EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017

A Project and Thesis Submitted in partial fulfillment of the requirements

for the award of Degree of

Bachelor of Science in Civil Engineering

by

Md. Ashraful Hasan Swan (ID #: 173-47-074)

> Md. Sahidul Islam (ID #: 181-47-687)

Imroz Mahmud (ID #: 181-47-707)

Tanzir Hossain (**ID** #: 171-47-035)

Supervised by J.M.Raisul Islam Shohag Lecturer Department of Civil Engineering Daffodil International University

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING DAFFODIL INTERNATIONAL UNIVERSITY DECEMBER-2021

Certification

The thesis titled "EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017"

Submitted by Md. Ashraful Hasan Swan, Md. Sahidul Islam, Imroz Mahmud, Tanzir Hossain, have been accepted as satisfactory in partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering on December 2021.

The thesis titled "EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017"

Md. Ashraful Hasan Swan ID #: 173-47-074

Imroz Mahmud

ID #: 181-47-707

Md. Sahidul Islam

ID #: 181-47-687

Tanzir Hossain

ID #: 171-47-035

Countersigned

J.M.Raisul Islam Shohag Lecturer Department of Civil Engineering Faculty of Engineering Daffodil International University.

The project and thesis entitled **"EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017"** submitted by **Md. Ashraful Hasan Swan**, ID No: 173-47-074, **Imroz Mahmud**, ID No: 181-47-707, **Md Sahidul Islam**, ID No: 181-47-687, **Tanzir Hossain**, ID No: 171-47-035 Session: Fall 2017 has been accepted as satisfactory in partial fulfillment of the requirements for the degree of **Bachelor of Science in Civil Engineering** on December 2021.

BOARD OF EXAMINERS

Dr. Mohammad Hannan Mahmud Khan

Assistant Professor& Head

Department of Civil Engineering, DIU

Md. Masud Alam Assistant Professor Department of CE, DIU

Mr. Ryhan Md. Faysal Assistant Professor Department of CE, DIU

Kazi Sirajul Islam

External Member

iii

Internal Member

Internal Member

Chairman

Dedicated to

Our Parents

TABLE OF CONTENTS

Title	Page No.
Cover page	i
Certification	ii
BOARD OF EXAMINERS	iii
TABLE OF CONTENTS	v-vi
LIST OF FIGURES	vii
LIST OF TABLE	viii
LIST OF ABBREVIATION	ix
LIST OF SYMBOLS	Х
Declaration	xi
Acknowledgement	xii
Abstract	xiii
CHAPTER- 01: INTRODUCTION	
1.1 General	1
1.2 Background of thesis	2
1.3 Scope of the study	2
1.4 Objectives	2
CHAPTER- 02: LITERATURE REVIEW	
2.1 Introduction	3
2.2 Previous stories regarding R.C.C Building Analysis	3-4
2.3 Residential Building and its Classification	4-5
2.4 Principle of Planning	5-8
CHAPTER- 03: METHODOLOGY	
3.1 Introduction	9
3.2 Procedure for analysis	9
3.3 Material properties	10
3.4 Section properties	10
3.5 Slab properties	10
3.6 Load consideration	11

3.7 Earthquake load consideration	11
3.8 Wind load consideration	12
CHAPTER- 04: STRUCTURAL LOAD ANALYSIS	
List of figures	13-21
CHAPTER- 05: RESULTS AND DISCUSSIONS	
5.1 Maximum storey displacement with lateral load	22
5.2 Maximum storey displacement without lateral load	23
5.3 Maximum storey drift with lateral load	24
5.4 Maximum storey drift without lateral load	25
5.5 Storey overturning moment with lateral load	26
5.6 Storey overturning moment without lateral load	27
CHAPTER- 06: CONCLUSION AND RECOMMENDATION	
Conclusion	31
Recommendation	32
References	33

LIST OF FIGURES

4.1 Architecture plan of L shape building	13
4.2 Layout of L shape Residential building	14
4.3 3D view of L shape Residential building	15
4.4 Grid input in ETABS	16
4.5 Material properties application	17
4.6 Section properties application	18
4.7 Seismic load application	19
4.8 Stair 8 shear wall application	20
4.9 Wind load application	21
5.1 Storey maximum displacement	29
5.2 Storey maximum drift	23
5.3 Storey overturning Moment	30
6.1 Map	42
62 Map	43
6.3 Map	44
6.4 Typical shape of the elastic response spectrum coefficient Cs	40
6.5 Normalized design acceleration response spectrum for different site	41
classes	

