# SLAB DESIGN OF A SIX STORIED RESIDENTIAL BUILDING

### Submitted by:

| Raihanul Islam           | 171-47-372 |
|--------------------------|------------|
| Nur Mohammad Riad        | 171-47-370 |
| Nur Mohammad             | 181-47-659 |
| Md. Tasnimul Hasan Tasin | 171-47-357 |

A Thesis Submitted to the Department of Civil Engineering, Daffodil International University in Partial Fulfillment of the Requirements for the Degree of

### **Bachelor of Science in Civil Engineering**



October-2021

The thesis titled **"Slab Design of a Six Storied Residential Building"** submitted by **Md. Tasnimul Hasan Tasin** (171-47-357), **Raihanul Islam** (171-47-372), **Nur Mohammad Riad** (171-47-370), **Nur Mohammad** (181-47-659) in the Department of Civil Engineering, Daffodil International University, has been accepted as satisfactory in partial fulfillment of the requirement for the degree of **Bachelor of Science in Civil Engineering** (Structural) and approved as in its style and contents presentation which has been held on \_\_\_\_\_2021

#### **BOARD OF EXAMINERS**

Department of Civil Engineering Daffodil International University Daffodil Smart City Ashulia, Dhaka

Assistant Professor Department of Civil Engineering Daffodil International University Daffodil Smart City Ashulia, Dhaka

. Assistant Professor Department of Civil Engineering Daffodil International University Daffodil Smart City Ashulia, Dhaka This is to certify that the thesis entitled "Slab Design of a Six Storied Residential Building" submitted by Md. Tasnimul Hasan Tasin (171-47-357), Raihanul Islam (171-47-372), Nur Mohammad Riad (171-47-370), Nur Mohammad (181-47-659) in the Department of Civil Engineering, Daffodil International University, has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Bachelor of Science in Civil Engineering (Structural) and approved as in its style and contents presentation which has been held on .... 2021

**Ms. Arifa Akther** (Supervisor) Lecturer, Department of Civil Engineering Daffodil International University

### **DECLARATION**

This is to certify that the thesis entitled "Slab Design of a Six Storied Residential Building" submitted to the Department of Civil Engineering Daffodil International University (DIU) in partial fulfillment of the requirement for the degree of Bachelor of Science in Civil Engineering is a record of original research work done by us under the supervision of Arifa Akther, Lecturer, Department of Civil Engineering, Daffodil International University, and the thesis has not been submitted elsewhere for any award/degree/diploma/fellowship or for any other purpose.

Ms. Arifa Akther (Supervisor) Lecturer, Department of Civil Engineering. Daffodil International University

Submitted by:

Md. Tasnimul Hasan Tasin

ID NO: 171-47-357

Raibar

**Raihanul Islam** 

ID NO: 171-47-372

Nur Mohammad Riad

ID NO: 171-47-370

Lun Mohamad

Nur Mohammad

ID NO: 181-47-659

The report has been written as "Slab Design of a Six Storied Residential Building". The construction of a six storied building can be divided into several major steps. These stages involve the execution of all works in a professional standard, because a six storied building is a very difficult structure. One of the main tasks during construction is to ensure the safety of residents. The creation of comfortable conditions for people living in the house and providing the maximum convenience in the use of utilities in the house is also important.

The fundamental method followed right here is the sequential presentation of analysis & design of all forces of six storied constructing for earthquake and wind impact with the aid of using UBC 1994, BNBC, and ACI code proposed locations in Bangladesh. For this cause Dhaka metropolis has been selected. Data & Figure are supplied wherever felt vital in reader pleasant way. Analysis and layout has been completed with ETABS.

After analysis and design of the slab of a six-storied building in Dhaka we gained practical knowledge of design software ETABS and found out how the wind and earthquake loads affect the structure.

At first, we wish to express all the praises sincerely to the Almighty ALLAH who has enabled us to complete the work with the sound condition. We like to express our sincere gratitude and profound indebtedness to our honorable supervisor Ms. Arifa Akther, Lecturar, Department of Civil Engineering, Daffodil International University (DIU), for her constant supervision, encouragement, and contribution of new ideas throughout this work. Without her invaluable supervision and cordial cooperation, it would have been impossible to complete this work under various constraints, including time constraints. Again, it was a great privilege to work under her supervision because her keen interest made it possible to accomplish the study. We are also grateful to Dr. Mohammad Hannan Mahmud Khan, Department Head of Civil Engineering, Daffodil International University, and Ms. Arifa Akther, Lecturer, Department of Civil Engineering, Daffodil International University Bangladesh, for the contribution of guidance throughout this study.

We hereby declare that this is an original report written by us with our own findings and has not been published or presented in parts or as a whole for any other previous degree. Resources and materials by other researchers used as guidelines for our research.

# NOTATIONS

| LL    | Live Load                                              |
|-------|--------------------------------------------------------|
| DL    | Dead Load                                              |
| EQL   | Earthquake Load                                        |
| WL    | Wind load                                              |
| RCC   | Reinforcement Cement Concrete                          |
| Psi   | Pound per Square Inch                                  |
| Psf   | Pound per Square feet                                  |
| BNBC  | Bangladesh National Building Code                      |
| ASTM  | American Standard for Testing Material                 |
| FF    | Geographical Information System                        |
| PW    | Partition Wall                                         |
| AI    | Artificial Intelligence                                |
| ACI   | American Concrete Institute                            |
| UBC   | Uniform Building Code                                  |
| ETABS | Extended Three Dimensional Analysis of Building System |
| MS    | Microsoft Office                                       |

| BOARD OF EXAMINERS | i   |
|--------------------|-----|
| APROVAL            | ii  |
| DECLARATION        |     |
| ABSTRACT           |     |
| ACKNOWLEDGEMENT    |     |
|                    |     |
| DEDICATION         |     |
| NOTATIONS          | vii |

## **CHAPTER 1: INTRODUCTION**

| 1 |
|---|
| 1 |
| 3 |
| 3 |
| 4 |
|   |

## **CHAPTER 2: LITERATURE REVIEW**

| 2. 1 RCC Frame Structure: | 5 |
|---------------------------|---|
| 2. 2 Dead Loads           | 6 |
| 2. 3 Live Load            | 7 |
| 2. 4 Floor Live Load      | 7 |
| 2. 5 Wind Loads           | 7 |
| 2. 6 Earthquake Loads     | 8 |

## **CHAPTER 3: METHODOLOGY**

| 3. 1 General            | 9 |
|-------------------------|---|
| 3. 2 Work Follows Chart | 9 |

## **CHAPTER 4: MODEL & LOAD CALCULATION**

| 4. 1 ETABS Model:                | . 10 |
|----------------------------------|------|
| 4. 2 LOADS APPLIED ON THE MODEL: | . 12 |

## **CHAPTER 5: SLAB DESIGN**

| 5. 1 Slab Calculations:      | 19 |
|------------------------------|----|
| 5. 2 Slab Size (Clear Span): |    |
| 5. 3 Load Calculation        |    |
| 5. 4 Steel Area Calculation  |    |
| 5. 5 Slab Detailing          |    |

### CHAPTAR 6: CONCLUSION & RECOMMENDATION

| 6. 1 Conclusions:    | 44 |
|----------------------|----|
| 6. 2 Recommendations | 44 |
|                      |    |
|                      |    |
| REFERENCES           | 44 |
|                      |    |
| APPENDIXES           | 45 |

# LIST OF FIGURES

| Fig 3.2. 1: Flow chart                                                                   | 9       |
|------------------------------------------------------------------------------------------|---------|
|                                                                                          |         |
| Fig 4.1. 1: 3D View of the structure                                                     | 10      |
| Fig 4.1. 2: ETABS model Plan View                                                        |         |
|                                                                                          |         |
| Fig 4.2. 1: Torsional Irregularity Check diagram                                         | 15      |
| Fig 4.2. 2 : ETABS model of 6 storied building with longitudinal reinforcement requireme | ents.18 |
|                                                                                          |         |
| Fig 5.1. 1: Stress Contour of Slab                                                       |         |
| Fig 5.1. 2: Slab location                                                                |         |
|                                                                                          |         |
| Fig 5.5. 1: Slab Detailing                                                               |         |
| Fig 5.5. 2: Slab cross section                                                           |         |

## LIST OF TABLES

| Table 4.2. 1 : WL calculation for 6 storied structure | 13 |
|-------------------------------------------------------|----|
|                                                       |    |
| Table 5.4.1. 1: Moment data collection Long Direction | 25 |

| Tuble 5.111 1. Moment data concerton Long Direction |    |
|-----------------------------------------------------|----|
| Table 5.4.1. 2: Slab 1 calculation                  |    |
| Table 5.4.1. 3: Slab 2 calculation                  | 27 |
| Table 5.4.1. 4: Slab 3 calculation                  |    |
| Table 5.4.1. 5: Slab 4 calculation                  |    |
| Table 5.4.1. 6: Slab 5 calculation                  |    |
| Table 5.4.1. 7: Slab 6 calculation                  |    |
| Table 5.4.1. 8: Slab 7 calculation                  |    |
| Table 5.4.1. 9: Slab 8 calculation                  |    |
| Table 5.4.1. 10: Slab 9 calculation                 |    |
|                                                     |    |

| Table 5.4.2. 1: Moment data collection Short Direction | 34 |
|--------------------------------------------------------|----|
| Table 5.4.2. 2: Slab 1 calculation                     | 35 |
| Table 5.4.2. 3: Slab 2 calculation                     | 36 |
| Table 5.4.2. 4: Slab 3 calculation                     | 36 |
| Table 5.4.2. 5: Slab 4 calculation                     | 37 |
| Table 5.4.2. 6: Slab 5 calculation                     | 38 |
| Table 5.4.2. 7: Slab 6 calculation                     | 39 |
| Table 5.4.2. 8: Slab 7 calculation                     | 40 |
| Table 5.4.2. 9: Slab 8 calculation                     | 41 |
| Table 5.4.2. 10: Slab 9 calculation                    | 41 |
|                                                        |    |

#### **1.1 Introduction:**

Shelter is one of important human survival needs which provides safety. In order to provide an economic & efficient shelter with provision of future, there are some basic procedures for an engineer to consider in a Structural Design. It is generally believed that only receiving training in a special design skill is not sufficient for successful professional practice. As new researches available and constantly introducing new design methods, the design programs are changing frequently. Understanding these rewarding developments, and in order to safely engage in innovative designs, engineers transparent grounding is required in terms of conversion and basic performance to build houses safely, economically and efficiently.

