
i
 ©Daffodil International University

A realistic shortest path considering

road intersections.

Md. Abu Naeem

171-35-1868

A Thesis submitted in partial fulfillment of the requirement for

the degree of Bachelor of Science in Software Engineering

Department of Software Engineering,

DAFFODIL INTERNATIONAL UNIVERSITY

Fall’2020

i
 ©Daffodil International University

APPROVAL

This Thesis titled ñA realistic shortest path considering road intersections.ò, submitted by Md.

Abu Naeem (171 – 35 - 1868) to the Department of Software Engineering, Daffodil International

University has been accepted as satisfactory for the partial fulfillment of the requirements for the

degree of BSc. in Software Engineering and approved as to its style and contents.

ii
 ©Daffodil International University

DECLARATION

I hereby, declare that I have taken this thesis under the supervision of Mr. K.M. Imtiaz-Ud-Din,

Assistant Professor, Department of Software Engineering, Daffodil International University. I also

admit that neither this thesis nor any part of this has been submitted elsewhere for award of any

degree.

Submitted By

………………………………………

Md. Abu Naeem

ID: 171 ï 35 - 1868

Batch: 22th

Department of Software Engineering, Faculty of Science and Information Technology,

Daffodil International University.

Certified by:

éééééééééééé..

K.M. Imtiaz-Ud-Din

Assistant Professor, Department of Software Engineering,

Faculty of Science and Information Technology,

Daffodil International University.

iii
 ©Daffodil International University

ACKNOWLEDGEMENT

Throughout Writing this of thesis I faced difficulties and problems to solve. But with the

help of our respectable supervisor sir, I overcame all difficulties and solved every

problem I faced through this journey. Through this journey I learned a lot

First of all, I am grateful to my almighty Allah for making me capable enough to

complete this thesis.

And I really want to thank my respectable supervisor sir, Mr. K. M. Imtiaz -Ud-Din,

Assistant professor, Department of Software Engineering, Daffodil University for his

continuous help through this journey.

Also, thanks to my department for enhancing our skill though this Final Project/thesis.

Hopefully this will help us in our upcoming future.

iv
 ©Daffodil International University

Abstract

Finding shortest path plays an important role in many areas. Such as Robotics, Road

maps, Network communications etc. There are some popular algorithms that can find the

shortest path. In different environments, our conventional algorithm needs to be modified

to solve a specific problem. In this paper we modified the conventional Dijkstra

algorithm to find the shortest path considering intersections. We tested the performance

of our improved algorithm on a real map which is collected from Google map. The

algorithm is implemented using Visual C++14, and our analysis results showed that this

algorithm is effective and more accurate in real life.

Key Words ï Shortest path, Improved Dijkstra algorithm, Intersections.

v
 ©Daffodil International University

Table of Contents

ACKNOWLEDGEMENT ... iii

Abstract ... iv

LIST OF FIGURES ... vi

LIST OF TABLES ... vi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Background ... 1

1.2 Motivation .. 1

1.3 Problem Statement .. 1

1.4 Research Question ... 2

1.5 Research Scope ... 2

CHAPTER 2 .. 3

LITERATURE REVIEW .. 3

2.1 Existing Works .. 3

CHAPTER 3 .. 4

PROPOSED METHODOLOGY ... 4

3.1 Relevant Algorithm .. 4

3.2 justifying algorithm .. 4

3.2 Conventional Dijkstra Algorithm ... 5

3.4 Improved Dijkstra Algorithm ... 6

CHAPTER 4 .. 10

RESULTS AND DISCUSSION ... 10

4.1 Analysis ... 10

Chapter 5 ... 16

CONCLUSION ... 16

REFERENCES .. 17

APPENDIX A .. 18

Pseudo code: Improved Dijkstra Algorithm .. 18

APPENDIX B .. 19

Accounts Clearance .. 19

vi
 ©Daffodil International University

LIST OF FIGURES

Figure 3.3.1 Graph 1 --- 11

Figure 3.4.1 Graph 2 ---13

Figure 4.1.1 A real map taken from Google Map which represents Dhaka University area and

surroundings, Dhaka, Bangladesh --- 15

Figure 4.1.2 Output 1 -- 16

Figure 4.1.3 Output 2 -- 17

Figure 4.4.1 Output 3 -- 17

LIST OF TABLES

Table 3.4.1 The Path Search Process of Our Improved Dijkstra Algorithm ------------------------- 14

1
 ©Daffodil International University

CHAPTER 1

INTRODUCTION

1.1 Background

Path planning is a very common problem in computer science. It has many useful application

areas like artificial system, network, automatic guided vehicle etc. In modern computer

science path planning plays an important role. This research helps to find the best path from

one point to another.

