was very low so minimum shear reinforcement was provided)


We use #3 bars as stirrups. According to SMRF:

Spacing of stirrups for first and last L/3 is d/4 = (11.81-3.48)/4 = 3in c/c

For middle part spacing of stirrups are d/2 = 6 in c/c

5.2 FIGURES OF THE BEAM SECTIONS: BEAM FIGURES FOR 6 STORIED STRUCTURE.

ROOF

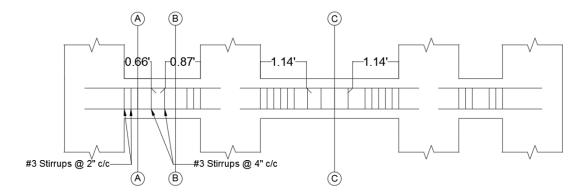
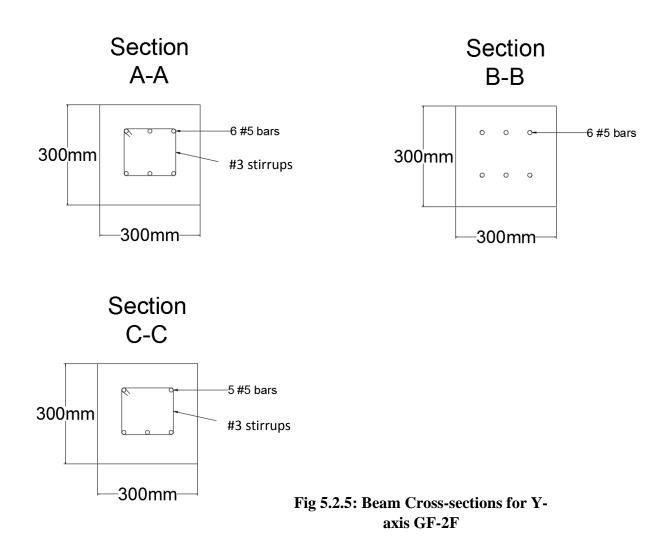
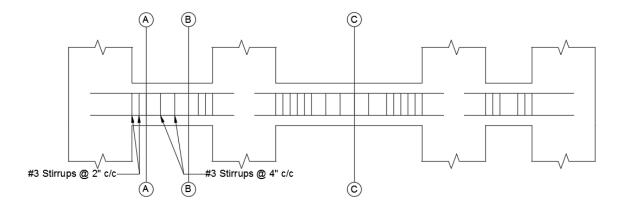
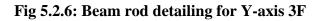
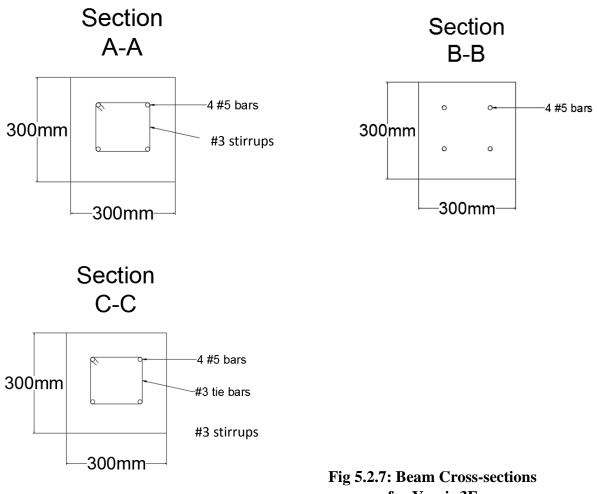






Fig 5.2.4: Beam rod detailing for Y-axis GF-2F

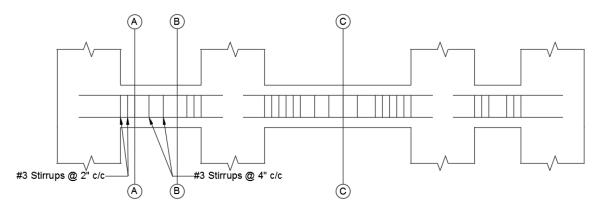


Fig 5.2.8: Beam rod detailing for Y-axis 4F

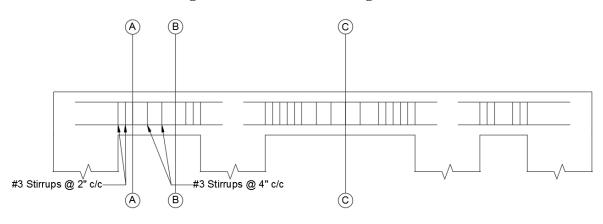


Fig 5.2.9: Beam rod detailing for Y-axis ROOF

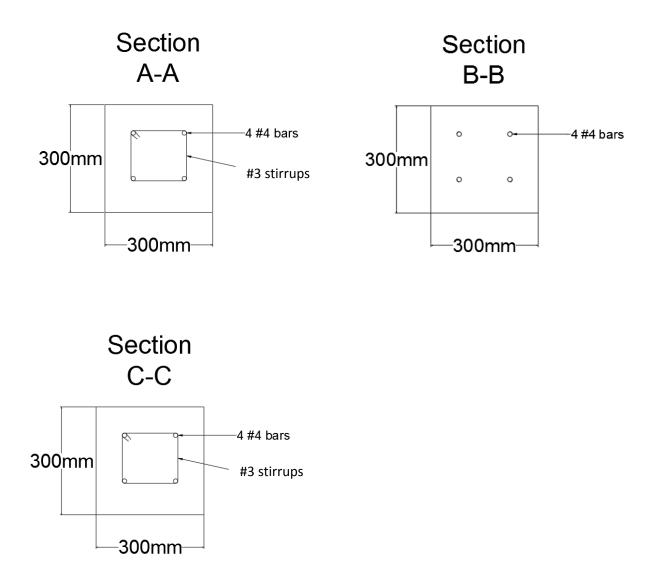
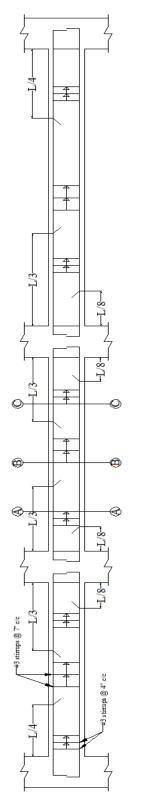



Fig 5.2.10: Beam Cross-sections for Y-axis 4F-ROOF

BEAM FIGURES FOR 8 STORIED STRUCTURE.

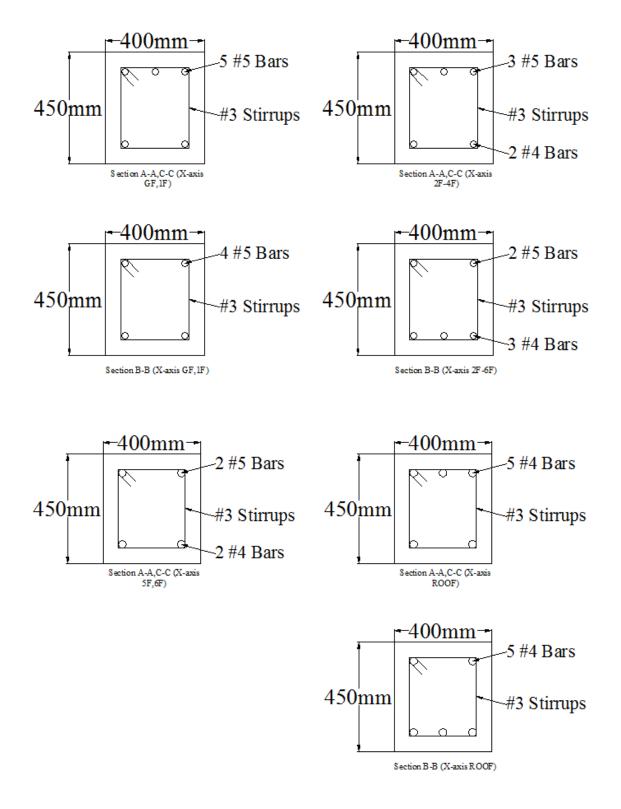
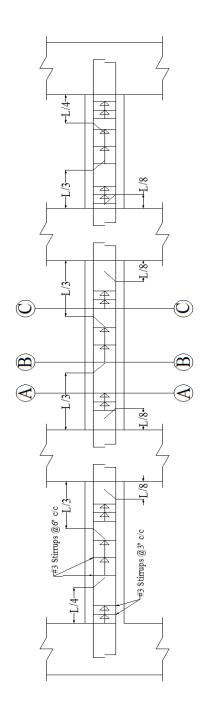
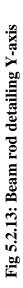