#### 1. 2 Background of the Study:

A new surge of activity within the construction of tall buildings has taken place within the previous couple of years. Although there are many advancements in building construction technology generally. One spectacular achievement are made in the design and construction of high-rise-buildings. The first development of high-rise buildings began with steel framing; ferroconcrete has since been economically and competitively utilized in variety of structures for both residential and commercial purposes. The newer high-rise buildings starting from 50 to 110 stories and now being built everywhere the US, are the results of very recent innovations and development of latest structural systems. Greater height entails increased column and beam sizes to form buildings more rigid in order that under wind load they're going to not sway beyond a suitable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings and other architectural details. Additionally excessive sway may cause discomfort to the occupants of the building due to their perception of such motion.

New structural system of ferroconcrete, also as steel, take full advantage of the inherent potential stiffness of the entire building and thus don't require additional stiffening to limit the sway. In a steel structure, for example, the economy is often defined in terms of the entire average quantity of steel per square foot of floor area of the building. The typical unit weight of a standard frame with increasing numbers of stories. The gap between 2 the upper boundary and therefore the lower boundary represents the premium for height for the normal column and beam frame. Within the previous couple of years structural engineers have developed new structural systems with a view to eliminating this premium. Structural steel is widely utilized in buildings in developed countries. The development of improved construction techniques and constant improvements in methods of production and fabrication have rendered its use virtually limitless. Reinforced concrete frames are universally used for construction of medium to high-rise buildings. The event of improved construction techniques has made it possible to construct a high-rise building less costly both in time and money.

The development techniques being widely utilized in high-rise reinforced concrete buildings are:

- Lift Slab technique
- Slip-form construction technique
- Prefabricated construction
- Tilt-up construction
- Drop-slab construction
- Composite construction technique

In Bangladesh, reinforced embodied construction is semi mechanized.

Reinforcement slicing and catch are committed manually, concrete mixing is generally done by the usage of mixer machine; figured holding above in conformity with four storied heights are performed manually then upon it height figured is generally carried by hoist or pitcher and hoist. Fabricated type scaffolding regarding metal tubes are extensively back whole upon the world. In Bangladesh bamboo and wood scaffolding are still being used. For shuttering wooden planks and steel sheets have observed large application. At present slip forms, current types etc. are being efficaciously used for concreting. Finishing about reinforced might also stand plastered finish. Formed finish is used into high-rise buildings then additionally within mean in imitation of medium upward push constructions. The present job is involved with the education regarding excessive upward shove constructing development practice in Bangladesh. It consists of the learning concerning construction method existence followed, the government on mechanization of development industry or strategies then methods of building of use. This type regarding discipline is useful for evaluating the state of excessive upward shove building industry together with its shortcomings then scope about development.

#### 1.3 Objective:

- Doing overall analysis, modeling and design over the building for structural analysis.
- To achieve a practical knowledge on structural analysis, modeling, slab design and detailing of structural components using advanced software such as ETABS.

#### 1. 4 Scope of Study:

The main scope of this study was to gain knowledge about structure designing using advanced designing software such as ETABS and AutoCAD. The focus of this study was to concentrate on how to design two-way slab system in a structure considering lateral loads (i.e. wind load and earthquake load).

### 1.5 Limitations

- Analysis of the structure consists of multiple stages and factors. For concrete, no effects out of creep, contraction then temperature outcomes have been analyzed.
- The concrete hold also been viewed uncrack.
- Due to shortage of time no comparison amongst similar structures were done.
- Only the design of two-way slab was completed in this study

#### 2. 1 RCC Frame Structure:

Reinforced cement concrete, or RCC, contains steel bars, called reinforcement bars or rebars. This combination works well since concrete is solid in compression, is easy to construct on-site, and is relatively inexpensive, and steel is quite strong in tension. The load is transported from a slab to the beams, the columns, the lower columns, and lastly to the foundation, which transfers it to the soil in an RCC-framed structure. The walls in such structures are built after the frame has been completed. The primary assignment of the structural engineer is the plan of structure. From the structure, the architect's essential goal of this proposition is to disperse data on the most recent ideas, strategies, and plan information to underlying specialists locked in the plan of wind and seismic-safe structure. Fundamental to the proposition are ongoing advances in seismic plans, especially those identified with structures in zones of low and moderate seismicity. Wind – and tremor Resistant incorporates the plan parts of steel, cement, and composite structure inside a solitary book. The taller is the structure, the more essential it is to pick a proper primary framework. A significant thought influencing the underlying framework is the capacity of the building. Current places of business call for enormous open spaces that can be partitioned with lightweight dividing to suit the individual occupant's requirements.

Subsequently, principle vertical parts are by and large organized, beyond what many would consider possible, around the edge of the arrangement and inside in-bunch around the lift, mix, and administration lifts. The floor regions between the outside and inside segments, leveling huge segment free region accessible for office arranging. The administrations are disseminated evenly in every story over the parceling and are usually covered in roof spate. The additional profundity needed by this space causes commonplace story tallness in a place of business to be 3000 mm or more. A significant advance forward in fortified solid tallness rise underlying framework comes with the presentation of vertical dividers for opposing level burden. This is the first to progress critical improvements in the prior arrangement of tall solid buildings liberating them and level plate framework. The advancement and refinement of these new frameworks, along with the improvement of higher strength concrete, has permitted the stature of solid structure to reach inside development comes from the wide accessibility of strengthening bars and the constituents of solid, stones, sand, concrete.

#### 2. 2 Dead Loads

The weight of a building's structural parts, such as beams, walls, roof, and structural flooring components, are examples of dead loads, also known as permanent or static loads. Permanent non-structural dividers, immovable fixtures, and even built-in cupboards can all be considered dead loads. The term "deal load" refers to weights that do not fluctuate significantly over time, such as the weight of

- All permanent components of a building, such as walls, beams, columns, flooring material, etc.
- Fixed permanent equipment and fittings that are a structural component (Like plumbing, HVAC, etc.)
- The dead loads are determined based on the member sizes and material densities considered.

#### 2.3 Live Load

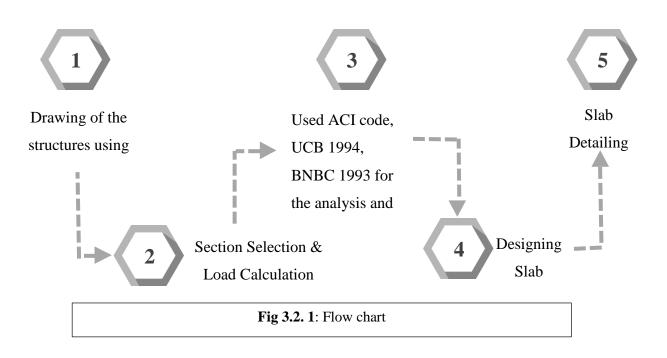
The downward force acting on the building is caused by the anticipated weight of the occupants and their belongings, including furniture, books, and so forth. These loads are typically stipulated in building codes, and structural engineers must design buildings to withstand these or higher loads. These loads will vary depending on the purpose of the space, such as residential, office, or industrial, to mention a few. Codes often demand residential live loads to be around 200 kg/m2, workplaces to be 250 kg/m2, and industrial to be 1000 kg/m2, which is the same as 1T/m2. These loads are also known as forced loads.

#### 2. 4 Floor Live Load

Floor live loads are critical in building structural design. A good understanding of loading intensity is required for the economical and safe design of structures. In practice, the defined design load values in design codes are not necessarily the same. Such loads shall be taken as the minimum of live loads per square foot of pounds. Horizontal rejection to be included in the construction design for the specified occupancies, for uses not mentioned in this section but that is not listed in this section, and loads at least equivalent are considered to be it provides or accommodates comparable loadings

#### 2.5 Wind Loads

This is a critical design consideration, particularly for tall buildings or structures with an enormous surface area. Buildings are constructed to withstand extreme wind conditions that may occur once every 100 years rather than everyday wind conditions. These are known as design wind speeds and are required by construction codes. A building is frequently required to withstand a wind force of 150 kg/m2, which can be a significant force when multiplied by the building's surface area.


### 2. 6 Earthquake Loads

During an earthquake, the Earth violently shakes the building horizontally and vertically, much like a bucking horse shakes a rider in the rodeo sport. This has the potential to cause the structure to collapse. The higher the force on the building, the heavier it is. It is vital to note that wind and earthquakes apply horizontal forces to the building instead of vertical gravity forces.

### 3.1 General

We have used ETABS as a Design & Analysis software. We maintained the design code as per ACI, BNBC and UBC code for calculation. Our required building was selected and its plan & elevation were drawn on ETABS software. All loads (including Wind and Earthquake) have been calculated on all beams & columns. As our proposed building locate in Dhaka we used the coefficients and all other variables as per the requirement for Dhaka zone. We have done several comparisons to check all the variations.