In decades many path planning algorithms has been proposed such as Dijkstra algorithm [1],

A* algorithm [2]. Etc.

1.2 Motivation

During my Literature review, I find many of the authors present some interesting problems

and solutions on behalf of this shortest path algorithm. There are still some deficiencies in

this area to talk about. It is a great opportunity to contribute my knowledge in this field.

Relevant present article makes the following contributions

 - Path planning for Robots.

 - Path planning considering Traffic Condition.

- Path planning considering Lane Changing.

- Path planning considering U-Turn.

1.3 Problem Statement

If we want to travel from a source node to a destination node and there are many paths we

can use. In this situation the best path would be a path which takes less time to travel

among all of them.

Generally, the length of the path is the main reason to determine the travel time. We can

choose a path among many which has less path length. but if we consider the real world,

we can understand the length of the path is not the only reason to determine the travel

time of a path.

2
 ©Daffodil International University

This paper analyzes some graphs with nodes and edges including weight. And we

consider graphs intersections in major. Because intersections can play an important role

to increase the travel time of a path. For a road map, we know in intersections the traffic

condition is worse than single roads. In intersections two or more roads are connected in

a single node/intersection that increases the pressure of the vehicle in a single node. So

that a vehicle takes more time to pass that intersection.

What if we find a path which has less intersections among all other existing paths? In this

paper we are trying to figure out the solutions for that.

1.4 Research Question

 Q1 - How it works when we consider Path intersections.

 Q2 - Can we reduce travel time more accurately Considering Path intersections?

1.5 Research Scope

As our research is on the shortest path algorithm, this algorithm has many applications in

the real world.

Road network is one of the most common area where we can use this algorithm. If we

need to find a way from one point to another point, then we can use this algorithm. Using

this algorithm, we can find the best path among all other paths. Also, we can design new

road networks for a city.

Routing plays a very important role in network communications. If we want to send data

from a computer to another through an online network, we have to use multiple routers to

carry our data. Since there are so many routers in the network so there are a lot of

existing valid paths from a point to another point. So, we have to find the best path

among all of them. Path finding algorithms can solve this problem.

Robotic path planning can make robots smart and efficient. Using this algorithm, robots

can find the best path for travelling. Because of this algorithm, Robot can skip its

obstacle.

3
 ©Daffodil International University

CHAPTER 2

LITERATURE REVIEW

2.1 Existing Works

As our research topic is ñA realistic shortest path considering road intersectionsò we

tried to review some latest Relevant Papers. We got some interesting papers where

authors proposed their problem and gave appropriate solutions.

We know automated guided vehicles technology is fast growing technology. In a

rectangular environment map our conventional algorithm can find out only one path and

skip others paths with equivalent length. To solve this problem an improved Dijkstra

algorithm can find out all equivalent shortest paths [3].

Traffic conditions in a common scenario all over the world. Usually In city traffic, traffic

problems are a big problem because of the huge number of vehicles. For large amounts of

requests, it needs to be solved as fast as possible. So, using the Dijkstra algorithm this

problem can be solved with the shortest path and also alternative paths according to

traffic conditions [4].

An improved Dijkstra Algorithm was proposed to solve 2D Grid Maps. The algorithm

tried to ensure that each position needs to calculate once to get the shortest distance to

destination [5].

There is a new strategy which is called Aggressive heuristic search. It finds a solution

instantly, after that if time permits it can find a bounded suboptimal solution [6].

A different environment was created for solving the robot's problem. A modified

parameter in the Dijkstra algorithm was implemented in a robot. And tried to find a best

path reaching the destination from the initial position of the robot [7].

4
 ©Daffodil International University

CHAPTER 3

PROPOSED METHODOLOGY

3.1 Relevant Algorithm

During the decades, many algorithms have been proposed as variants of the shortest path

algorithm. Like, Breadth First Search (BFS), Dijkstra Algorithm, Floyd-Warshall

Algorithm, bellman Ford Algorithm etc.

V BFS is a traversing algorithm. It starts with the root node. Then explore every other

node level wise. It works on Unweighted Graph. Time complexity is O (V + E).