Fig 5.2.12: Beam Cross-sections for X-axis

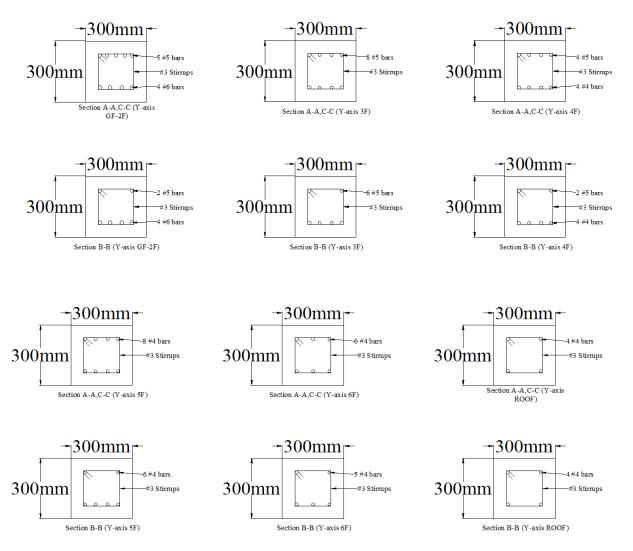


Fig 5.2.14: Beam Cross-sections for Y-axis

5.3 COMPARISON OF 6 FLOOR AND 8 FLOOR DESIGN:

While comparing the design of 6floor structure and 8-floor structure it was noticed that to compensate for the increase in reinforcement requirement the beams, higher no bars had to be used in designing 8-floor structure where lower no bars satisfied loads of 6-floor structure. Below is a graph showing the difference between the bars used per floor of the 6-floor and 8-floor structures:

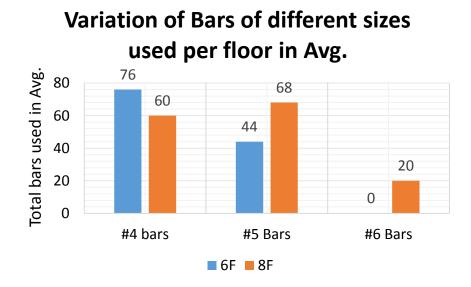


Fig 5.3.1: Chart of different size bars used per floor in the structures

The use of #4 bars decreased by 21%, #5 bars increased by 55% And We had to use #6 bars also.

According to <u>www.homeadvisor.com</u> :

Rebar Sizes and F	Prices Per Foot								
You'll pay \$0.18 to \$6.20 per foot depending on the length you purchase and diameter. Most hardware stores identify rebar by its diameter. However, some will use industry sizing. The smaller the number, the smaller the diameter:									
Standard size (metric)	Diameter	Cost per foot							
#3 (#10)	3/8"	\$0.18 - \$1.25							
#4 (#13)	1/2"	\$0.30 - \$2.00							
#5 (#16)	5/8"	\$0.45 - \$2.55							
#6 (#19)	3/4"	\$0.75 - \$3.70							
#7 (#22)	7/8"	\$1.30 - \$5.05							
#8 (#25)	1"	\$3.25 - \$6.20							

Fig 5.3.2: Beam cost per linear foot

Using these prices of rebar we can calculate total increase in price per floor in 6 storied and 8 storied designs

Below is the graph indicating the avg. increase in price per floors reinforcement design.

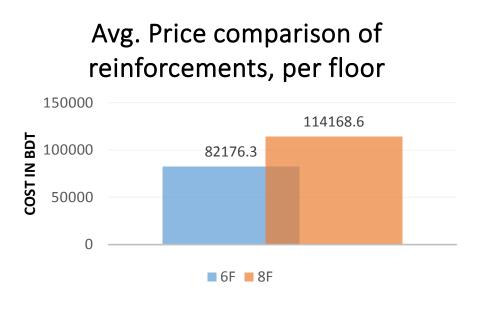


Fig 5.3.3: Chart of Prices to design per floor of 6Floor and 8Floor designs

It was observed per floor reinforcement design cost of the 8 storied structure increased by almost 39% than the design of the 6 storied structure.

6.1 CALCULATIONS:

For time constraints we were able to design only 3 columns (with the highest reinforcement requirements) from both structures.

(Note: For design of Column sections Bending m11 Modifier, Bending m22 Modifier, Bending m12 Modifier was taken as 1 instead of 0.00000001)

CALCULATION FOR 6 STORIED STRUCTURE:

Calculations of CC:

				Table	6.1.1: Calcu	lation of (CC		
4 D 829 ROOF 158 8 50 E E 529 4F 134	Max ba requirem		Bar used	Bar area (in ²)	No of bars provided	Area of column section, Ag (in ²)	0.04 X Ag	Total area of steel provided, Ast (in ²)	Comments
3.139 87 15 3.139 88 15 3.139	For bottom 3 floors	3.958	#9	1	4	324	12.96	4	Ast<12.96 (ok)
873 2F 170 661	For top 3 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)

Calculations of CEX:

4				Table 6	.1.2: Calcul	lation of C	EX		
243 0.3 080 0.1 8 1 294 0.3 294 0.3	Max ba requirem		Bar used	Bar area (in ²)	No of bars provided	Area of column section, Ag (in ²)	0.04 X Ag	Total area of steel provided, Ast (in ²)	Comments
109 0.1) $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	For bottom 3 floors	3.261	#9	1	4	324	12.96	4	Ast<12.96 (ok)
621-62 329 0.33 162 0.13	For top 3 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)

Calculations of CI:

2	Table 6.1.3: Calculation of CI									
C 0.4	Max bar area requirement (in ²)		Bar used	Bar area (in ²)	No of bars provided	Area of column section, Ag (in ²)	0.04 X Ag	Total area of steel provided, Ast (in ²)	Comments	
RC1 C 7 0.4 7 0.2 RC1 C	For bottom 3 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)	
L'S 0.4 9 0.2	For top 3 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)	

Design of tie bars:

We are going to use #3 bars as tie.

For top and bottom 23in tie spacing will be smaller of 4in or ¹/₄ of least column dimension= 4.5in

So tie spacing will be #3 bars @4in c/c for top and bottom 23in

Tie spacing for middle part will be 2x4=8in

So tie spacing will be #3 bars @8in c/c for middle portion

Calculation for 8 storied structure:

Calculations of CC:

2F

GF

Table 6.1.4: Calculation of CC									
Max bar area requirement (in ²)		Bar used	Bar area (in ²)	No of bars provided	Area of column section, Ag (in ²)	0.04 X Ag	Total area of steel provided, Ast (in ²)	Comments	
For bottom 4 floors	7.015	#9	1	8	324	12.96	8	Ast<12.96 (ok)	
For top 4 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)	

Calculations of CEX:

 4
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

	Table 6.1.5: Calculation of CEX								
Max barrequirem		Bar used	Bar area (in ²)	No of bars provided	Area of column section, Ag (in ²)	0.04 X Ag	Total area of steel provided, Ast (in ²)	Comments	
For bottom 4 floors	6.266	#9	1	8	324	12.96	8	Ast<12.96 (ok)	
For top 4 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)	

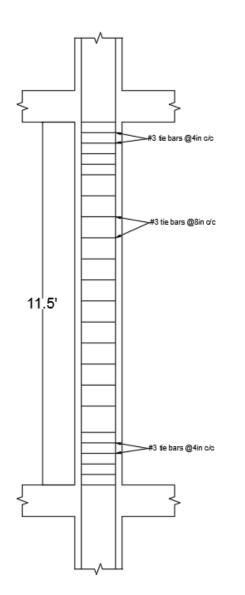
Calculations of CI:

259 0.264 1125 0.280 2289 0.246 128 0.246 128 0.246 141 0.286 2289 0.246 141 0.286 228 0.246 145 0.286 228 0.246 145 0.286 229 0.336 253 0.600 2273 0.320 265 0.320 265 0.320 273 0.320 273 0.320 273 0.320 273 0.320 273 0.320 275 0.300 273 0.320 275 0.300 275 0.3

	Table 6.1.6: Calculation of CI								
Max barrequirem		Bar used	Bar area (in ²)	No of bars provided	Area of column section, Ag (in ²)	0.04 X Ag	Total area of steel provided, Ast (in ²)	Comments	
For bottom 4 floors	3.613	#9	1	4	324	12.96	4	Ast<12.96 (ok)	
For top 4 floors	3.139	#9	1	4	324	12.96	4	Ast<12.96 (ok)	

Design of tie bars:

We are going to use #3 bars as tie.