#### **3. 2 Work Follows Chart**



# **CHAPTER 4: ETABS MODELLING & LOAD CALCULATION**

## 4.1 ETABS Model:

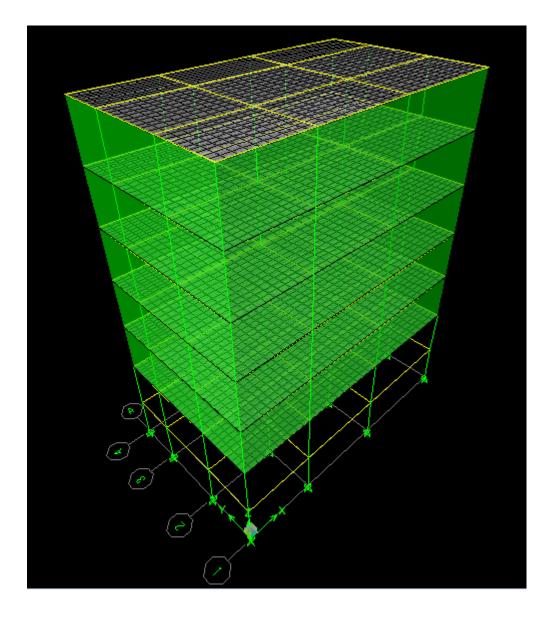
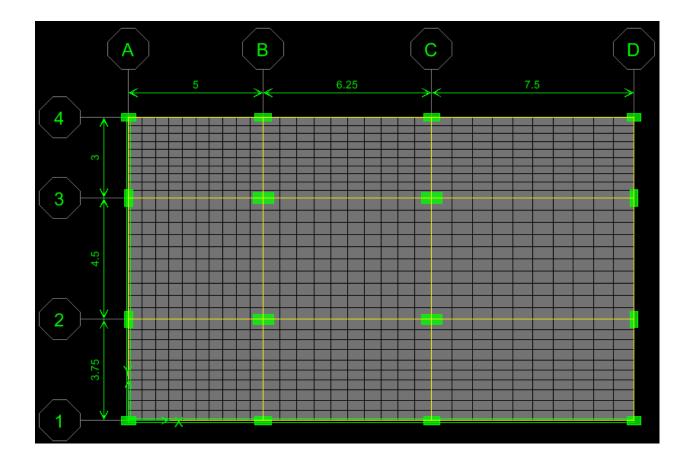




Fig 4.1. 1: 3D View of the structure



#### Fig 4.1. 2: ETABS model Plan View

### **X-Direction:**

A-B= 5m, B-C= 6.25m, C-D= 7.5m

#### **Y-Direction:**

1-2= 3.75m, 2-3= 4.5m, 3-4= 3m

#### 4. 2 LOADS APPLIED ON THE MODEL:

### 4.2. 1 Gravity Loads:

Here are the loads due to gravity that were applied to the structure

| Load | ls                    |
|------|-----------------------|
| LL   | 3 KN/m <sup>2</sup>   |
| PW   | 2.5 KN/m <sup>2</sup> |
| FF   | 1.5 KN/m <sup>2</sup> |

### 4.2. 2 Wind Loads:

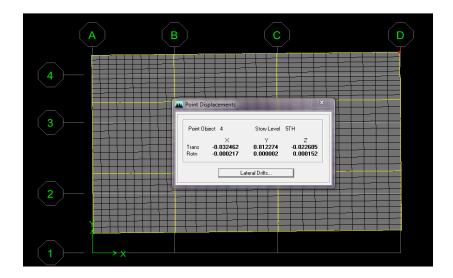
Here are the calculations for wind load at our 6 storied structure:

From BNBC 1993 we get,

| Exposure<br>condition | Basic<br>wind<br>speed,<br>V <sub>b</sub> | Velocity<br>to<br>pressure<br>co-<br>efficient,<br>C <sub>c</sub> | Structural<br>importance<br>co-efficient<br>C <sub>I</sub> | Sustained<br>wind<br>pressure<br>qz | Gust<br>co-<br>efficient<br>Cg | Pressure,<br>P <sub>z-x</sub>  | Pressure,<br>P <sub>z-y</sub>  |
|-----------------------|-------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| А                     | 210<br>km/h                               | 47.2x10 <sup>-</sup><br>6                                         | 1                                                          | 2.0815 Cz<br>KN/m <sup>2</sup>      | 1.393                          | 3.5896 Cz<br>KN/m <sup>2</sup> | 4.4160 Cz<br>KN/m <sup>2</sup> |
|                       | 130.52<br>mph                             |                                                                   |                                                            |                                     |                                |                                |                                |

| Wind direction-X | Wind direction-Y |
|------------------|------------------|
| B= 11.5m         | B= 19m           |
| L= 19m           | L= 11.5m         |
| h= 17.5m         | h= 17.5m         |
| L/B= 1.65        | L/B= 0.61        |
| h/B= 1.52        | h/B= 0.92        |
| $C_p = 1.238$    | $C_{p} = 1.523$  |

**WL calculation for 6 storied structure:** the calculation was done using BNBC 1993 (Section 2.4)


|       |           |       | Table 4.2        | 2.1:WL            | calculatio | n for 6 sto | oried struct     | ure               |         |         |
|-------|-----------|-------|------------------|-------------------|------------|-------------|------------------|-------------------|---------|---------|
|       | nd press  |       |                  | X-d               | lir        |             |                  | Y-                | dir     |         |
| c     | alculatio | n     |                  |                   |            |             |                  |                   |         |         |
|       | Height    | G     | D                |                   | Floor      | Floor       | D                |                   | Floor   | Floor   |
| Floor | (m)       | Cz    | P <sub>z-x</sub> | Area              | level      | level       | P <sub>z-y</sub> | Area              | level   | level   |
|       | from      |       | $(KN/m^2)$       | (m <sup>2</sup> ) | force      | force       | $(KN/m^2)$       | (m <sup>2</sup> ) | force   | force   |
|       | GL        |       |                  |                   | (KN)       | (kip)       |                  |                   | (KN)    | (kip)   |
|       |           |       |                  |                   |            |             |                  |                   |         |         |
| 1F    | 3.5       | 0.368 | 1.321            | 40.250            | 53.169     | 11.952      | 1.625            | 66.500            | 108.068 | 24.294  |
| 2F    | 7         | 0.442 | 1.587            | 40.250            | 63.861     | 14.356      | 1.952            | 66.500            | 129.799 | 29.179  |
| 3F    | 10.5      | 0.531 | 1.906            | 40.250            | 76.720     | 17.247      | 2.345            | 66.500            | 155.936 | 35.054  |
| 4F    | 14        | 0.604 | 2.168            | 40.250            | 87.267     | 19.618      | 2.667            | 66.500            | 177.373 | 39.873  |
| Roof  | 17.5      | 0.668 | 2.398            | 20.125            | 48.257     | 10.848      | 2.950            | 33.250            | 98.084  | 22.049  |
|       |           |       | Total forc       | e along X         | K          | 74.021      | Total forc       | e along Y         | (       | 150.450 |
|       |           |       | direction        |                   |            |             | direction        |                   |         |         |

Maximum allowable deflection for 6 floors:

| h/500 | 0.035 m | 1.378 in |
|-------|---------|----------|
|-------|---------|----------|

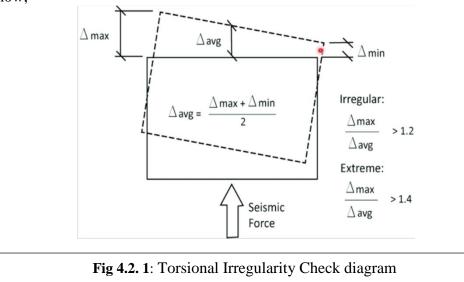






Deflection of our structure due to WY load

Deflection of our structure due both WX and WY load was less than maximum allowed deflection. So, our structure design is ok


### 4.2. 3 EARTHQUAKE LOAD CALCULATIONS:

| Ea                | orth quake load |        |
|-------------------|-----------------|--------|
| Soil type         | <b>S</b> 3      | S=1.5  |
| Zone              | Zone 2          | Z=0.15 |
| Importance factor |                 | 1      |

The structure was designed for Dhaka. So, according to BNBC 1993:

**EQL calculation:** No manual calculation was done. ETABS was used to apply the load on the structure. The application process was similar to BNBC 1993 (Section 2.5).