LIST OF TABLE

CHAPTER 5-----

5.1 Maximum storey displacement with lateral load	22
5.2 Maximum storey displacement without lateral load	23
5.3 Maximum storey drift with lateral load	24
5.4 Maximum storey drift without lateral load	25
5.5 Storey overturning moment with lateral load	26
5.6 Storey overturning moment without lateral load	27
CHAPTER 6	
6.1 Response reduction factor, deflection amplification factor and height	34
limitations for different structural systems	
6.2 Weight of materials & construction	35
6.3 Minimum uniformly distributed and concentrated live loads	36
6.4 Internal pressure coefficient, GCpi main wind force resisting system	37
component and cladding- Method 2 (All heights)	
6.5 Site classification based on soil properties	38
6.6 Description of seismic zones	39
6.7 Seismic zone coefficient Z for some important towns of Bangladesh	40
6.8 Description of different site zones	41

LIST OF ABBREVIATIONS

BNBC	Bangladesh National Building Code
ACI	American Concrete Institute
RC	Reinforced Concrete
ASCE	American Society of Civil Engineers
OMRF	Ordinary Moment Resisting Frame
SMRF	Special Moment Resisting Frame
IMRF	Intermediate Moment Resisting Frame
	Intermediate Moment Resisting Frame
psi	Pound Per Square Inch
	e
psi	Pound Per Square Inch
psi USD	Pound Per Square Inch Ultimate Strength Design

LIST OF SYMBOLS

DL	Dead Load
LL	Live Load
EQ-X	Earthquake Load in X direction
EQ-Y	Earthquake Load in Y direction
R	Response Reduction Factor
Cd	Deflection Amplification Factor
Ω_0	System Overstrength Factor
f'c	Compressive Strength of Concrete
$\mathbf{f}_{\mathbf{y}}$	Yield Strength of Steel
Ec	Modulus of Elasticity of Concrete
Es	Modulus of Elasticity of Steel
Т	Fundamental Period of Vibration
Ct	Numerical Co-efficient
Ζ	Seismic Zone Co-efficient
$S_{S}, S_{I},$	Spectral Response Acceleration Parameter for Different Seismic Zone
F_a , F_v	Site Coefficient for Different Seismic Zone and Soil Type
S _{DS} , S _{D1}	Spectral Response Acceleration Parameter for Different Seismic Zone and Soil Type
Ι	Structural Importance Factor
Ig	Moment of Inertia

DECLARATION

The dissertation entitled "EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017" has been performed under the supervision of J.M.Raisul Islam Shohag (Lecturer), Department of Civil Engineering, Daffodil International University, Dhaka, Bangladesh and got approved in partial fulfillment of the requirement for the Bachelor of Science in Civil Engineering. To the best of our knowledge and belief, the capstone contains no materials previously published or written by another person except where due reference is made in the capstone itself.

Name of the supervisor

J.M.Raisul Islam Shohag Lecturer Department of Civil Engineering Daffodil International University

ACKNOWLEDGEMENT

First of all, thanks to Almighty who helped us to complete the practicum work and the practicum report, leading to the Bachelor of Science in Civil Engineering degree. We would like to thank every families and friends that to get me in this intensity and individuals who support and share idea and also helping us to be like this. We would like to pay our gratitude to our respected Head, Department of Civil Engineering, and Prof. Dr. Md. Hannan Mahmud Khan who gave us the opportunity to do the report on "EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017" by Using Manual Calculation & Software (ETABS) Approach"

Then we would like to pay our gratitude to J.M Raisul Islam Shohag (Lecturer of DIU).

We would also like to thanks J.M Raisul Islam Shohag (lecturer of DIU) for his endless support.

All teachers of Civil Engineering department who brought us tour present performance and shape us like this during the last four successive years, Special thanks to all faculty, Civil Engineering Department, DIU for providing us a lots of support to prepare this successful report.