For top and bottom 23in tie spacing will be smaller of 4in or ¹/₄ of least column dimension= 4.5in

So tie spacing will be #3 bars @4in c/c for top and bottom 23in

Tie spacing for middle part will be 2x4=8in

So tie spacing will be #3 bars @8in c/c for middle portion

6.2 FIGURES OF COLUMN SECTIONS: COLUMN FIGURES FOR 6 STORIED STRUCTURE:

450mm 450mm

Fig 6.2.2: Column Cross-sections of CC, CEX and CI for all floors

Fig 6.2.1: Column rod detailing of CC, CEX and CI for all floors

Column figures for 8 storied structure:

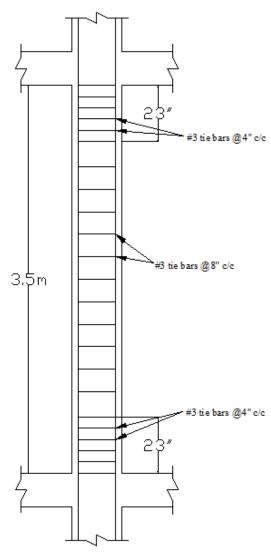


Fig 6.2.3: Column rod detailing of CC and CEX for top 4 floors and CI for all floors

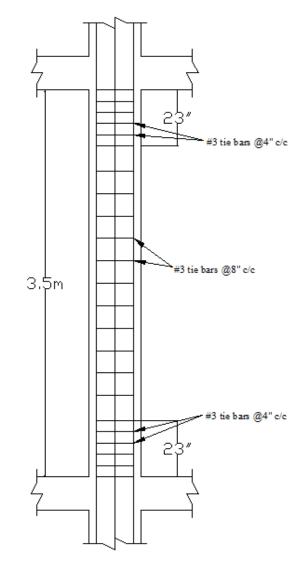
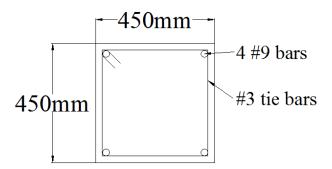
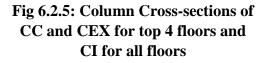
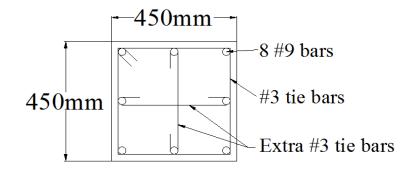
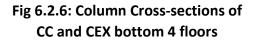
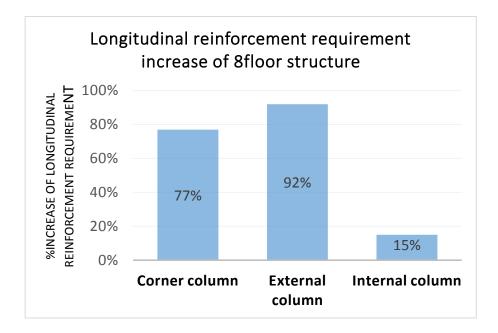
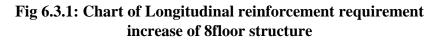






Fig 6.2.4: Column rod detailing of CC and CEX for bottom 4 floors




6.3 COMPARISON OF 6 FLOOR AND 8 FLOOR DESIGN:

While comparing the columns of the 6 storied and 8 storied structure it was noticed that the longitudinal reinforcement requirement in the base of the corner and external columns almost doubled in the 8 storied structure due to added load. So, to compensate for this the design of the bottom 4 floors had to be changed and extra 4 #9 bars were provided. But the requirements gradually decreased as we went up the floors with the constant being 3.139 in2 so for the remaining 4 floors the same design as 6 storied structures were provided.

The longitudinal reinforcement requirement for internal columns in 8-floor structure increased but not by much so the same column design could be used.

Below is a chart showing the percentage of increase in longitudinal reinforcement requirement for the base of 8 storied structure from the base of 6 storied structure:

According to	www.wirelessestimator.com	:
--------------	---------------------------	---

Reinforcement Steel Pricing - Per Linear Foot							
Diameter	Туре	Pound Per LF	LF Price				
1/4"	#2	0.170	\$0.21				
3/8"	#3	0.376	\$0.34				
1/2"	#4	0.668	\$0.47				
5/8"	#5	1.043	\$0.66				
3/4"	#6	1.502	\$0.84				
7/8"	#7	2.044	\$1.02				
1"	#8	2.670	\$1.25				
1-1/8"	#9	3.400	\$1.53				
1-1/4"	#10	4.303	\$1.85				
1-3/8"	#11	5.313	\$2.13				

From this we can estimate the column Avg. cost difference per floor for six storied and eight storied structures reinforcement design. Below is a chart showing the cost comparison:

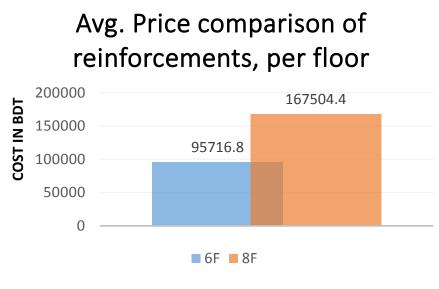


Fig 6.3.3: Chart of Prices to design per floor of 6Floor and 8Floor designs

It was observed per floor reinforcement design cost of the 8 storied structure increased by almost 75% in Avg. than the design of the 6 storied structure.

7.1 CALCULATIONS:

(Note: we are only designing the GF slab of both structures in this study for time constraints)

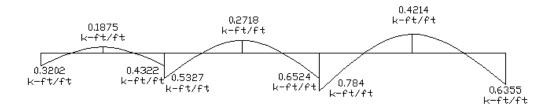
CALCULATION FOR LONG DIRECTION OF SIX STORIED STRUCTURE:

(Note: Slab no 1 = Slab 3-4 x A-B, Slab no 2 = Slab 3-4 x B-C, Slab no 3 = Slab 3-4 x C-D, Slab no 4 = Slab 2-3 x A-B, Slab no 5 = Slab 2-3 x B-C, Slab no 6 = Slab 2-3 x C-D, Slab no 7 = Slab 1-2 x A-B, Slab no 8 = Slab 1-2 x B-C, Slab no 9 = Slab 1-2 x C-D)

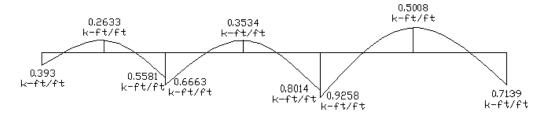
Slab dimensions:

	Length,	Base, B
Slab no.	L (ft)	(ft)
1	3.3	9.84
2	3.3	12.3
3	3.3	14.76
4	4.9	9.84
5	4.9	12.3
6	4.9	14.76
7	4.1	9.84
8	4.1	12.3
9	4.1	14.76

Given								
Slab thickness (t)	Bending (t-1)	fc'	fy					
150 mm	125 mm	3.5 Ksi	60 Ksi					
6 in	5 in	3500 Psi	60000 psi					


Considering b=1ft=12in

Load Determination:


		Live load						
	Partition	Floor	Self-	Live load				
	wall	finish	weight	Live load				
	2.5	1.5	73.8 lb/ft2	3.0				
	KN/m2	KN/m2	75.810/112	KN/m2				
	0.363 Psi	0.218 Psi	0.513 Psi	0.435 Psi				
Total		0.435 Psi						
	ł							
Fa	289.057							
	Psf							
	0.289 Ksf							

Moment selection: From ETABS model we get,

	Table 7.1.1: Data for long direction									
Slab no.	Length (ft)	Base (ft)	Left support moment (- M)	Midspan moment (M)	Right support moment (- M)					
1	3.3	9.84	0.3202	0.1875	0.4322					
2	3.3	12.3	0.5327	0.2718	0.6524					
3	3.3	14.76	0.784	0.4214	0.6355					
4	4.9	9.84	0.393	0.2633	0.5581					
5	4.9	12.3	0.6663	0.3534	0.8014					
6	4.9	14.76	0.9258	0.5008	0.7139					
7	4.1	9.84	0.3837	0.2349	0.5152					
8	4.1	12.3	0.6365	0.3242	0.7596					
9	4.1	14.76	0.8956	0.4672	0.7136					

Slab 1-3

Slab 4-6

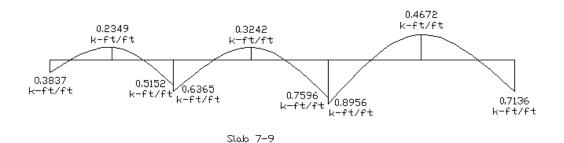


Fig 7.1.1: Moments on slab 1-9 Long direction

Minimum Effective Depth:

 $\rho = 0.85*\beta_1*(Fc'/Fy)*\xi u/(\xi u + \xi t) = .85*.85*(3.5/60)*0.003/(0.003+0.004) = 0.020$