### Now from ETABS we get,

### For Earthquake load X direction:

| $\Delta Max$ | = |
|--------------|---|
|              |   |

| 🛄 DISI | PLACEN | MENTS AND DI | RIFTS AT PO | OINT OBJECT | 3        |
|--------|--------|--------------|-------------|-------------|----------|
| File   |        |              |             |             |          |
|        | STORY  | DISP-X       | DISP-Y      | DRIFT-X     | DRIFT-Y  |
|        | 5TH    | 0.761938     | 0.013368    | 0.000385    | 0.000006 |
|        | 4TH    | 0.708920     | 0.012501    | 0.000611    | 0.000011 |
|        | 3RD    | 0.624761     | 0.011048    | 0.000810    | 0.000014 |
|        | 2ND    | 0.513177     | 0.009175    | 0.000967    | 0.000016 |
|        | 1ST    | 0.379918     | 0.006972    | 0.001078    | 0.000018 |
|        | GF     | 0.231374     | 0.004534    | 0.001121    | 0.000021 |
|        | PL     | 0.076887     | 0.001598    | 0.000651    | 0.000014 |
|        |        |              |             |             |          |
|        |        |              |             |             |          |
|        |        |              |             |             |          |
|        |        |              |             |             |          |

#### $\Delta_{Min} =$

| 🛄 DIS | SPLACEME | ENTS AND D | RIFTS AT P | OINT OBJECT | 4        |
|-------|----------|------------|------------|-------------|----------|
| File  |          |            |            |             |          |
|       | STORY    | DISP-X     | DISP-Y     | DRIFT-X     | DRIFT-Y  |
|       | 5TH      | 0.746922   | 0.013472   | 0.000378    | 0.000007 |
|       | 4TH      | 0.694896   | 0.012547   | 0.000599    | 0.000011 |
|       | 3RD      | 0.612349   | 0.011093   | 0.000795    | 0.000014 |
|       | 2ND      | 0.502860   | 0.009207   | 0.000949    | 0.000016 |
|       | 1ST      | 0.372064   | 0.007000   | 0.001058    | 0.000018 |
|       | GF       | 0.226264   | 0.004530   | 0.001098    | 0.000021 |
|       | PL       | 0.074943   | 0.001598   | 0.000635    | 0.000014 |
|       |          |            |            |             |          |
|       |          |            |            |             |          |
|       |          |            |            |             |          |
|       |          |            |            |             |          |

We will select the deflection value for the top floor so,

 $\Delta_{Avg} = (\Delta_{Max+} \Delta_{Min})/2 = (0.761938 + 0.746922)/2 = 0.77$ 

Now,  $\Delta_{Max/} \, \Delta_{Avg} \! = \! 1.03 < \! 1.2$  so our structure is ok

### Now from ETABS we get,

### For Earthquake load Y direction:

| $\Delta_{Max}$ | = |
|----------------|---|
|                |   |

| STORY         DISP-X         DISP-X         DRIFT-X         DRIFT-Y           5TH         -0.023807         0.824976         0.000012         0.000434           4TH         -0.022123         0.765220         0.00019         0.000671           3RD         -0.019437         0.672742         0.00025         0.000864           2ND         -0.015960         0.553648         0.00030         0.001011           1ST         -0.011881         0.414322         0.00033         0.0011257           GF         -0.002777         0.260710         0.000035         0.001227           PL         -0.022461         0.091669         0.00021         0.000776 | ISPLACEMI | ENTS AND D | RIFTS AT PO | INT OBJECT | 4        |  | 100 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|------------|----------|--|-----|--|
| 5TH         -0.023807         0.824976         0.00012         0.000434           4TH         -0.022123         0.765220         0.00019         0.000671           3RD         -0.019437         0.672742         0.000025         0.000864           2ND         -0.015960         0.553648         0.000030         0.00111           1ST         -0.011881         0.414322         0.000035         0.001125           GF         -0.007277         0.260710         0.00035         0.001227                                                                                                                                                                 |           |            |             |            |          |  |     |  |
| 4TH         -0.022123         0.765220         0.00019         0.000671           3RD         -0.019437         0.672742         0.000025         0.000864           2ND         -0.015960         0.553648         0.000030         0.00111           1ST         -0.011881         0.414322         0.000033         0.001115           GF         -0.007277         0.260710         0.00035         0.001227                                                                                                                                                                                                                                                   | STORY     | DISP-X     | DISP-Y      | DRIFT-X    | DRIFT-Y  |  |     |  |
| 3RD         -0.019437         0.672742         0.00025         0.000864           2ND         -0.015960         0.553648         0.00030         0.001011           1ST         -0.011881         0.414322         0.000033         0.001115           GF         -0.007277         0.260710         0.00035         0.001227                                                                                                                                                                                                                                                                                                                                      | 5TH       | -0.023807  | 0.824976    | 0.000012   | 0.000434 |  |     |  |
| 2ND         -0.015960         0.553648         0.00030         0.001011           1ST         -0.011881         0.414322         0.00033         0.001115           GF         -0.007277         0.260710         0.00035         0.001227                                                                                                                                                                                                                                                                                                                                                                                                                         | 4TH       | -0.022123  | 0.765220    | 0.000019   | 0.000671 |  |     |  |
| 1ST         -0.011881         0.414322         0.000033         0.001115           GF         -0.007277         0.260710         0.000035         0.001227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3RD       | -0.019437  | 0.672742    | 0.000025   | 0.000864 |  |     |  |
| GF -0.007277 0.260710 0.000035 0.001227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2ND       | -0.015960  | 0.553648    | 0.000030   | 0.001011 |  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1ST       | -0.011881  | 0.414322    | 0.000033   | 0.001115 |  |     |  |
| PL -0.002461 0.091669 0.000021 0.000776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GF        | -0.007277  | 0.260710    | 0.000035   | 0.001227 |  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL        | -0.002461  | 0.091669    | 0.000021   | 0.000776 |  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |            |             |            |          |  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |            |             |            |          |  |     |  |

 $\Delta_{Min} =$ 

| 🛺 D I | SPLACEM | ENTS AND D | RIFTS AT P | OINT OBJECT | 1        |
|-------|---------|------------|------------|-------------|----------|
| File  |         |            |            |             |          |
|       | STORY   | DISP-X     | DISP-Y     | DRIFT-X     | DRIFT-Y  |
|       | 5TH     | -0.024273  | 0.741517   | 0.000013    | 0.000389 |
| 1     | 4TH     | -0.022465  | 0.687893   | 0.000020    | 0.000603 |
|       | 3RD     | -0.019717  | 0.604871   | 0.000026    | 0.000776 |
|       | 2ND     | -0.016183  | 0.497951   | 0.000030    | 0.000908 |
|       | 1ST     | -0.012034  | 0.372897   | 0.000033    | 0.001000 |
|       | GF      | -0.007513  | 0.235074   | 0.000036    | 0.001106 |
|       | PL      | -0.002552  | 0.082699   | 0.000022    | 0.000700 |
|       |         |            |            |             |          |
|       |         |            |            |             |          |
|       |         |            |            |             |          |
|       |         |            |            |             |          |

We will select the deflection value for the top floor so,

 $\Delta_{Avg} = (\Delta_{Max+} \Delta_{Min})/2 = (0.824976 + 0.741517)/2 = 0.78$ 

Now,  $\Delta_{Max\!/} \Delta_{Avg} \!= 1.05 < 1.2$  so our structure is ok

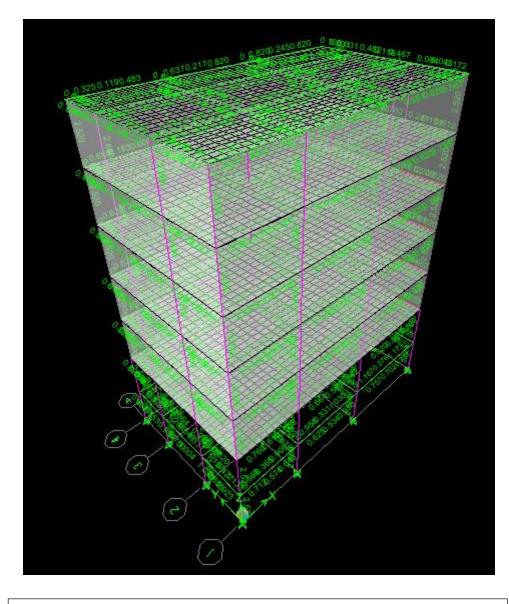
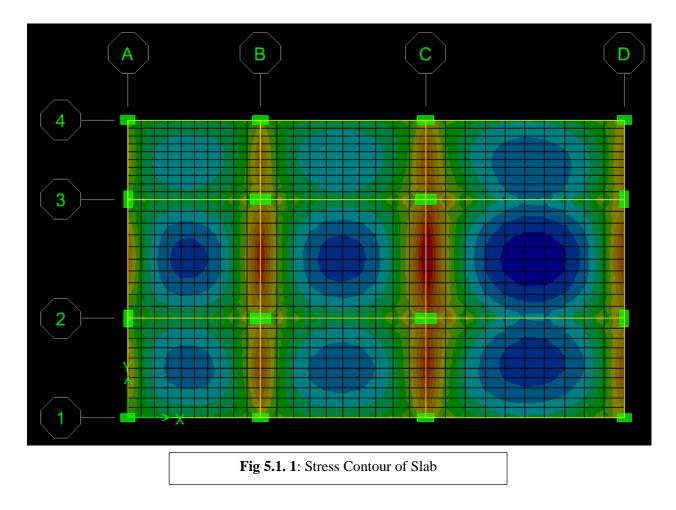
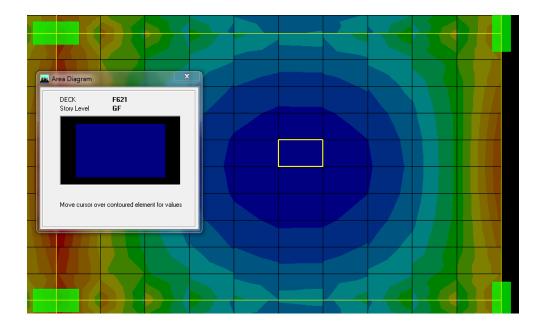
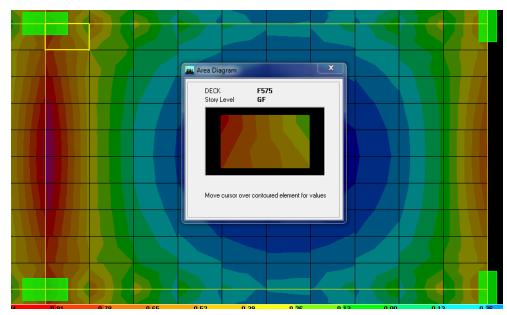




Fig 4.2. 2 : ETABS model of 6 storied building with longitudinal reinforcement requirements

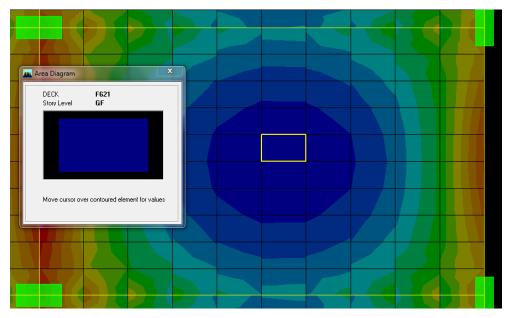
### 5.1 Slab Calculations:




This is the stress contour of slab. The moment values of the slabs were taken from here. The middle blue portion indicates positive moment and the highest positive moment was taken as the design moment. The red portion at the sides are the negative moments and the highest negative moments at the sides were taken as design moments.