V Dijkstra algorithm is a single source shortest path finding algorithm. It works on a

weighted Graph. Time complexity is O (VlogV + E).

V Bellman Ford algorithm calculates the shortest paths from a single source node to

all of the other nodes in a weighted digraph. Time complexity is O (V * E), It's slower

than the Dijkstra algorithm for the same problem. But it can handle Negative

Weighted Graphs.

V Floyd-Warshall uses it for finding the shortest paths in a directed weighted graph

with positive/ negative weights but with no negative cycles. Time complexity is O

(V3).

Here, V is a set of nodes, E is a set of Edges.

3.2 justifying algorithm

In this paper, I am working on the Dijkstra Algorithm. Our conventional Dijkstra

Algorithm can find the shortest path among existing paths. And for finding the best, it

considers the weight of the path. Best path is declared when the chosen path has less total

weight. Since I want to consider intersections besides the weight of edges. So, I am going

to improve our conventional Dijkstra Algorithm so that it can solve my proposed

problem.

5
 ©Daffodil International University

3.2 Conventional Dijkstra Algorithm

Dijkstra algorithm is a more classical algorithm than all the shortest path algorithms.

Suppose you are traveling and want to know which way to go from U to V will be the

fastest. There are now several roads from node U. The shortest path is only one road. So,

the Dijkstra algorithm can help you to find this shortest path on the computer.

Let's go to work now. The Dijkstra Algorithm is called Single Source Shortest Path

Algorithm. Thatôs why, with this algorithm we can find out the minimum cost to go from

a specific node to all nodes.

The Dijkstra algorithm is a greedy algorithm. Considering a directed graph G = [V, E]

with n nodes and m edges. Where V is set of nodes, E is set of Edges. C[u][v] denotes the

weight of edge (u ï v). if edge (u ï v) does not exist, Then C[u][v] = infinite. dist[x]

conveys the distance from the source node s to the node x.

S represents the set of nodes that is included in the shortest path.

Process is as follows:

1. Initialization. We have pushed our source node to the queue. S = {s};

2. We took a loop until the queue was empty and each time, we pulled out the

node (u) in front of everyone in the queue.

3. Then, check in another loop if one of its adjacent nodes (v) has a weight of the

connecting edge C[u][v] is exists.

4. If dist[v] > dist[u] + C[u][v] , the distance passing through the node u is shorter

than dist[v] , modify dist[v] to dist[v] = dist[u] + C[u][v], and add node v to S.

5. Repeat step (3) and (4) n ï 1 time.

The shortest path from the source node to goal node is calculated.

For Example, find a shortest path source node (1) to goal node (4) in a directed graph

shown in Figure 3.3.1

6
 ©Daffodil International University

 Figure 3.3.1 Graph 1.

Our resulted shortest path using Dijkstra algorithm is 1 > 2 > 4.

3.4 Improved Dijkstra Algorithm

Considering a directed graph G = [V, E] with n nodes and m edges. Where V is set of

nodes, E is set of Edges. C[u][v] denotes the weight of edge (u ï v). if edge (u ï v) does

not exist, Then C[u][v] = infinite. dist[x] conveys the distance from the source node s to

the node x. Degree[x] represents the number of connected roads in the intersection

identified by x. total_Deg[x] represents the number of connected roads in all intersections

through the path of source node to node x.

S represents the set of nodes that is included in a shortest path.

Process is as follows:

1. Initialization. We have pushed our source node to the queue. S = {s};

2. We took a loop until the queue was empty and each time, we pulled out the

node (u) in front of everyone in the queue

3. Then, check in another loop if one of its adjacent nodes (v) has a weight of the

connecting edge C[u][v] is exists.

4. If (dist[v] > dist[u] + C[u][v] + Degree[u]) OR (dist[v] == dist[u] + C[u][v] +

Degree[u] AND total_Deg[u] + Degree[u] < total_Deg[v]),

7
 ©Daffodil International University

The distance passing through the node u is shorter than dist[v] Or if the

distance of two different paths is equals. For second conditions, takes the path

which have less connected roads in intersections through the path.

If one of these conditions is true,

V Modify dist[v] to dist[v] = dist[u] + C[u][v] + Degree[u];

V Modify total_Deg[v] = total_Deg[u] + Degree[u];

V Add node v to S.

5. Repeat step (3) and (4) n ï 1 time.

The shortest path from the source node to goal node is calculated.