Taking b=1ft=12in

Now $d_{eff} = (M_{max}/\phi^*\rho^*Fy^*b^*(1-(.59^*\rho^*Fy/Fc^2)))^{(1/2)} = (0.3863^*1000/.9^*.020^*60000^*(1-(.59^*.020^*60000/3500)))^{(1/2)}$

= 0.67"

Checking availability of thickness:

As "d" is less than effective depth of (t-1) = (6-1) = 5"

So, t=6" is ok

Determining minimum Area of steel required:

 $As_{min} = 0.0018 * 12 * 6 = 0.13 in2$

Table 7.1.2: Slab calculation for long direction									
Slab no.	Position	M (k- ft/ft)	As (in2/ft)	As _{min} (in2/ft)	As _{provided} (in2/ft)	Bar provided	Bar Area (in2)	Spacing	
	Left support	0.3202	0.0143	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
1	Mid- span	0.1875	0.0083	0.13	0.13	#3	0.11	10 in c/c	
	Right Support	0.4322	0.0193	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
	Left support	0.5327	0.0238	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
2	Mid- span	0.2718	0.0203	0.13	0.13	#3	0.11	10 in c/c	
	Right Support	0.6524	0.0291	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
	Left support	0.784	0.0351	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
3	Mid- span	0.4214	0.0188	0.13	0.13	#3	0.11	10 in c/c	
	Right Support	0.6355	0.0284	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
	Left support	0.393	0.0175	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
4	Mid- span	0.2633	0.0117	0.13	0.13	#3	0.11	10 in c/c	
	Right Support	0.5581	0.0249	0.13	0.13	1, #3 extra top	0.11	10 in c/c	

	Left support	0.6663	0.0298	0.13	0.13	1, #3 extra top	0.11	10 in c/c
5	Mid- span	0.3534	0.0157	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.8014	0.0358	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.9258	0.0414	0.13	0.13	1, #3 extra top	0.11	10 in c/c
6	Mid- span	0.5008	0.0223	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.7139	0.0319	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.3837	0.0171	0.13	0.13	1, #3 extra top	0.11	10 in c/c
7	Mid- span	0.2349	0.0105	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.5152	0.023	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.6365	0.0284	0.13	0.13	1, #3 extra top	0.11	10 in c/c
8	Mid- span	0.3242	0.0144	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.7596	0.034	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.8956	0.0401	0.13	0.13	1, #3 extra top	0.11	10 in c/c
9	Mid- span	0.4672	0.0208	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.7136	0.0319	0.13	0.13	1, #3 extra top	0.11	10 in c/c

CALCULATION FOR SHORT DIRECTION OF SIX STORIED STRUCTURE:

From ETABS model we get,

Table 7.1.3: Data for short direction									
Slab no.	Length,L (ft)	Base,B (ft)	Left support moment (- M)	Mid-span moment (M)	Right support moment (- M)				
1	9.84	3.3	0.5976	0.1918	0.4899				
2	12.3	3.3	0.762	0.2836	0.8192				
3	14.76	3.3	1.0417	0.4365	1.1126				
4	9.84	4.9	0.6888	0.2625	0.5963				
5	12.3	4.9	0.8918	0.3602	0.9593				
6	14.76	4.9	1.1989	0.4896	1.2456				
7	9.84	4.1	0.6443	0.2302	0.5754				
8	12.3	4.1	0.8554	0.3309	0.9173				
9	14.76	4.1	1.1586	0.4838	1.1964				

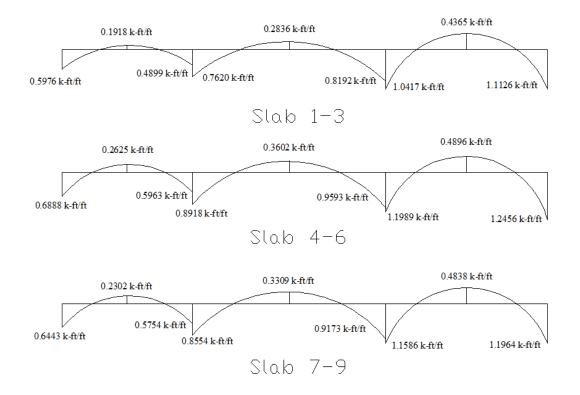
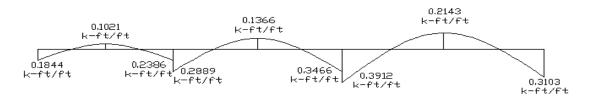
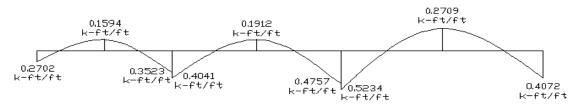


Fig 7.1.2: Moments on slab 1-9 Short direction


		Table '	7.1.4: Slab c	calculation	for short dir	rection		
Slab no.	Position	M (k- ft/ft)	As (in2/ft)	As _{min} (in2/ft)	As _{provided} (in2/ft)	Bar provided	Bar Area (in2)	Spacing
	Left support	0.5976	0.0267	0.13	0.13	1, #3 extra top	0.11	10 in c/c
1	Mid-span	0.1918	0.0085	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4899	0.0219	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.762	0.0341	0.13	0.13	1, #3 extra top	0.11	10 in c/c
2	Mid-span	0.2836	0.0126	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.8192	0.0366	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	1.0417	0.0467	0.13	0.13	1, #3 extra top	0.11	10 in c/c
3	Mid-span	0.4365	0.0195	0.13	0.13	#3	0.11	10 in c/c
	Right Support	1.1126	0.0499	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.6888	0.0308	0.13	0.13	1, #3 extra top	0.11	10 in c/c
4	Mid-span	0.2625	0.0117	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.5963	0.0266	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.8918	0.0399	0.13	0.13	1, #3 extra top	0.11	10 in c/c
5	Mid-span	0.3602	0.0161	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.9593	0.0429	0.13	0.13	1, #3 extra top	0.11	10 in c/c

	Left support	1.1989	0.0538	0.13	0.13	1, #3 extra top	0.11	10 in c/c
6	Mid- span	0.4896	0.0218	0.13	0.13	#3	0.11	10 in c/c
	Right Support	1.2456	0.0559	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.6443	0.0288	0.13	0.13	1, #3 extra top	0.11	10 in c/c
7	Mid- span	0.2302	0.0102	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.5754	0.0257	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.8554	0.0383	0.13	0.13	1, #3 extra top	0.11	10 in c/c
8	Mid- span	0.3309	0.0147	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.9173	0.0411	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	1.1586	0.0519	0.13	0.13	1, #3 extra top	0.11	10 in c/c
9	Mid- span	0.4838	0.0216	0.13	0.13	#3	0.11	10 in c/c
	Right Support	1.1964	0.0537	0.13	0.13	1, #3 extra top	0.11	10 in c/c


CALCULATION FOR LONG DIRECTION OF EIGHT STORIED STRUCTURE:

From ETABS model we get,

,	Fable 7.1.5	: Calculat	ion for lon	g directior	ı
Slab no.	Length (ft)	Base (ft)	Left support moment (- M)	Midspan moment (M)	Right support moment (- M)
1	3.3	9.84	0.1844	0.1021	0.2386
2	3.3	12.3	0.2889	0.1366	0.3466
3	3.3	14.76	0.3912	0.2143	0.3103
4	4.9	9.84	0.2702	0.1594	0.3523
5	4.9	12.3	0.4041	0.1912	0.4757
6	4.9	14.76	0.5234	0.2709	0.4072
7	4.1	9.84	0.2527	0.1335	0.3145
8	4.1	12.3	0.3674	0.1652	0.4324
9	4.1	14.76	0.4843	0.2379	0.4036

Slab 1-3

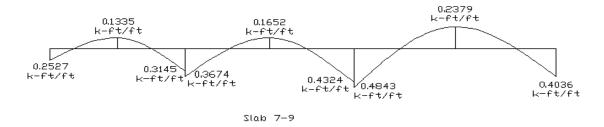
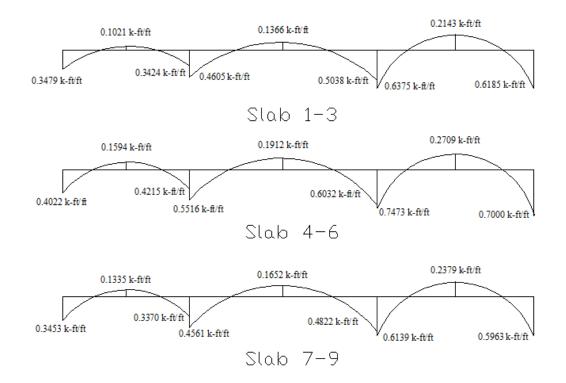