Below the stress figures indicate the process in which we selected the maximum moments for long and short directions of slab 6:

| Area Diagram                                  |  |
|-----------------------------------------------|--|
| DECK F571<br>Story Level GF                   |  |
|                                               |  |
|                                               |  |
|                                               |  |
| Move cursor over contoured element for values |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |


According to ETABS our highest negative moment on slab 6 was found on the Left Support and the value of the moment was 1.1110 kft/ft. So we selected this as design moment.



According to ETABS our highest positive moment on slab 6 was found on the middle and the value of the moment was 0.6074 kft/ft. So we selected this as design moment.



According to ETABS our highest negative moment on slab 6 was found on the Left Support and the value of the moment was 0.8602 kft/ft. So we selected this as design moment



According to ETABS our highest positive moment on slab 6 was found on the middle and the value of the moment was 0.6074 kft/ft. So we selected this as design moment.

| S1 | S2 | S3 |
|----|----|----|
| S4 | S5 | S6 |
| S7 | S8 | S9 |

Fig 5.1. 2: Slab location

#### 5. 2 Slab Size (Clear Span):

No of Slab - S1 = 16.5'X 10', S2 = 20.5'X10', S3 = 15' X 10', S4 = 16.5'X15', S5 = 20.5'X15', S6 = 15'X15', S7 = 16.5'X12.5', S8=20.5'X12.5', S9=15'X12.5'

Maximum Slab Size (S5) = 20.5'X15'

#### 5.3 Load Calculation

Given,

| Partition Wall                                                 | $= 2.5 \text{ KN/m}^2 = 53 \text{ psf}$ |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Floor Finish                                                   | $= 1.5 \text{ KN/m}^2 = 32 \text{ psf}$ |  |  |  |  |
| Self-Weight                                                    | = 63 psf                                |  |  |  |  |
| Total dead load = (Partition Wall + Floor Finish+ Self Weight) |                                         |  |  |  |  |

= (53+32+63) psf = 148 psf Live Load = 3 KN/m<sup>2</sup> = 63 psf

### **Factored Load**

- 1.4 D.L = 1.4 x 148 = 207 psf
- 1.7 L.L = 1.7 x 63 = 107 psf
- Total W = 314 psf

### Minimum Effective Depth:

$$\rho = 0.85\beta_1(\frac{f_{\prime c}}{f_y}) \frac{\epsilon_u}{\epsilon_u + \epsilon_t}$$
  
= 0.85 x 0.85 x ( $\frac{3.5}{60}$ ) x  $\frac{0.003}{0.003 + 0.005}$ 

0.0158

Taking b=1ft=12in,

Now d<sub>eff</sub> = 
$$\sqrt{\frac{M_{max}}{\varphi \rho f_y b(\frac{0.59 \rho f_y}{f'_c})}} = \sqrt{\frac{1.0637 x 12}{0.9 x 0.058 x 60 x 12(\frac{0.59 x 0.0158 x 60}{3.5})}} = 1.22$$
 in

### Checking availability of thickness:

As "d" is less than effective depth of (t-1) = (5-1) = 4"

So, t=5" is ok

### 5. 4 Steel Area Calculation

# 5.4.1 Long Direction:

|          | Table 5.   | <b>4.1. 1</b> : Moment da | ata collection Long         | Direction                        |                                 |
|----------|------------|---------------------------|-----------------------------|----------------------------------|---------------------------------|
| Slab No. | Length(ft) | Width(ft)                 | Left Support<br>Moment (-M) | Midspan<br>Support<br>Moment (M) | Right<br>Support<br>Moment (-M) |
| 1        | 16.5       | 10                        | 0.3740                      | 0.2299                           | 0.4963                          |
| 2        | 20.5       | 10                        | 0.5688                      | 0.2497                           | 0.6477                          |
| 3        | 15         | 10                        | 0.7350                      | 0.3650                           | 0.5238                          |
| 4        | 16.5       | 15                        | 0.584                       | 0.452                            | 0.8658                          |
| 5        | 20.5       | 15                        | 0.9404                      | 0.4740                           | 1.0637                          |
| 6        | 15         | 15                        | 1.1110                      | 0.6074                           | 0.8292                          |
| 7        | 16.5       | 12.5                      | 0.5021                      | 0.3348                           | 0.6868                          |
| 8        | 20.5       | 12.5                      | 0.7693                      | 0.3530                           | 0.8354                          |
| 9        | 15         | 12.5                      | 0.9243                      | 0.4160                           | 0.6908                          |

| For Slab | 1, |
|----------|----|
|----------|----|

|                    | Table 5.4.1. 2: Slab 1 calculation |                          |                             |                                      |                           |             |           |  |  |  |
|--------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|---------------------------|-------------|-----------|--|--|--|
| Position           | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement             | Bar<br>Area | Spacing   |  |  |  |
| Left<br>Support    | 0.3740                             | 0.01                     | 0.13                        | 0.13                                 | 1-#3 ext top              | 0.11        |           |  |  |  |
| Midspan<br>Support | 0.2299                             | 0.01                     | 0.13                        | 0.13                                 | 1-#3 @10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support   | 0.4963                             | 0.01                     | 0.13                        | 0.13                                 | 1-#3 ext top              | 0.11        |           |  |  |  |

For Slab 2,

|                        | Table 5.4.1. 3: Slab 2 calculation |                          |                             |                                   |                         |             |           |  |  |  |
|------------------------|------------------------------------|--------------------------|-----------------------------|-----------------------------------|-------------------------|-------------|-----------|--|--|--|
| Position               | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |
| Left<br>Support        | 0.5688                             | 0.01                     | 0.13                        | 0.13                              | 1#3 ext top             | 0.11        |           |  |  |  |
| Mid<br>Span<br>Support | 0.2497                             | 0.01                     | 0.13                        | 0.13                              | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support       | 0.6477                             | 0.01                     | 0.13                        | 0.13                              | 1-#3 ext top            | 0.11        |           |  |  |  |

For Slab 3,

|                        | Table 5.4.1. 4: Slab 3 calculation |                          |                              |                                   |                         |             |           |  |  |  |  |
|------------------------|------------------------------------|--------------------------|------------------------------|-----------------------------------|-------------------------|-------------|-----------|--|--|--|--|
| Position               | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As min<br>(in <sup>2</sup> ) | As Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |  |
| Left<br>Support        | 0.7350                             | 0.02                     | 0.13                         | 0.13                              | 1#3 ext top             | 0.11        |           |  |  |  |  |
| Mid<br>Span<br>Support | 0.3650                             | 0.01                     | 0.13                         | 0.13                              | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |  |
| Right<br>Support       | 0.5238                             | 0.02                     | 0.13                         | 0.13                              | 1-#3 ext top            | 0.11        |           |  |  |  |  |

For Slab 4,

|                     | Table 5.4.1. 5: Slab 4 calculation |                          |                             |                                      |                         |             |           |  |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |
| Left<br>Support     | 0.584                              | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |  |
| Mid Span<br>Support | 0.452                              | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support    | 0.8658                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |  |

For Slab 5,

|                     | Table 5.4.1. 6: Slab 5 calculation |                          |                             |                                      |                         |             |           |  |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |
| Left<br>Support     | 0.9404                             | 0.04                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |  |
| Mid Span<br>Support | 0.4740                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support    | 1.0637                             | 0.04                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |  |

For Slab 6,

|                     | Table 5.4.1. 7: Slab 6 calculation |                          |                             |                                      |                         |             |           |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support     | 1.1110                             | 0.05                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Mid Span<br>Support | 0.6074                             | 0.03                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support    | 0.8292                             | 0.05                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

For Slab 7,

|                        | Table 5.4.1. 8: Slab 7 calculation |                          |                             |                                      |                         |             |           |  |  |  |
|------------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|--|
| Position               | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |
| Left<br>Support        | 0.5021                             | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |  |
| Mid<br>Span<br>Support | 0.3348                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support       | 0.6868                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |  |

For Slab 8,

|                        | Table 5.4.1. 9: Slab 8 calculation |                          |                             |                                      |                         |             |           |  |  |  |
|------------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|--|
| Position               | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |
| Left<br>Support        | 0.7693                             | 0.03                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |  |
| Mid<br>Span<br>Support | 0.3530                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support       | 0.8354                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |  |

For Slab 9,

|                     | Table 5.4.1. 10: Slab 9 calculation |                          |                             |                    |                         |             |           |  |  |  |
|---------------------|-------------------------------------|--------------------------|-----------------------------|--------------------|-------------------------|-------------|-----------|--|--|--|
| Position            | M (k-<br>ft/ft)                     | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided     | Reinforcement           | Bar<br>Area | Spacing   |  |  |  |
|                     |                                     |                          |                             | (In <sup>2</sup> ) |                         |             |           |  |  |  |
| Left<br>Support     | 0.9243                              | 0.04                     | 0.13                        | 0.13               | 1#3 ext top             | 0.11        |           |  |  |  |
| Mid Span<br>Support | 0.4160                              | 0.02                     | 0.13                        | 0.13               | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |  |
| Right<br>Support    | 0.6908                              | 0.03                     | 0.13                        | 0.13               | 1-#3 ext top            | 0.11        |           |  |  |  |