ABSTRACT

The lateral load effect on R.C.C. buildings has gotten a lot of attention for establishing specialized characteristics according to the BNBC 2017. ETABS is used to assess steel constructions, R.C.C Low and High Rise Residential Buildings, and other structures. The effects of lateral loads on R.C.C. residential buildings, particularly for L shapes, are explored. The influence of lateral loads on maximum storey displacement, maximum storey drift, and storey overturning moment is investigated. Following the structural analysis, these characteristics are compared with and without the effect of lateral loads. In this study, the maximum storey displacement increases as the number of storeys increases, with the exception of the stair roof, which increases due to lateral loads. However, without lateral load effects, maximum storey displacement does not rise linearly as storey increases. Maximum storey drift grows none linearly as storey increases in both scenarios, and maximum storey drift is found for the floor for the impacts of lateral stresses. Overturning moments rise non-linearly as the number of storeys increases, and the maximum moment is obtained for storey 2 in both cases.

Keywords: Lateral, loads, ETABS, BNBC2017, Irregularity, Parameters.

CHAPTER 1

Introduction

1.1 General

Structural analysis entails determining a structure's overall shape as well as all of its precise dimensions. Lateral loads, such as earthquakes and wind, can have a substantial impact on buildings and other structures. ETABS is a 3D structural analysis program that can perform both static and dynamic analyses. In Civil Engineering, the term "building" refers to a structure that includes foundations, walls, columns, floors, roofs, doors, windows, ventilators, stair lifts, and other types of surface finishes, among other things. The target of structural exploration and design is to originate a structure that can withstand all applied onus for the duration of its desired entity. Geotechnical investigation is required prior to the study and design of any structure in order to gather vital information about the supporting soil. Structural engineers are faced with the task of achieving the most efficient and cost-effective design while guaranteeing that the final design of a structure and the building must be functional for its intended use for the duration of its design life. Various software packages, such as RISA, STAAD PRO, ETABS, STRUDL, MIDAS, SAP, and RAM, are now available in the market for analyzing and designing almost all sorts of structures.

This project is mainly concerned with the study "**EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017**". The structural analysis of (G+8) story building is done with the help of ETABS software. The Linear static analysis and design is done for all three zones and response like axial force, bending moment, displacement, drift is compared

1.2 Background of Thesis

We have worked in L shape multi storied building and have analyzed "EFFECT OF LATERAL LOADS ON RCC RESIDENTIAL BUILDING BY ETABS ACCORDING TO BNBC 2017".

1.3 Scope of the study

The main focus is to find out maximum storey displacement, maximum storey drift, maximum storey overturning moment with lateral load and without lateral load.

1.4 Objective

The objectives of this project and thesis :

a) To analyze the multistoried building by using ETABS.

b) To calculate maximum storey displacement, maximum storey drift and overturning moment.

c) To assimilate maximum storey displacement, maximum storey drift and overturning moment among storey

d) To liken maximum storey displacement, maximum storey drift and overturning moment between X and Y direction.

e) To balance maximum storey displacement, maximum storey drift and overturning moment between X and Y direction between with lateral load & without lateral load.

CHAPTER 2

2.1 INTRODUCTION

Previously, buildings were designed only for gravity loads, and seismic analysis is a comparatively new phenomenon. It is an element of structural analysis and structural design in areas where earthquakes are common.

2.2 Previous Stories Regarding R.C.C Building Analysis

Md. Arman Chowdhury: This study investigated regular, irregular, and irregular structures with and without isolation system. Installation of an isolator in a structure extends the structure's life span, reducing the likelihood of resonance. The benefit of constructing an isolator in a building goes up, but the reinforcing and material costs go down.

P. P. Chandurkar: Shear walls are an important earthquake resisting element in this study. Structural walls provide an effective bracing system and have strong lateral load resistance potential. As a result, determining the seismic reaction of the wall or shear wall is critical. The major goal of this research is to figure out where the shear wall should go in a multistory building.

Professor S.S. Patil: This study provides a seismic analysis of a high-rise building using the ETABS program, taking into account various lateral stiffness system circumstances. The response spectrum approach is used to do the analysis. This study accurately depicts the consequence of higher ways of quiver and the real force distribution in the elastic extent. Base shear, tale drift, and story deflection are among the outcomes provided.

Ragy JOSE:- In this work "Analysis and Design of Residential Building Using ETABS is performed.