Fig 7.1.3: Moments on slab 1-9 Long direction


		Table	7.1.6: Slab	calculation	for long di	rection		
Slab no.	Position	M (k- ft/ft)	As (in2/ft)	As _{min} (in2/ft)	As _{provided} (in2/ft)	Bar provided	Bar Area (in2)	Spacing
	Left support	0.1844	0.0082	0.13	0.13	1, #3 extra top	0.11	10 in c/c
1	Mid-span	0.1021	0.0045	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.2386	0.0106	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.2889	0.0129	0.13	0.13	1, #3 extra top	0.11	10 in c/c
2	Mid-span	0.1366	0.0061	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.3466	0.0154	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.3912	0.0174	0.13	0.13	1, #3 extra top	0.11	10 in c/c
3	Mid-span	0.2143	0.0095	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.3103	0.0138	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.2702	0.012	0.13	0.13	1, #3 extra top	0.11	10 in c/c
4	Mid-span	0.1594	0.0071	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.3523	0.0157	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.4041	0.018	0.13	0.13	1, #3 extra top	0.11	10 in c/c
5	Mid-span	0.1912	0.0085	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4757	0.0212	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.5234	0.0234	0.13	0.13	1, #3 extra top	0.11	10 in c/c
6	Mid-span	0.2709	0.0121	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4072	0.0182	0.13	0.13	1, #3 extra top	0.11	10 in c/c

	Left support	0.2527	0.0113	0.13	0.13	1, #3 extra top	0.11	10 in c/c
7	Mid-span	0.1335	0.0059	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.3145	0.014	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.3674	0.0164	0.13	0.13	1, #3 extra top	0.11	10 in c/c
8	Mid-span	0.1652	0.0074	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4324	0.0193	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.4843	0.0216	0.13	0.13	1, #3 extra top	0.11	10 in c/c
9	Mid-span	0.2379	0.0106	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4036	0.018	0.13	0.13	1, #3 extra top	0.11	10 in c/c

CALCULATION FOR SHORT DIRECTION OF EIGHT STORIED STRUCTURE:

From ETABS model we get,

r.	Table 7.1.7: Calculation for short direction							
Slab no.	Length,L (ft)	Base,B (ft)	Left support moment (- M)	Midspan moment (M)	Right support moment (- M)			
1	9.84	3.3	0.3479	0.1021	0.3424			
2	12.3	3.3	0.4605	0.1366	0.5038			
3	14.76	3.3	0.6375	0.2143	0.6185			
4	9.84	4.9	0.4022	0.1594	0.4215			
5	12.3	4.9	0.5516	0.1912	0.6032			
6	14.76	4.9	0.7473	0.2709	0.7			
7	9.84	4.1	0.3453	0.1335	0.337			
8	12.3	4.1	0.4561	0.1652	0.4822			
9	14.76	4.1	0.6139	0.2379	0.5963			

Fig 7.1.4: M	foments on slab	1-9 Long direction
--------------	------------------------	---------------------------

	Table 7.1.8: Slab calculation for long direction								
Slab no.	Position	M (k- ft/ft)	As (in2/ft)	As _{min} (in2/ft)	As _{provided} (in2/ft)	Bar provided	Bar Area (in2)	Spacing	
	Left support	0.3479	0.0155	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
1	Mid- span	0.1021	0.0045	0.13	0.13	#3	0.11	10 in c/c	
	Right Support	0.3424	0.0153	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
	Left support	0.4605	0.0205	0.13	0.13	1, #3 extra top	0.11	10 in c/c	
2	Mid- span	0.1366	0.0061	0.13	0.13	#3	0.11	10 in c/c	
	Right Support	0.5038	0.0225	0.13	0.13	1, #3 extra top	0.11	10 in c/c	

	1	1	1			1 1		
	Left support	0.6375	0.0285	0.13	0.13	1, #3 extra top	0.11	10 in c/c
3	Mid- span	0.2143	0.0095	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.6185	0.0276	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.4022	0.0179	0.13	0.13	1, #3 extra top	0.11	10 in c/c
4	Mid- span	0.1594	0.0071	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4215	0.0188	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.5516	0.0246	0.13	0.13	1, #3 extra top	0.11	10 in c/c
5	Mid- span	0.1912	0.0085	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.6032	0.0269	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.7473	0.0334	0.13	0.13	1, #3 extra top	0.11	10 in c/c
6	Mid- span	0.2709	0.0121	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.7	0.0313	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.3453	0.0154	0.13	0.13	1, #3 extra top	0.11	10 in c/c
7	Mid- span	0.1335	0.0059	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.337	0.015	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.4561	0.0203	0.13	0.13	1, #3 extra top	0.11	10 in c/c
8	Mid- span	0.1652	0.0074	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.4822	0.0215	0.13	0.13	1, #3 extra top	0.11	10 in c/c
	Left support	0.6139	0.0274	0.13	0.13	1, #3 extra top	0.11	10 in c/c
9	Mid- span	0.2379	0.0106	0.13	0.13	#3	0.11	10 in c/c
	Right Support	0.5963	0.0266	0.13	0.13	1, #3 extra top	0.11	10 in c/c

7.2 FIGURES OF SLAB SECTIONS:

The design for both 6 storied and 8 storied structure's ground floor slab design was same. So, same slab design was used for both structures.

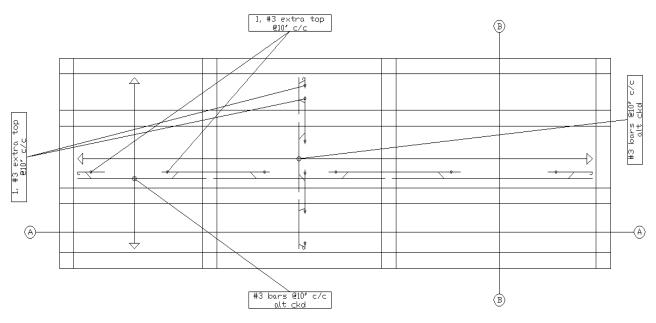
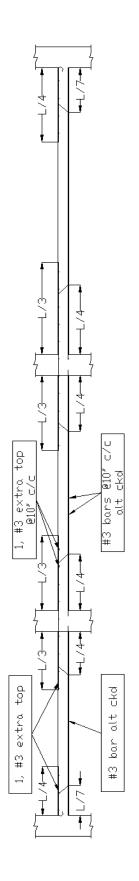
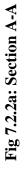




Fig 7.2.1: Slab section

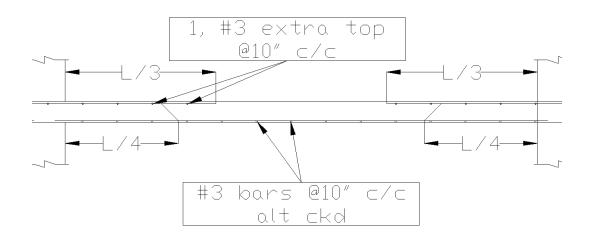


Fig 7.2.2b: Section A-A

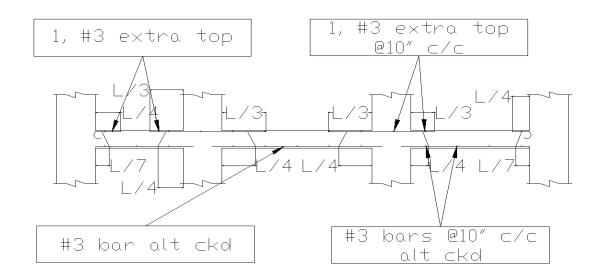


Fig 7.2.3: Section B-B

CHAPTER EIGHT: COMPARISON BETWEEN WIND AND EARTHQUAKE LOADS

8.1 METHOD OF COMPARISON:

From the ETABS model, the maximum simulated deflection due to Earthquake and wind load was selected. Only the data of ROOF story-level was selected as in both structure ROOF deflected the most from its initial point and the point which deflected the most the data of that was collected for each load (i.e. WX, WY, EQX and EQY). After that the deflections for EQ and WL in the 6 floor structure were compared and the same was done for the 8 floor structure. Then the deflection due to wind load was compared between 8floor and 6floor structures.