### 5.4. 2 Short Direction

|          | Table 5.4.2. 1: Moment data collection Short Direction |           |                             |                                  |                                 |  |  |  |  |  |  |
|----------|--------------------------------------------------------|-----------|-----------------------------|----------------------------------|---------------------------------|--|--|--|--|--|--|
| Slab No. | Length(ft)                                             | Width(ft) | Left Support<br>Moment (-M) | MidSpan<br>Support<br>Moment (M) | Right<br>Support<br>Moment (-M) |  |  |  |  |  |  |
| 1        | 16.5                                                   | 10        | 0.4977                      | 0.3998                           | 0.6367                          |  |  |  |  |  |  |
| 2        | 20.5                                                   | 10        | 0.4786                      | 0.4895                           | 0.7415                          |  |  |  |  |  |  |
| 3        | 15                                                     | 10        | 0.5290                      | 0.5647                           | 0.6938                          |  |  |  |  |  |  |
| 4        | 16.5                                                   | 15        | 0.7625                      | 0.4664                           | 0.7246                          |  |  |  |  |  |  |
| 5        | 20.5                                                   | 15        | 0.8658                      | 0.5708                           | 0.8010                          |  |  |  |  |  |  |
| 6        | 15                                                     | 15        | 0.8602                      | 0.6074                           | 0.8002                          |  |  |  |  |  |  |
| 7        | 16.5                                                   | 12.5      | 0.4798                      | 0.3057                           | 0.5789                          |  |  |  |  |  |  |
| 8        | 20.5                                                   | 12.5      | 0.5507                      | 0.3282                           | 0.3283                          |  |  |  |  |  |  |
| 9        | 15                                                     | 12.5      | 0.4749                      | 0.3682                           | 0.3890                          |  |  |  |  |  |  |

For Slab 1,

|                        | Table 5.4.2. 2: Slab 1 calculation |                          |                             |                                      |                         |             |           |  |  |
|------------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position               | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support        | 0.4977                             | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Mid<br>Span<br>Support | 0.3998                             | 0.01                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support       | 0.6367                             | 0.02                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

For Slab 2,

|                        |                 |                          | Table 5.4.2. 3              | 3: Slab 2 calc                       | ulation                 |             |           |
|------------------------|-----------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|
| Position               | M (k-<br>ft/ft) | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |
| Left<br>Support        | 0.4786          | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |
| Mid<br>Span<br>Support | 0.4895          | 0.01                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |
| Right<br>Support       | 0.7415          | 0.02                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |

For Slab 3,

|                     | Table 5.4.2. 4: Slab 3 calculation |                          |                             |                                      |                         |             |           |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support     | 0.5290                             | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Mid span<br>Support | 0.5647                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support    | 0.6938                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

For Slab 4,

|                     | Table 5.4.2. 5: Slab 4 calculation |                          |                             |                                      |                         |             |           |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support     | 0.7625                             | 0.03                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Mid span<br>Support | 0.4664                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support    | 0.7246                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

For Slab 5,

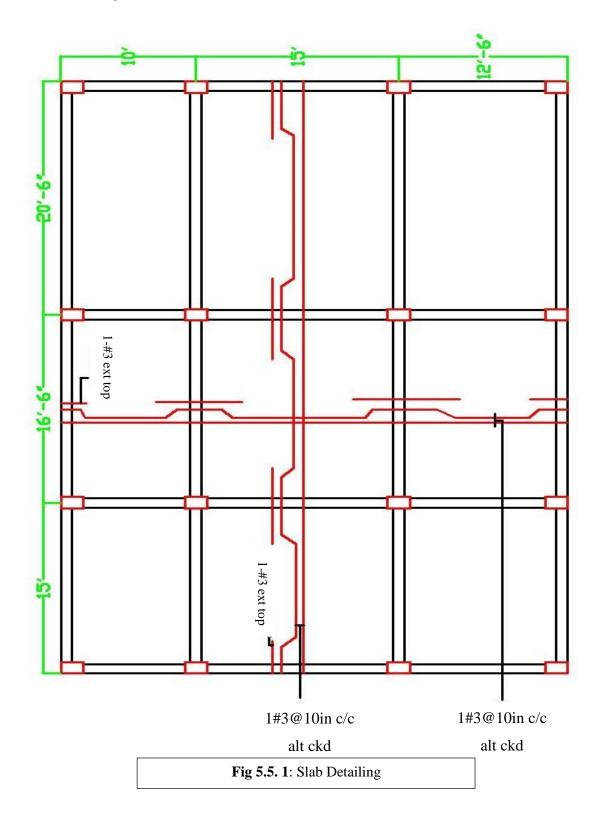
|                     | Table 5.4.2. 6: Slab 5 calculation |                          |                             |                                      |                         |             |           |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support     | 0.8658                             | 0.04                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Mid span<br>Support | 0.5708                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support    | 0.8010                             | 0.04                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

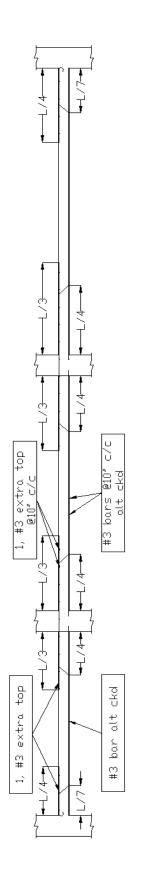
For Slab 6,

|                     | Table 5.4.2. 7: Slab 6 calculation |                          |                             |                                      |                         |             |           |  |  |
|---------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position            | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support     | 0.8602                             | 0.04                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Mid span<br>Support | 0.6074                             | 0.03                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support    | 0.8002                             | 0.05                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

For Slab 7,

|                    | Table 5.4.2. 8: Slab 7 calculation |                          |                             |                                      |                         |             |           |  |  |
|--------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position           | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support    | 0.5507                             | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Midspan<br>Support | 0.3057                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support   | 0.5789                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |


For Slab 8,


|                    | Table 5.4.2. 9: Slab 8 calculation |                          |                             |                                      |                         |             |           |  |  |
|--------------------|------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position           | M (k-<br>ft/ft)                    | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support    | 0.5507                             | 0.02                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Midspan<br>Support | 0.3282                             | 0.02                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support   | 0.3283                             | 0.03                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

For Slab 9,

|                    | Table 5.4.2. 10: Slab 9 calculation |                          |                             |                                      |                         |             |           |  |  |
|--------------------|-------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------|-------------|-----------|--|--|
| Position           | M (k-<br>ft/ft)                     | As<br>(in <sup>2</sup> ) | As<br>min(in <sup>2</sup> ) | As<br>Provided<br>(In <sup>2</sup> ) | Reinforcement           | Bar<br>Area | Spacing   |  |  |
| Left<br>Support    | 0.4749                              | 0.04                     | 0.13                        | 0.13                                 | 1#3 ext top             | 0.11        |           |  |  |
| Midspan<br>Support | 0.3682                              | 0.03                     | 0.13                        | 0.13                                 | 1#3@10in c/c<br>alt ckd | 0.11        | 10 in c/c |  |  |
| Right<br>Support   | 0.3890                              | 0.04                     | 0.13                        | 0.13                                 | 1-#3 ext top            | 0.11        |           |  |  |

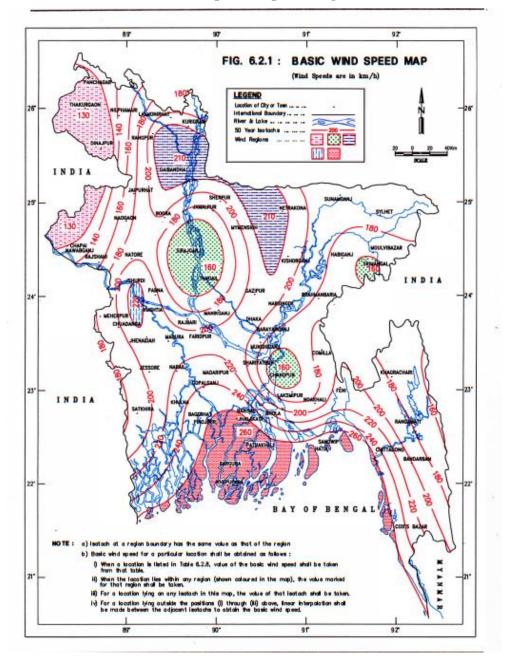
# 5.5 Slab Detailing







#### 6.1 Conclusions:


- In the case of two way slab it has been found in practice that a huge moments develops at the support and the negative moment is huge. In this case steel reinforcements must be provided to withstand this moment. In most of the cases extra top bars are provided.
- We were successful in attaining the knowledge of realistic skills concerning structural analysis, diagram and detailing about structural components using concepts concerning Earthquake and Wind design.
- Modeling over the building for structural analysis was achieved.