8
 ©Daffodil International University

In the graph shown in Figure 3.4.1, Consider an undirected graph G = [V, E] with 8

nodes and 9 edges. V is a set of nodes and E is a set of Edges. ñUsedò is the set of the

nodes included in the shortest paths. ñUnusedò is the set of other nodes which are not

included in any shortest path. d(x) denotes the total number of connected roads passes

through all intersections from the root node to node x. w(x) denotes the total calculated

weights from root node to node x. Our algorithm, finding out the shortest path from root

node 1 to all nodes considering intersections and weight of edges.

 \

 Figure 3.4.1 Graph 2.

The search process is shown in Table 3.4.1.

9
 ©Daffodil International University

 Table 3.4.1. The Path Search Process of Our Improved Dijkstra Algorithm

10
 ©Daffodil International University

CHAPTER 4

 RESULTS AND DISCUSSION

4.1 Analysis

The simulation model is developed by using Visual C++ 14 in Code::Blocks(IDE), and

the OS is Windows 10. It has Intel CORE i5, 7th Gen Processor and RAM capacity is

4GB.

In order to test the performance of our Improved Dijkstra Algorithm, we tested the

algorithm with a real-life road map scenario. The environment map we constructed is

shown in Fig. 3.

Consider an undirected graph G = [V, E] with 41 nodes and 54 edges. V is a set of nodes
and E is a set of Edges. D(u) denotes count of connected road in node u. d(x) denotes the
total number of connected roads passes through all intersections from the root node to node
x. W(u, v) denotes cost for edge (u ï v). w(x) denotes the total calculated weights from
source node to node x.

Figure 4.1.1. A real map taken from Google Map which represents Dhaka University area and
surroundings, Dhaka, Bangladesh

11
 ©Daffodil International University

Now we are taking some source node and goal node for testing the algorithm on our created
graph shown in Fig-5.1. We take three different inputs and find out the outputs using our
improved algorithm. The tested results are shown in Test-1, Test-2 and Test-3. In the
analysis section, we showed how we got our weights.

Test-1:

Input: Taking 22 as source node, 15 as Goal Node.

Analysis: According to Fig 5.1, the shortest path for this input is 22 > 17 > 14 > 15 found

by Fig. 5.2 Output 1.

Here, According to Fig 5.2

22 ï 17 = D(22) + W(22, 17) = 5 + 10 = 15

17 - 14 = D(17) + W(17, 14) = 4 + 5 = 9

14 - 15 = D(14) + W(14, 15) = 4 + 2 = 6

So,

d(15) = 5 + 4 + 4 = 13

w(15) = 15 + 9 + 6 = 30

 Fig. 5.2 Representing Test 1

12
 ©Daffodil International University

Test-2:

Input: Taking 1 as source node, 7 as Goal Node.

Analysis: According to Fig 5.1, the shortest path for this input is 1 > 6 > 9 > 8 > 7. found

by Fig. 5.3 Output 2.

Here, According to Fig 5.3

1 - 6 = D(1) + W(1, 6) = 4 + 1 = 5

6 - 9 = D(6) + W(6, 9) = 4 + 2 = 6

9 - 8 = D(9) + W(9, 8) = 4 + 2 = 6

8 - 7 = D(8) + W(8, 7) = 4 + 2 = 6

So,

d(7) = 4 + 4 + 4 + 4 = 16

w(7) = 5 + 6 + 6 + 5 = 23

Fig. 5.3 Representing Test 2.

13
 ©Daffodil International University

Test-3:

Input: Taking 4 as source node, 20 as Goal Node.

Analysis: According to Fig 5.1, the shortest path for this input is 4 > 5 > 6 > 10 > 14 > 17

> 18 > 19 > 20. found by Fig. 5.4 Output 3.

Here, : According to Fig 5.4,

4 - 5 = D(4) + W(4, 5) = 4 + 2 = 6

5 - 6 = D(5) + W(5, 6) = 4 + 3 = 7

6 - 10 = D(6) + W(6, 10) = 4 + 4 = 8

10 - 14 = D(10) + W(10, 14) = 5 + 4 = 9

14 - 17 = D(14) + W(14, 17) = 4 + 5 = 9

17 - 18 = D(17) + W(17, 18) = 4 + 5 = 9

18 - 19 = D(18) + W(18, 19) = 6 + 6 = 12

19 - 20 = D(19) + W(19, 20) =3 + 4 = 7

So,

d(20) = 4 + 4 + 4 + 5 + 4 + 4 + 6 + 3 = 34

w(20) = 6 + 7 + 8 + 9 + 9 + 9 + 12 + 7 = 67

Fig. 5.4 Representing Test 3.