8.2 COMPARISON OF EQ AND WL IN 6 STORIED STRUCTURE:

Below are the figures of the structure deflected due to wind load and the maximum deflection point:

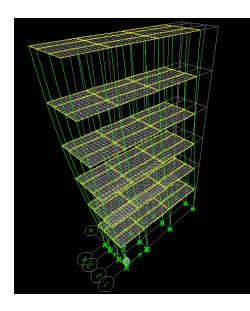


Fig 8.2.1: Deflection of 6 storied structure due to Wind-WX load

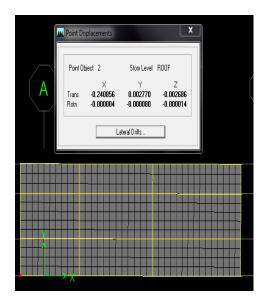
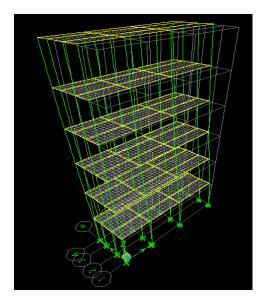



Fig 8.2.2: Maximum deflection point in WX of 6 storied

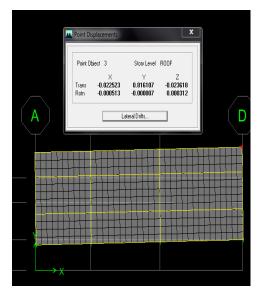


Fig 8.2.3: Deflection of 6 storied structure due to Wind-WY load

Fig 8.2.4: Maximum deflection point in WY of 6 storied structure.

Deflection of structure at ROOF due to Wind load was observed to be: 0.24in at X-direction and 0.82in at Y-direction

Below are the figures of the structure deflected due to Earthquake load and the maximum deflection point:

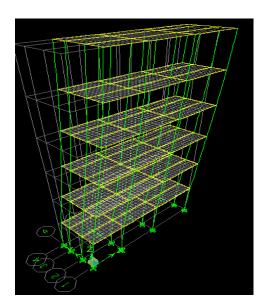


Fig 8.2.5: Deflection of 6 storied structure due to Earthquake-EQX load

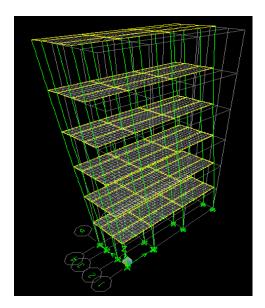


Fig 8.2.7: Deflection of 6 storied structure due to Earthquake-EQY load

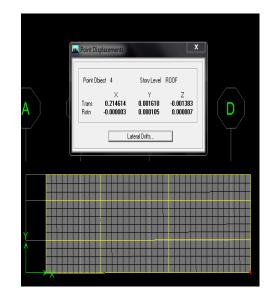


Fig 8.2.6: Maximum deflection point in EQX of 6 storied structure.

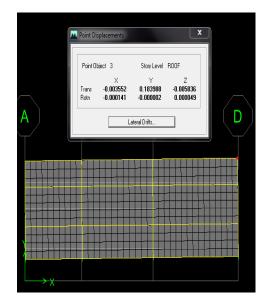


Fig 8.2.8: Maximum deflection point in EQY of 6 storied structure.

Deflection of structure at ROOF due to Earthquake load was observed to be: 0.21in at X-direction and 0.18in at Y-direction

It was observed that due to wind load at X direction the structure deflects 12.5% more and at Y direction the structure deflects 78% more than Earthquake load in X, Y directions respectively.

So in the case of this structure the wind forces were more dominant than earthquake forces.

Explanation:

- This is because our structure is on low hazard Earthquake zone being Zone 1 and our wind speed being 238km/h
- Secondly the length to width ratio is 3. At X axis our total length is 36.9 ft. and at Y axis our total length is 12.3 ft. So, X axis gets higher wind exposure compared to Y axis and that's why the structure deflects more in Y direction.

8.3 COMPARISON OF EQ AND WL IN 8 STORIED STRUCTURE:

Below are the figures of the structure deflected due to wind load and the maximum deflection point:

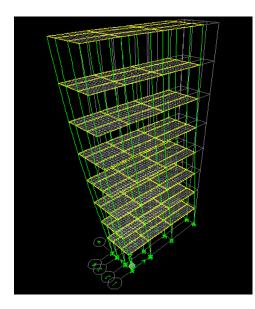


Fig 8.2.9: Deflection of 8 storied structure due to Wind-WX load

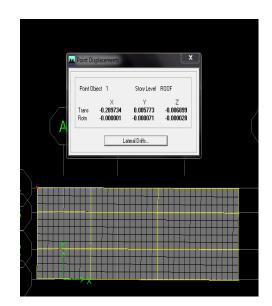
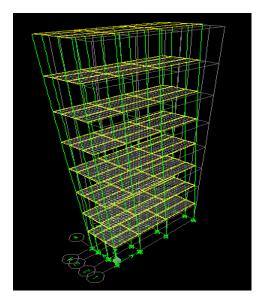



Fig 8.2.10: Maximum deflection point in WX of 8 storied structure.

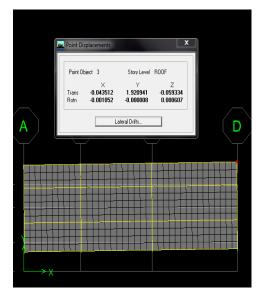


Fig 8.2.11: Deflection of 8 storied structure due to Wind-WY load

Fig 8.2.12: Maximum deflection point in WY of 8

Deflection of structure at ROOF due to Wind load was observed to be: 0.29in at X-direction and 1.92in at Y-direction

Below are the figures of the structure deflected due to Earthquake load and the maximum deflection point:

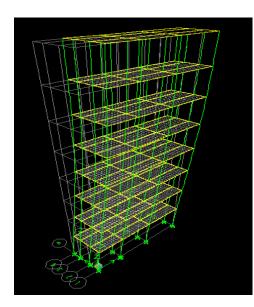


Fig 8.2.13: Deflection of 8 storied structure due to Earthquake-EQX load

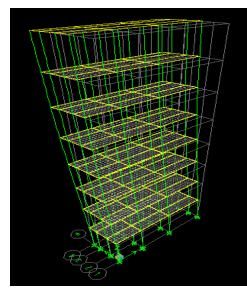


Fig 8.2.15: Deflection of 8 storied structure due to Earthquake-EQY load

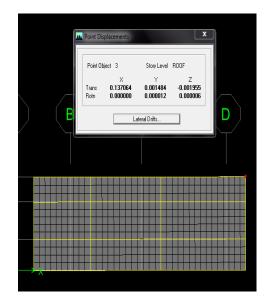


Fig 8.2.14: Maximum deflection point in EQX of 8 storied structure.

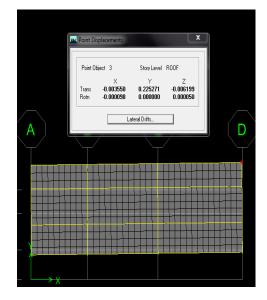


Fig 8.2.16: Maximum deflection point in EQY of 8 storied structure.

Deflection of structure at ROOF due to Earthquake load was observed to be: 0.14in at X-direction and 0.23in at Y-direction

Deflection of structure at ROOF due to Earthquake load was observed to be: 0.21in at X-direction and 0.18in at Y-direction

It was observed that due to wind load at X direction the structure deflects 51.72% more and at Y direction the structure deflects 88.02% more than Earthquake load in X, Y directions respectively.

So in the case of this structure the wind forces were more dominant than earthquake forces.

Explanation:

- This is because our structure is on low hazard Earthquake zone being Zone 1 and our wind speed being 238km/h
- Secondly the length to width ratio is 3. At X axis our total length is 36.9 ft. and at Y axis our total length is 12.3 ft. So, X axis gets higher wind exposure compared to Y axis and that's why the structure deflects more in Y direction.

8.4 COMPARISON OF WL BETWEEN 6 AND 8 STORIED STRUCTURE:

Maximum deflection due to wind load in the 6 storied structure was observed to be 0.24in at Xdirection and 0.82in at Y-direction and maximum deflection due to wind load in the 8 storied structure was observed to be 0.29in at X-direction and 1.92in at Y-direction.

So, due to the addition of two extra floors the deflection increased by 21% in X direction and 134% in Y-direction.

CONCLUSION:

Using ACI 318, a preliminary design of a six storied R.C.C structure was completed and then two more stories was added on top of it to create eight-storied version of it. Overall, the structures were done as efficiently as possible but the structure may need future edits and the structure may not fully comply with ACI 318 code. As the structure was not a likely structure to be applied in real life and the dimensions were fictional it contained many flaws which need many revisions and edits.

While designing a two-way slab it was noticed that moments on both negative and positive sides were very low as a result the corresponding area of steel was very low so minimum reinforcement (with extra tops) was provided to be safe which means the structure may not be as economical as it could have been.

In this report, only the basic planning and design of a six-storied residential building and an eightstoried residential building were completed and presented. Stair and footing design was skipped due to time shortage.

From the initial analysis, it was noticed that due to the extra load of two stories the designs changed for the eight storied structure and the cost per floor increased.

Also observed were the deflections of the structures due to earthquake load and wind load. In our case as our structure's length to width ratio was 3 and the wind speed was very high both of our structures deflected more due to wind load making it the dominant load acting upon our structure. The deflection of the eight-storied structure due to wind was much more than the deflection of the six-storied structure due to wind as expected.