Mayuri D. Bhagwat: In this paper, time history analysis and reaction spectrum analysis are used to do dynamic analysis of a G+8 multistory practical RCC building for the Koyna and

Himanshu Bansal (Himanshu Bansal): The storey shear force was found to be highest in the maiden storey and lowest in the top storey in all situations in this investigation. The base shear of mass irregular building frames is found to be greater than that of identical regular building frames. The base shear in the rigidity irregular building was lower, while the inter-storey drifts were bigger.

2.3 Residential Building and its Classification.

A infrastructure is a man-made structure having a roof and walls that remain in one place for the most part. Buildings come in a range of fervidity, sizes, and performances, and have been accommodated throughout history for a variety of causes, including the availability of construction materials, climate situations, land values, ground circumstances specific uses, and aesthetic considerations. Compares the list of non-building structures to better comprehend the term "building".

- Types of building:-
 - 1. Residential building
 - 2. Commercial and public building
- Banking building
- Shopping mall
- Mosque building
- Factory building
- Academic building
- Library building
- Theater building
- Castle building etc.

Finally, the phrase "engineering building planning" refers to the organization of all the units of a residence on all floors and levels, taking into account not only the aclinic array but also the elevation and level required to accommodate the site surrounded by walls, floors, and roofs. It is critical to keep the ordinary purpose of the infrastructure in mind when designing the construction. Each form of structure has its own set of requirements in order to effectively serve its intended purpose. The functional or utilitarian component of a structure should be carefully considered.

Principal regard of planning are-

• Human dwelling place and their essentials

- Climatic proviso and consequences
- Bye-laws for forethought and construction
- Gainable finance
- Ease, safety and economy
- Ordinary ethics of planning:-
- Flexibility
- Economy
- Elegance
- Sanitation
- Circulation
- Furniture requirement
- Roominess
- Orientation
- Privacy
- Prospect
- Aspect

2.4 Principal of Planning

Principles of planning details:-

Flexibility:-

• The building plan should be created with future requirements in mind.

Economy:-

• Building planning should be done within the client's budgetary constraints.

Elegance:-

- Elegance refers to the planning of the building's elevation and arrangement in order to give it a striking appearance.
- Elegance is created by the right width, height, location of doors and windows, materials used in exterior wall construction, and so on. The aesthetics of a structure are the outcome of elegance.

- Building planning should be done within the client's budgetary constraints.
- In sanitary units, cleanliness, illumination, and ventilation are provided to prevent the growth of bacteria and the spread of disease while also providing a hygienic environment. To keep the bath and wick glazed tiles clean, a dado should be installed on the walls.
- Rooms should be equipped with skirting. Bath tubs, unitary, w.c. pans, wash basins, and kitchen sinks should all be made of ceramic to make cleaning easier.

Sanitation:-

- In sanitation units, cleanliness, illumination, and ventilation are provided to prevent the growth of germs and the transmission of illness, as well as to provide a sanitary environment. Glazed tiles dado should be supplied on the wall in the bath and w.c. to keep the area clean.
- In rooms, skirting should be provided.
- Bath tubs, unitary, w.c., pans, wash basins, and kitchen sinks should all be made of ceramic to make cleaning easier.

Circulation:-

- The term "circulation" refers to the provision of a continuous path between rooms inside a structure..
- Horizontal circulation through passages, hallways, and lobbies, as well as vertical circulation through stairwells, elevators, and ramps, is required throughout the building.
- Building design incorporates both natural and artificial illumination. Sunlight can provide adequate illumination with sufficient ventilation.

Furniture requirement:-

- Necessary furniture required right place installation.
- Sufficient space for furniture in the room must be considered.
- Furniture size should be considered.
- Roominess:-

- The term "roominess" refers to a layout that takes most advantage of a room's minimal or restricted size.
- Space must be used efficiently.
- A length-to-breadth ratio of 1.20 to 1.50 is possible.
- The ceiling height in a small space should be modest.
- A rectangular room, rather than a square room, is preferred.
- The building plan should be created with future requirements in mind.
- When developing a structure, consider the size of furniture that will be necessary for the rooms' practical utility.
- The kitchen features a platform, a cabinet, a dining table, a refrigerator, and a mill, among other things.
- The bedroom features a bed, a closet, side tables, and a dressing table, among other things. In the children's room, there is a bed, a study table, a cabinet, and a dressing table, among other things.