14
 ©Daffodil International University

Now coming to the major part of our Algorithm. Suppose we want to calculate a path from

a point to another point. And we have two different paths with equals weight of the path.

In this situation we have to choose one of them. So, According to our problem we want to

decrease the weight of the intersections. In this case, we have to take the path which have

less weight of intersection.

For Example,

INPUT:

Source :13

Goal: 38

Path-1,

Path is: 13 > 7 > 4 > 38

Here,

13 - 7 = D(13) + W(13, 7) = 4 + 14 = 18

7 - 4 = D(7) + W(7, 4) = 4 + 3 = 7

4 - 38 = D(4) + W(4, 38) = 4 + 1 = 5

So,

d1(38) = 4 + 4 + 4 = 12

w1(38) = 18 + 7 + 5 = 30

Path-2,

Path is: 13 - 12 - 8 - 5 - 4 - 38

Here,

13 - 12 = D(13) + W(13, 12) = 4 + 3 = 7

12 ï 8 = D(12) + W(12, 8) = 3 + 3 = 6

8 - 5 = D(8) + W(8, 5) = 4 + 2 = 6

5 - 4 = D(5) + W(5, 4) = 4 + 2 = 6

4 - 38 = D(4) + W(4, 38) = 4 + 1 = 5

So,

d2(38) = 4 + 3 + 4 + 4 + 4 = 19

w2(38) = 7 + 6 + 6 + 6 + 5 = 30

15
 ©Daffodil International University

Fig. 5.5 Representing Special Case.

Following this two Path, we have two different paths for one input according to Fig-5.1. And we

are taking Path-1. Though these two paths have equals weight which is w1(38) = 30 and w2(38) =

30. But the weights of intersections are not same. So, we can choose between them. Since Path-1

has less weight of intersections which is d1(38) = 12. That means d1(38) = 12 < d2(38) = 19. Thatôs

why we are taking Path-1 for better results.

16
 ©Daffodil International University

Chapter 5

CONCLUSION

In this paper we introduced an Improved Dijkstra algorithm to find out the shortest path.

We consider intersections to calculate accurate weights for a path. We believe our

proposed technique is very useful and realistic for finding a path. This algorithm can be

applied in many applications. Our algorithm was implemented in C++ and used

Code::Blocks to run this algorithm. In the future, we will try to solve more problems with

the shortest path technique.

17
 ©Daffodil International University

REFERENCES

[1] Dijkstra E W. ñA note on two problems in connexion with graphs,ò Numerische

mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[2] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the heuristic

determination of minimum cost paths," IEEE transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

[3] G. Qing, Z. Zheng, X. Yue ñPath-planning of Automated Guided Vehicle based on

Improved Dijkstra Algorithmò in Conf. 29th Chinese Control and Decision Conference,

Beijing, china, 2017.

[4] N. Makariye ñTowards Shortest Path Computation using Dijkstra Algorithmò in Conf.

2017 International Conference on IoT and Application (ICIOT), Nagapattinam, India, 19-

20 May 2017.

[5] L. Wenzheng, L. Junjun, Y. Shunli. ñAn Improved Dijkstraôs Algorithm for Shortest

Path Planning on 2D Grid Mapsò in Conf. 2019 IEEE 9th International Conference on

Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 2019.

[6] J. Liu, W. Li. ñAggressive Heuristic Search for Sub-Optimal Solution on Path

Planningò in Conf. 2018 8th International Conference on Electronics Information and

Emergency Communication (ICEIEC), Beijing, China, 2018.

[7] S. Julius Fusic, P. Ramkumar, K. Hariharan. ñPath planning of robot using modified

Dijkstra Algorithmò in Conf. 2018 National Power Engineering Conference (NPEC),

Madurai, India, 2018.

[8] ñGoogle Mapsò, "https://www.google.com/maps/@23.7338497,90.3906813,17z",

2021.

18
 ©Daffodil International University

APPENDIX A

Pseudo code: Improved Dijkstra Algorithm

19
 ©Daffodil International University

APPENDIX B

Accounts Clearance