Below given are the changes noticed in our study bullet point form:

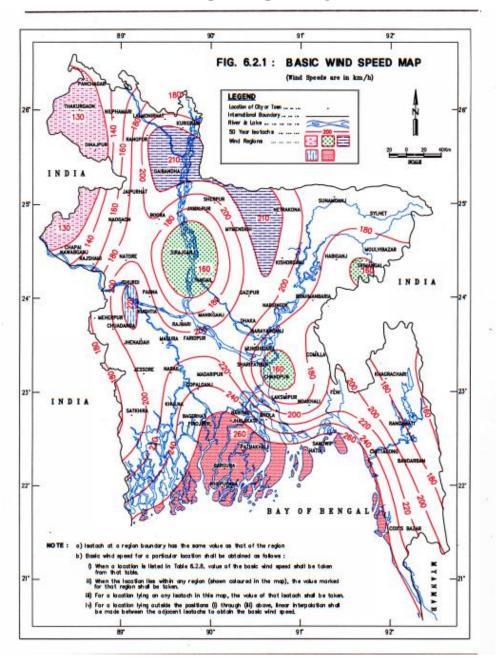
- We compared the design changes and per floor rebar cost in the two structures. Where the per floor avg. rebar cost for beams increased by 39% for beams and for columns increased by 75%
- The dominating force in both structure was Wind due to high exposure.
- The deflection due to wind was more in 8 storied structure. To be exact 21% in X direction and 134% in Y-direction.

RECOMMENDATION:

This is only a study conducted by considering a fictional building with unreal dimensions as a result there may be many errors in design. Also only the preliminary and basic design was done in this study and the structure may need many revisions and corrections needed to be made.

Group 1.A would like to give some personal recommendations that could help improve this study:

- Updated software and materials (like codes) must be used for the study to be more up-todate and realistic.
- It is to be noted that the design of beams and columns were done by considering the slab bending m11,m22, and m12 to be 1 instead of considering it close to zero for more accurate results. It is highly recommended that the design must be done by considering slab modifiers close to zero. (In the case of this study by group 1.A the values of longitudinal reinforcement for beam and column did not differ that much and the design was done in a way that there was some safety room while considering the reinforcement. But still the beams x-axis 1F #2, y-axis GF #C, y-axis 1F #C, y-axis 2F #C, y-axis 3F #C and y-axis 4F #C needs to be revised and redesigned).
- For time constraints only two beam sections from every floor were designed in this study. One on X-axis and One on Y-axis and the beams were selected based on the highest reinforcement requirement. It is recommended that analysis of all of the beams must be done.
- For time constraints we were able to design only 3 columns. It is recommended that all the columns should be designed. Also to note is that the rebar percentage for the structure of group 1 was very low (averaging 1.5%). As this structure was unrealistic there couldn't be


much done for this problem but it is good to keep the rebar percentage near 4% to make the design more efficient.

• For time constraints we only designed the GF slab in this study. It is recommended to design slabs of all the floors. (In the case of group 1.A structure GF was considered because it contained the highest moment which was still very low and minimum reinforcement was provided in slabs. As this is the case all the other floors will have similar results so the same design could apply to all the floors). Similar results for eight-storied structure.

APPENDIX 1:

BNBC for wind loads:

Basic Wind speed map of Bangladesh

Location	Basic Wind Speed (km/h)	Location	Basic Wind Speed (km/h)
Angarpota	150	Lalmonirhat	204
Bagerhat	252	Madaripur	220
Bandarban	200	Magura	208
Barguna	260	Manikganj	185
Barisal	256	Meherpur	185
Bhola	225	Moheshkhali	260
Bogra	198	Moulvibazar	168
Brahmanbaria	180	Munshiganj	184
Chandpur	160	Mymensingh	217
Chapai Nawabganj	130	Naogaon	175
Chittagong	260	Narail	222
Chuadanga	198	Narayanganj	195
Comilla	196	Narsinghdi	190
Cox's Bazar	260	Natore	198
Dahagram	150	Netrokona	210
Dhaka	210	Nilphamari	140
Dinajpur	130	Noakhali	184
Faridpur	202	Pabna	202
Feni	205	Panchagarh	130
Gaibandha	210	Patuakhali	260
Gazipur	215	Pirojpur	260
Gopalganj	242	Rajbari	188
Habiganj	172	Rajshahi	155
Hatiya	260	Rangamati	180
Ishurdi	225	Rangpur	209
Joypurhat	180	Satkhira	183
Jamalpur	180	Shariatpur	198
Jessore	205	Sherpur	200
Jhalakati	260	Sirajganj	160
Jhenaidah	208	Srimangal	160
Khagrachhari	180	St. Martin's Island	260
Khulna	238	Sunamganj	195
Kutubdia	260	Sylhet	195
Kishoreganj	207	Sandwip	260
Kurigram	210	Tangail	
Kushtia	215	Teknaf	260
Lakshmipur	162	Thakurgaon	130

Basic Wind speed for selected locations in Bangladesh

2.4.6.2 Sustained Wind Pressure : The sustained wind pressure, q_z on a building surface at any height z above ground shall be calculated from the following relation :

.

$$q_{z} = C_{c} C_{I} C_{z} V_{b}^{2}$$
(2.4.1)

where,

 q_z = sustained wind pressure at height z, kN/m² C_l = structure importance coefficient as given in Table 6.2.9

- C_c = velocity-to-pressure conversion coefficient = 47.2×10⁻⁶ C_z = combined height and exposure coefficient as given in Table 6.2.10 V_b = basic wind speed in km/h obtained from Sec 2.4.5

Structure importance Coefficient, CI

-

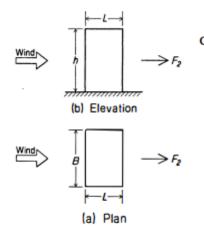
-

Structure Importance Category	Structure Importance		
(see Table 6.1.1 for Occupancy)	Coefficient, C _I		
I Essential facilities	1.25		
II Hazardous facilities	1.25		
III Special occupancy structures	1.00		
IV Standard occupancy structures	1.00		
V Low-risk structures	0.80		

Combined height and Exposure co-efficient, C_z

Height above		$Coefficient, C_{z}^{(1)}$	
ground level, z (metres)	Exposure A	Exposure B	Exposure C
0-4.5	0.368	0.801	1.196
6.0	0.415	0.866	1.263
9.0	0.497	0.972	1.370
12.0	0.565	1.055	1.451
12.0	0.505	1.000	1.401
15.0	0.624	1.125	1.517
18.0	0.677	1.185	1.573
21.0	0.725	1.238	1.623
24.0	0.769	1.236	1.667
24.0	0.769	1.200	1.00/
27.0	0.810	1.330	1.706
30.0	0.849	1.371	1.743
35.0	0.909	1.433	1.797
40.0	0.965	1.488	1.846
45.0	1.017	1.539	1.890
50.0	1.065	1.586	1.930
60.0	1.155	1.671	2.002
	1.155	1.746	2.065
70.0	1.237	1.740	2.065
80.0	1.313	1.814	2.120
90.0	1.383	1.876	2.171
100.0	1.450	1.934	2.217
110.0	1.513	1.987	2.260
	1.515	1.907	2.200
120.0	1.572	2.037	2.299
130.0	1.629	2.084	2.337
140.0	1.684	2.129	2.371
150.0	1.736	2.171	2.404
160.0	1.787	2.212	2.436
170.0	1.835	2.250	2.465
180.0	1.883	2.287	2.494
190.0	1.928	2.323	2.521
200.0	1.973	2.357	2.547
			2.596
220.0	2.058	2.422	
240.0	2.139	2.483	2.641
260.0	2.217 -	2.541	2.684
280.0	2.910	2,595	2.724
300.0	2.362	2.647	2.762
		or intermediate values of a	

2.4.6.3 Design Wind Pressure : The design wind pressure, pz for a structure or an element of a structure at any height, z above mean ground level shall be determined from the relation :

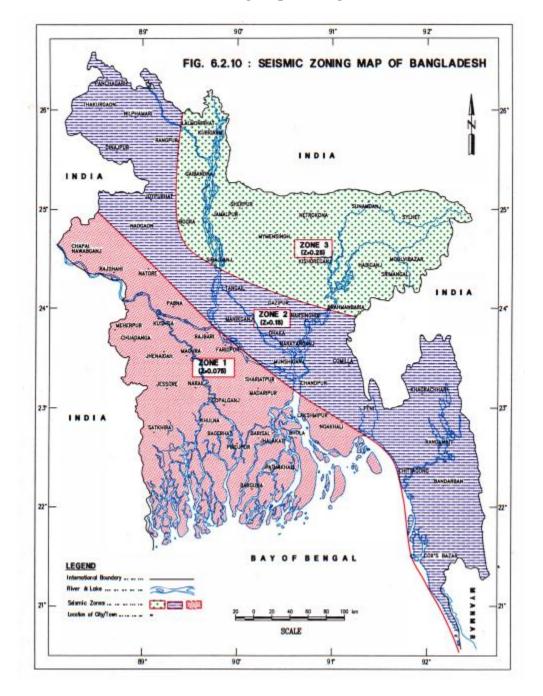

$$p_z = C_G C_p q_z \tag{2.4.2}$$

where, $p_z = \text{design wind pressure at height } z$, kN/m²

 C_{G} = gust coefficient which shall be G_{z} , G_{h} , or \overline{G} as set forth in Sec 2.4.6.6 C_{p} = pressure coefficient for structures or components as set forth Sec 2.4.6.7 q_{z} = sustained wind pressure obtain from Eq (2.4.1).