#### 6. 2 Recommendations

- Only two way slabs design of a residential building was done in this study. For further study we would recommend to compare between one way and two way slab design and to compare between the slab design of other structure types of get better understanding of how slab designing works
- As we worked with only slab detailing the design of columns, beams, stairs and footings were skipped in this study. In future studies we recommend the full design be done.
- For further study real life data should be used for better understanding.
- Should try to use newer version of BNBC codes for analysis and design for further studies

- Heiza, K. M., & Tayel, M. A. (2012). Comparative study of the effects of wind and earthquake loads on high-rise buildings. Concrete Research Letters, 3(1), 386-405.
- Nilsson, A. H., Darwin, D. and Dolan, C. W. (Third Ed.)2003, Inc. Design of Concrete Structures. Singapore: McGraw-Hill, Inc.
- Arthur H. Nilson, George Winter, "Design of concrete structures", 10th edition.
- Zahra, T., & Zehra, Y. (2012). Effect of rising seismic risk on the design of high rise buildings in Karachi. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 12(6), 42-45.
- Chauhan, H., Pomal, M., & Bhuta, G. (2013). A comparative study of wind forces on highrise buildings as per IS 875 (III)-1987 and proposed draft code (2011). Global research analysis, ISSN, (2277-8160).
- Bangladesh National Building Code 1993
- Google
- Wikipedia
- AutoCAD
- ETABS (Version 9.6.0)
- MS Office

#### **APPENDIX 1:**



**Basic Wind speed map of Bangladesh** 

| Location         | Basic Wind<br>Speed (km/h) | Location            | Basic Wind<br>Speed (km/h) |
|------------------|----------------------------|---------------------|----------------------------|
| Angarpota        | 150                        | Lalmonirhat         | 204                        |
| Bagerhat         | 252                        | Madaripur           | 220                        |
| Bandarban        | 200                        | Magura              | 208                        |
| Barguna          | 260                        | Manikganj           | 185                        |
| Barisal          | 256                        | Meherpur            | 185                        |
| Bhola            | 225                        | Moheshkhali         | 260                        |
| Bogra            | 198                        | Moulvibazar         | 168                        |
| Brahmanbaria     | 180                        | Munshiganj          | 184                        |
| Chandpur         | 160                        | Mymensingh          | 217                        |
| Chapai Nawabganj | 130                        | Naogaon             | 175                        |
| Chittagong       | 260                        | Narail              | 222                        |
| Chuadanga        | 198                        | Narayanganj         | 195                        |
| Comilla          | 196                        | Narsinghdi          | 190                        |
| Cox's Bazar      | 260                        | Natore              | 198                        |
| Dahagram         | 150                        | Netrokona           | 210                        |
| Dhaka            | 210                        | Nilphamari          | 140                        |
| Dinajpur         | 130                        | Noakhali            | 184                        |
| Faridpur         | 202                        | Pabna               | 202                        |
| Feni             | 205                        | Panchagarh          | 130                        |
| Gaibandha        | 210                        | Patuakhali          | 260                        |
| Gazipur          | 215                        | Pirojpur            | 260                        |
| Gopalganj        | 242                        | Rajbari             | 188                        |
| Habiganj         | 172                        | Rajshahi            | 155                        |
| Hatiya           | 260                        | Rangamati           | 180                        |
| Ishurdi          | 225                        | Rangpur             | 209                        |
| Joypurhat        | 180                        | Satkhira            | 183                        |
| Jamalpur         | 180                        | Shariatpur          | 198                        |
| Jessore          | 205                        | Sherpur             | 200                        |
| Jhalakati        | 260                        | Sirajganj           | 160                        |
| Jhenaidah        | 208                        | Srimangal           | 160                        |
| Khagrachhari     | 180                        | St. Martin's Island | 260                        |
| Khulna           | 238                        | Sunamganj           | 195                        |
| Kutubdia         | 260                        | Sylhet              | 195                        |
| Kishoreganj      | 207                        | Sandwip             | 260                        |
| Kurigram         | 210                        | Tangail             |                            |
| Kushtia          | 215                        | Teknaf              | 260                        |
| Lakshmipur       | 162                        | Thakurgaon          | 130                        |

#### Basic Wind speed for selected locations in Bangladesh

**2.4.6.2** Sustained Wind Pressure : The sustained wind pressure,  $q_z$  on a building surface at any height z above ground shall be calculated from the following relation :

$$q_z = C_c C_I C_z V_b^2 \tag{2.4.1}$$

where,  $q_z$  = sustained wind pressure at height *z*, kN/m<sup>2</sup>  $C_j$  = structure importance coefficient as given in Table 6.2.9

 $C_c$  = velocity-to-pressure conversion coefficient = 47.2x10<sup>-6</sup>  $C_z$  = combined height and exposure coefficient as given in Table 6.2.10  $V_b$  = basic wind speed in km/h obtained from Sec 2.4.5

#### Structure importance Coefficient, CI

-

-

| Structure Importance Category    | Structure Importance        |  |  |
|----------------------------------|-----------------------------|--|--|
| (see Table 6.1.1 for Occupancy)  | Coefficient, C <sub>I</sub> |  |  |
| I Essential facilities           | 1.25                        |  |  |
| II Hazardous facilities          | 1.25                        |  |  |
| III Special occupancy structures | 1.00                        |  |  |
| IV Standard occupancy structures | 1.00                        |  |  |
| V Low-risk structures            | 0.80                        |  |  |

# Combined height and Exposure co-efficient, Cz

| Height above                |                              | $Coefficient, C_z^{(1)}$    |            |
|-----------------------------|------------------------------|-----------------------------|------------|
| ground level, z<br>(metres) | Exposure A                   | Exposure B                  | Exposure C |
| 0-4.5                       | 0.368                        | 0.801                       | 1.196      |
| 6.0                         | 0.415                        | 0.866                       | 1.263      |
| 9.0                         | 0.497                        | 0.972                       | 1.370      |
| 12.0                        | 0.565                        | 1.055                       | 1.451      |
| 15.0                        | 0.624                        | 1.125                       | 1.517      |
| 18.0                        | 0.677                        | 1.185                       | 1.573      |
| 21.0                        | 0.725                        | 1.238                       | 1.623      |
| 24.0                        | 0.769                        | 1.286                       | 1.667      |
| 27.0                        | 0.810                        | 1.330                       | 1.706      |
| 30.0                        | 0.849                        | 1.371                       | 1.743      |
| 35.0                        | 0.909                        | 1.433                       | 1.797      |
| 40.0                        | 0.965                        | 1.433                       | 1.846      |
| 40.0                        | 0.905                        | 1.400                       | 1.040      |
| 45.0                        | 1.017                        | 1.539                       | 1.890      |
| 50.0                        | 1.065                        | 1.586                       | 1.930      |
| 60.0                        | 1.155                        | 1.671                       | 2.002      |
| 70.0                        | 1.237                        | 1.746                       | 2.065      |
| 80.0                        | 1.313                        | 1.814                       | 2.120      |
| 90.0                        | 1.383                        | 1.876                       | 2.171      |
| 100.0                       | 1.450                        | 1.934                       | 2.217      |
| 110.0                       | 1.513                        | 1.987                       | 2.260      |
| 120.0                       | 1.572                        | 2.037                       | 2.299      |
| 130.0                       | 1.629                        | 2.084                       | 2.337      |
| 140.0                       | 1.684                        | 2.129                       | 2.371      |
| 150.0                       | 1.736                        | 2.171                       | 2.404      |
| 160.0                       | 1.787                        | 2.212                       | 2.436      |
| 170.0                       | 1.835                        | 2.250                       | 2.465      |
| 180.0                       | 1.883                        | 2.287                       | 2.494      |
| 190.0                       | 1.928                        | 2.323                       | 2.521      |
| 200.0                       | 1.973                        | 2.357                       | 2.547      |
| 200.0                       |                              | 2.357                       | 2.547      |
|                             | 2.058                        |                             |            |
| 240.0                       | 2.139                        | 2.483                       | 2.641      |
| 260.0                       | 2.217 -                      | 2.541                       | 2.684      |
| 280.0                       | 2.910                        | 2.595                       | 2.724      |
| 300.0                       | 2.362                        | 2.647                       | 2.762      |
| Note:(1) Linear inte        | erpolation is acceptable for | or intermediate values of z |            |

**2.4.6.3** Design Wind Pressure : The design wind pressure,  $p_z$  for a structure or an element of a structure at any height, z above mean ground level shall be determined from the relation :

$$p_z = C_C C_p q_z \tag{2.4.2}$$

where,  $p_z = \text{design wind pressure at height } z$ , kN/m<sup>2</sup>

 $C_{G}$  = gust coefficient which shall be  $G_{z}$ ,  $G_{h}$ , or  $\overline{G}$  as set forth in Sec 2.4.6.6  $C_{p}$  = pressure coefficient for structures or components as set forth Sec 2.4.6.7  $q_{z}$  = sustained wind pressure obtain from Eq (2.4.1).