Gust responses factor, Gh and Gz

Height above		G_h ⁽²⁾ and G_z			
ground level (metres)	Exposure A	Exposure B	Exposure C		
0-4.5	1.654	1.321	1.154		
6.0	1.592	1.294	1.140		
9.0	1.511	1.258	1.121		
12.0	1.457	1.233	1.107		
15.0	1.418	1.215	1.097		
18.0	1.388	1.201	1.089		
21.0	1.363	1.189	1.082		
24.0	1.342	1.178	1.077		
27.0	1.324	1.170	1.072		
30.0	1.309	1.162	1.067		
35.0	1.287	1.151	1.061		
40.0	1.268	1.141	1.055		
45.0	1.252	1.133	1.051		
50.0	1.238	1.126	1.046		
60.0	1.215	1.114	1.039		
70.0	1.196	1.103	1.033		
80.0	1.180	1.095	1.028		
90.0	1.166	1.087	1.024		
100.0	1.154	1.081	1.020		
110.0	1.114	1.075	1.016		
120.0	1.134	1.070	1.013		
130.0	1.126	1.065	1.010		
140.0	1.118	1.061	1.008		
150.0	1.111	1.057	1.005		
160.0	1.104	1.053	1.003		
170.0	1.098	1.049	1.001		
180.0	1.092	1.046	1.000		
190.0	1.087	1.043	1.000		
200.0	1.082	1.040	1.000		
220.0	1.073	1.035	1.000		
240.0	1.065	1.030	1.000		
260.0	1.058	1.026	1.000		
280.0	1.051	1.022	1.000		
300.0	1.045	1.018	1.000		
Note : (1) For main height h		ng systems, use bui	lding or structure		
		able for intermediate	values of z.		
(2) Linear interpolation is acceptable for intermediate values of z.					



Overall Pressure Coefficients, $\bar{C}_p^{(2)}$ for Rectangular Buildings with Flat Roofs

	h/B	L/B						
U		0.1	0.5	0.65	1.0	2.0	≥ 3.0	
Ī	≤5	1.40	1.45	1.55	1.40	1.15	1.10	
	10.0	1.55	1.85	2.00	1.70	1.30	1.15	
	20.0	1.80	2.25	2.55	2.00	1.40	1.20	
	≥40.0	1.95	2.50	2.80	2.20	1.60	1.25	
	 Note:(1) These coefficients are to be used with Method-2 given in Sec 2.4.6.6a(ii). Use C [¯]_p = ± 0.7 for roof in all cases. (2) Linear interpolation may be made for intermediate values of h/B and L/B. 							

Rectangular Building

APPENDIX 2:

Seismic zoning map of Bangladesh

2.5.5.2 Seismic Dead Load : Seismic dead load, W, is the total dead load of a building or a structure, including permanent partitions, and applicable portions of other loads listed below :

- In storage and warehouse occupancies, a minimum of 25 per cent of the floor live load shall be a) applicable.
- Where an allowance for partition load is included in the floor design in accordance with Sec 2.3.3.3, b) all such loads but not less than 0.6 kN/m² shall be applicable.
- Total weight of permanent equipment shall be included. c)

2.5.6.1 Design Base Shear : The total design base shear in a given direction shall be determined from the following relation :

$$V = \frac{ZIC}{R}W$$
(2.5.1)

where, Z = Seismic zone coefficient given in Table 6.2.22

C = Numerical coefficient given by the relation :

Seismic Zone Coefficients, Z

Seismic Zone	Zone
(see Fig 6.2.10)	Coefficient
1	0.075
2	0.15
3	0.25

Structure Importance	Coefficients I	. 1	1
----------------------	----------------	-----	---

Structure Importance Category (see Table 6.1.1 for occupancy)		Structure Importance Coefficient		
		I	ľ	
1	Essential facilities	1.25	1.50	
п	Hazardous facilities	1.25	1.50	
ш	Special occupancy structures	1.00	1.00	
IV	Standard occupancy structures	1.00	1.00	
V	Low-risk Structures	1.00	1.00	

Structure Period : The value of the fundamental period, T of the structure shall be determined from one of the following methods :

Method A : For all buildings the value of T may be approximated by the following formula : a)

$$T = C_t (h_n)^{3/4}$$
(2.5.3)

where,	C_t	=	0.083 for steel moment resisting frames	
		=	0.073 for reinforced concrete moment resisting frames, and eccentric	braced
			steel frames	
			0.049 for all other structural systems	
	h_n	=	Height in metres above the base to level <i>n</i> .	

5

Response Modification Coefficient for Structural Systems, R

.

-

c. Moment Resisting Frame System 2. 3.	Special moment resisting frames (SMRF) i) Steel ii) Concrete Intermediate moment resisting frames (IMRF), concrete ⁽⁴⁾ Ordinary moment resisting frames (OMRF) i) Steel ii) Concrete ⁽⁵⁾	12 12 8 6 5	
---	--	-------------------------	--

	Table 6.2.25
Site Coefficient, S	for Seismic Lateral Forces (1)

	Site Soil Characteristics	Coefficient, S			
Type	Description				
S ₁	 A soil profile with either : a) A rock-like material characterized by a shear-wave velocity greater than 762 m/s or by other suitable means of classification, or b) Stiff or dense soil condition where the soil depth is less than 61 metres 	1.0			
S ₂	A soil profile with dense or stiff soil conditions, where the soil depth exceeds 61 metres	1.2			
S3	A soil profile 21 metres or more in depth and containing more than 6 metres of soft to medium stiff clay but not more than 12 metres of soft clay	1.5			
S4	A soil profile containing more than 12 metres of soft clay characterized by a shear wave velocity less than 152 m/s	2.0			
Note :	Note : (1) The site coefficient shall be established from properly substantiated geotechnical data. In locations where the soil properties are not known in sufficient detail to determine the soil profile type, soil profile S ₃ shall be used. Soil profile S ₄ need not be assumed unless the building official determines that soil profile S ₄ may be present at the site, or in the event that soil profile S ₄ is established by geotechnical data.				

MATERIALS USED:

- [1] Reddy, D. K., & Tupat, S. A. (2014). The effect of zone factors on wind and earthquake loads of high-rise structures. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN, 2278-1684.
- [2] Heiza, K. M., & Tayel, M. A. (2012). Comparative study of the effects of wind and earthquake loads on high-rise buildings. Concrete Research Letters, 3(1), 386-405.
- [3] Chauhan, H., Pomal, M., & Bhuta, G. (2013). A comparative study of wind forces on high-rise buildings as per IS 875 (III)-1987 and proposed draft code (2011). Global research analysis, ISSN, (2277-8160).
- [4] Kevadkar, M. D., & Kodag, P. B. (2013). Lateral load analysis of RCC building. International Journal of Modern Engineering Research (IJMER), 3(3), 1428-1434.
- [5] Irtem, E., Turker, K., & Hasgul, U. (2007). Causes of collapse and damage to lowrise RC buildings in recent Turkish earthquakes. Journal of Performance of Constructed Facilities, 21(5), 351-360.
- [6] Zahra, T., & Zehra, Y. (2012). Effect of rising seismic risk on the design of high rise buildings in Karachi. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 12(6), 42-45.
- [7] Hirde, S., & Magadum, V. (2014). Severity of Earthquake Forces against Wind Forces for Multistorey RCC Building. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 71-75.

BOOKS, WEBSITES AND SOFTWARE USED:

- International edition of Design of Concrete structures (13th edition) by Arthur H.
 Nilson, David Darwin and Charles W. Dolan.
- Bangladesh National Building Code 1993
- <u>www.homeadvisor.com</u>
- <u>www.wirelessestimator.com</u>
- Google photos

- Wikipedia
- AutoCAD (2007 and 2020)
- ETABS (Version 9.6.0)
- MS excel.
- MS office.