| Height above                                                                                   | $G_h^{(2)}$ and $G_z$ |            |            |  |
|------------------------------------------------------------------------------------------------|-----------------------|------------|------------|--|
| ground level                                                                                   |                       |            |            |  |
| (metres)                                                                                       | Exposure A            | Exposure B | Exposure C |  |
| 0-4.5                                                                                          | 1.654                 | 1.321      | 1.154      |  |
| 6.0                                                                                            | 1.592                 | 1.294      | 1.140      |  |
| 9.0                                                                                            | 1.511                 | 1.258      | 1.121      |  |
| 12.0                                                                                           | 1.457                 | 1.233      | 1.107      |  |
| 15.0                                                                                           | 1.418                 | 1.215      | 1.097      |  |
| 18.0                                                                                           | 1.388                 | 1.201      | 1.089      |  |
| 21.0                                                                                           | 1.363                 | 1.189      | 1.082      |  |
| 24.0                                                                                           | 1.342                 | 1.178      | 1.077      |  |
| 27.0                                                                                           | 1.324                 | 1.170      | 1.072      |  |
| 30.0                                                                                           | 1.309                 | 1.162      | 1.067      |  |
| 35.0                                                                                           | 1.287                 | 1.151      | 1.061      |  |
| 40.0                                                                                           | 1.268                 | 1.141      | 1.055      |  |
| 45.0                                                                                           | 1.252                 | 1.133      | 1.051      |  |
| 50.0                                                                                           | 1.238                 | 1.126      | 1.046      |  |
| 60.0                                                                                           | 1.215                 | 1.114      | 1.039      |  |
| 70.0                                                                                           | 1.196                 | 1.103      | 1.033      |  |
| 80.0                                                                                           | 1.180                 | 1.095      | 1.028      |  |
| 90.0                                                                                           | 1.166                 | 1.087      | 1.024      |  |
| 100.0                                                                                          | 1.154                 | 1.081      | 1.020      |  |
| 110.0                                                                                          | 1.114                 | 1.075      | 1.016      |  |
| 120.0                                                                                          | 1.134                 | 1.070      | 1.013      |  |
| 130.0                                                                                          | 1.126                 | 1.065      | 1.010      |  |
| 140.0                                                                                          | 1.118                 | 1.061      | 1.008      |  |
| 150.0                                                                                          | 1.111                 | 1.057      | 1.005      |  |
| 160.0                                                                                          | 1.104                 | 1.053      | 1.003      |  |
| 170.0                                                                                          | 1.098                 | 1.049      | 1.001      |  |
| 180.0                                                                                          | 1.092                 | 1.046      | 1.000      |  |
| 190.0                                                                                          | 1.087                 | 1.043      | 1.000      |  |
| 200.0                                                                                          | 1.082                 | 1.040      | 1.000      |  |
| 220.0                                                                                          | 1.073                 | 1.035      | 1.000      |  |
| 240.0                                                                                          | 1.065                 | 1.030      | 1.000      |  |
| 260.0                                                                                          | 1.058                 | 1.026      | 1.000      |  |
| 280.0                                                                                          | 1.051                 | 1.022      | 1.000      |  |
| 300.0                                                                                          | 1.045                 | 1.018      | 1.000      |  |
| Note : (1) For main wind-force resisting systems, use building or structure<br>height h for z. |                       |            |            |  |
| <ul><li>(2) Linear interpolation is acceptable for intermediate values of z.</li></ul>         |                       |            |            |  |
| (2) Linear merpolation is acceptable for mermediale values of 2.                               |                       |            |            |  |

Gust responses factor, Gh and Gz

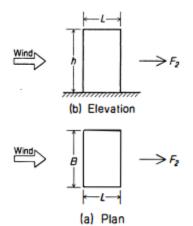
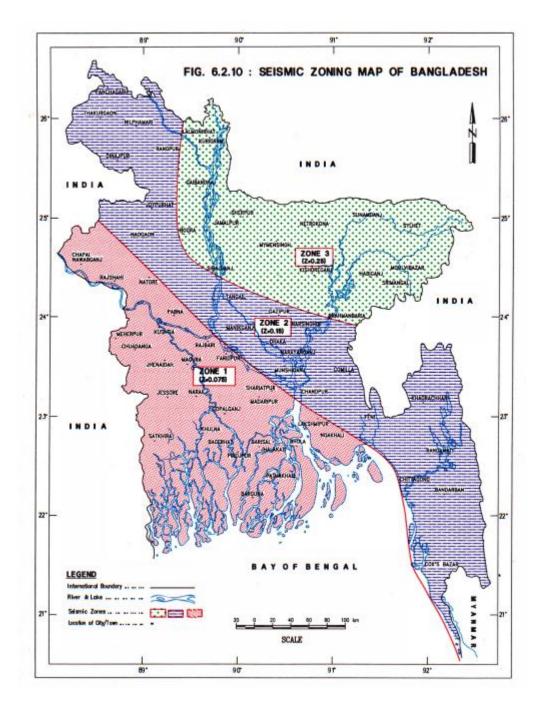




Table 6.2.15 <sup>(1)</sup> Overall Pressure Coefficients,  $\bar{C}_p^{(2)}$  for Rectangular Buildings with Flat Roofs

| h/B                                                                                                                                                                                                                                                                                                  | L/B  |      |      |      |      |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|-------|
|                                                                                                                                                                                                                                                                                                      | 0.1  | 0.5  | 0.65 | 1.0  | 2.0  | ≥ 3.0 |
| ≤5                                                                                                                                                                                                                                                                                                   | 1.40 | 1.45 | 1.55 | 1.40 | 1.15 | 1.10  |
| 10.0                                                                                                                                                                                                                                                                                                 | 1.55 | 1.85 | 2.00 | 1.70 | 1.30 | 1.15  |
| 20.0                                                                                                                                                                                                                                                                                                 | 1.80 | 2.25 | 2.55 | 2.00 | 1.40 | 1.20  |
| ≥40.0                                                                                                                                                                                                                                                                                                | 1.95 | 2.50 | 2.80 | 2.20 | 1.60 | 1.25  |
| <ul> <li>Note:(1) These coefficients are to be used with Method-2 given in Sec 2.4.6.6a(ii). Use C         <sup>¯</sup><sub>p</sub> = ± 0.7 for roof in all cases.</li> <li>(2) Linear interpolation may be made for intermediate values of h         <sup>¯</sup><sub>p</sub>/B and L/B.</li> </ul> |      |      |      |      |      |       |

Rectangular Building

### **APPENDIX 2:**



# Seismic zoning map of Bangladesh

2.5.5.2 Seismic Dead Load : Seismic dead load, W, is the total dead load of a building or a structure, including permanent partitions, and applicable portions of other loads listed below :

- In storage and warehouse occupancies, a minimum of 25 per cent of the floor live load shall be a) applicable.
- Where an allowance for partition load is included in the floor design in accordance with Sec 2.3.3.3, b) all such loads but not less than 0.6 kN/m<sup>2</sup> shall be applicable.
- Total weight of permanent equipment shall be included. c)

2.5.6.1 Design Base Shear : The total design base shear in a given direction shall be determined from the following relation :

$$V = \frac{ZIC}{R}W$$

Table 6.2.22

(2.5.1)

- where, Z = Seismic zone coefficient given in Table 6.2.22 I = Structure importance coefficient given in Table 6.2.23

  - R = Response modification coefficient for structural systems given in Table 6.2.24 W = The total seismic dead load defined in Sec 2.5.5.2

Table 6.2.23

- C = Numerical coefficient given by the relation :

| Seismic Zone (                   | Coefficients, Z     | Structure Importance Coefficients I, I'                          |      |                          |  |  |
|----------------------------------|---------------------|------------------------------------------------------------------|------|--------------------------|--|--|
| Seismic Zone<br>(see Fig 6.2.10) | Zone<br>Coefficient | Structure Importance Category<br>(see Table 6.1.1 for occupancy) |      | cture<br>tance<br>icient |  |  |
|                                  |                     |                                                                  | I    | ľ                        |  |  |
|                                  |                     | I Essential facilities                                           | 1.25 | 1.50                     |  |  |
| 1                                | 0.075               | II Hazardous facilities                                          | 1.25 | 1.50                     |  |  |
| 2                                | 0.15                | III Special occupancy structures                                 | 1.00 | 1.00                     |  |  |
| 3                                | 0.25                | IV Standard occupancy structures                                 | 1.00 | 1.00                     |  |  |
|                                  |                     | V Low-risk Structures                                            | 1.00 | 1.00                     |  |  |

2.5.6.2 Structure Period : The value of the fundamental period, T of the structure shall be determined from one of the following methods :

Method A : For all buildings the value of T may be approximated by the following formula : a)

$$T = C_t (h_n)^{3/4}$$
 (2.5.3)

0.083 for steel moment resisting frames where,  $C_t$ = = 0.073 for reinforced concrete moment resisting frames, and eccentric braced steel frames 0.049 for all other structural systems = = Height in metres above the base to level n.  $h_n$ 

 Table 6.2.24

 Response Modification Coefficient for Structural Systems, R

| c. Moment Resisting<br>Frame System 2. 3. | Special moment resisting frames (SMRF)<br>i) Steel<br>ii) Concrete<br>Intermediate moment resisting frames (IMRF), concrete <sup>(4)</sup><br>Ordinary moment resisting frames (OMRF)<br>i) Steel<br>ii) Concrete <sup>(5)</sup> | 12<br>12<br>8<br>6<br>5 |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|

 Table 6.2.25

 Site Coefficient, S for Seismic Lateral Forces (1)

| Site Soil Characteristics |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Type                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |
| S <sub>1</sub>            | <ul> <li>A soil profile with either :</li> <li>a) A rock-like material characterized by a shear-wave velocity greater than 762 m/s or by other suitable means of classification, or</li> <li>b) Stiff or dense soil condition where the soil depth is less than 61 metres</li> </ul>                                                                                                                                                                                                                    | 1.0 |  |  |  |
| S <sub>2</sub>            | A soil profile with dense or stiff soil conditions, where the soil depth exceeds 61 metres                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2 |  |  |  |
| S <sub>3</sub>            | A soil profile 21 metres or more in depth and containing more than 6 metres of soft to medium stiff clay but not more than 12 metres of soft clay                                                                                                                                                                                                                                                                                                                                                       | 1.5 |  |  |  |
| S <sub>4</sub>            | A soil profile containing more than 12 metres of soft clay characterized by a shear wave velocity less than 152 m/s                                                                                                                                                                                                                                                                                                                                                                                     | 2.0 |  |  |  |
| Note :                    | Note : (1) The site coefficient shall be established from properly substantiated geotechnical data. In locations where the soil properties are not known in sufficient detail to determine the soil profile type, soil profile S <sub>3</sub> shall be used. Soil profile S <sub>4</sub> need not be assumed unless the building official determines that soil profile S <sub>4</sub> may be present at the site, or in the event that soil profile S <sub>4</sub> is established by geotechnical data. |     |  |  |  |