Privacy:-

- When it comes to residential building design, privacy is a crucial concern.
- The position of the central door should be avoided if you want additional seclusion.
- The term "grouping" alludes to the ease with which numerous rooms may be communicated and utilized.
- The kitchen and dining room should be in close proximity to one another.
- The pantry should be close to the kitchen.
- Toilets and urinals should be kept out of the kitchen.
- The kitchen and toilet are not visible from the drawing room.
- The bedroom is attached to the bathroom and is therefore less exposed to the drawing room.

Orientation:-

- Orientation refers to the placement of a building's layout on its site in relation to the directions.
- When determining the building's orientation, direct sunshine, wind, and rainfall, as well as their strength and kind of surrounds, are taken into account.

- The building's long walls should be oriented north and south.
- East and west should be the direction of the short walls.

Prospect:- A structure is considered to have potential when it has a decent and pleasant appearance from the outside. It's a term that refers to the outside view of a building's rooms. The outside walls and windows should be painted in a pleasing manner. Projected windows allow for more light and air to enter the space.

Aspect:- The planned arrangement of exterior wall doors and windows to gain sunshine, breeze, and a pleasant view of the environment outside is referred to as aspect.

CHAPTER 3

METHODOLOGY

3.1 Introduction

The previous Chapter deal with literature review. We have highlighted the purpose of our work through this chapter and mentioned the similar research has been done in the past. In this chapter we will focus about some design criteria about RCC residential building according to BNBC 2017.

3.2 Procedure for analysis

SL.	Phase 1	Phase 2
	Without Lateral Load	With Lateral Load
	INITIATING	INITIATING
1	Select an eight storied residential	Select the final model from phase 1
	building	
	MODELING	MODELING
	- Computer model	- Assign Lateral Load
	- Material Assign	
2	- Load Assign	
	ANALYSIS	ANALYSIS
3	- Model Analysis	- Model Analysis
	DESIGNING	DESIGNING
4	- Beam & Column	- Beam & Column
	DETAILING	DETAILING
5	- Beam & Column	- Beam & Column

3.3 Material properties

SL.	Property Name	Symbol	Value
1)	Compressive Strength of Concrete	f'c	4 ksi
2)	Yield Strength of Steel	f _y	55 ksi
3)	Floor Finish	FF	18 psf
4)	Partition Wall	PW	30 psf
5)	Roof Slab Live Load		65 psf
6)	Floor Slab Live Load		101 psf
7)	Parapet Wall		150 psf

3.4 Section properties

Grade Beam size

Grade Beam Name	Size
GB 1	18''×24''
GB 2	15"×18"

Floor Beam Size

Floor Beam Name	Size
FB 1	18''×24''
FB 2	15"×18"

3.5 Slab properties

Section Name	Size
Slab	5″
Stair Slab	8″
Shear Wall	10″

3.6 Load consideration

Load Name	Value
FF	18 psf
LL (on floor slab)	45 psf
LL (on stair)	101 psf
LL (on roof slab)	65 psf
Parapet	150 psf
PW	30 psf

3.7 Earthquake load consideration

Property Name	Symbol	Value
Seismic zone Factor	Z	0.20(zone=2)
Site Class	F	
Site coefficient	Fa=Fv	1.15=1.725
SDS&SD1		1.7557&0.9994
Occupancy Importance	Ι	1.25
Response Modification	R	6
System Over strength	Ω	2.5
Deflection Amplification	Cd	5
Time Period	Т	1.137
0.2 Sec Spectral Accel	Ss	2.29
1 Sec Spectral Accel	SI	0.869
Long-Period Transition Period		2 sec

3.8 Wind load consideration

Property Name	Symbol	Value
Wind Speed		147.2 mph (For Dhaka)
Exposure Type	В	
Importance Factor	Ι	1
Topographical Factor	K _{zt}	1
Gust Factor		0.85
Directionality Factor	K _d	0.85
Windward Coefficient	C _{pw}	0.8
Leeward Coefficient	C _{pl}	0.5
Parapet Height		3.5feet

CHAPTER 4

Structural Load Analysis

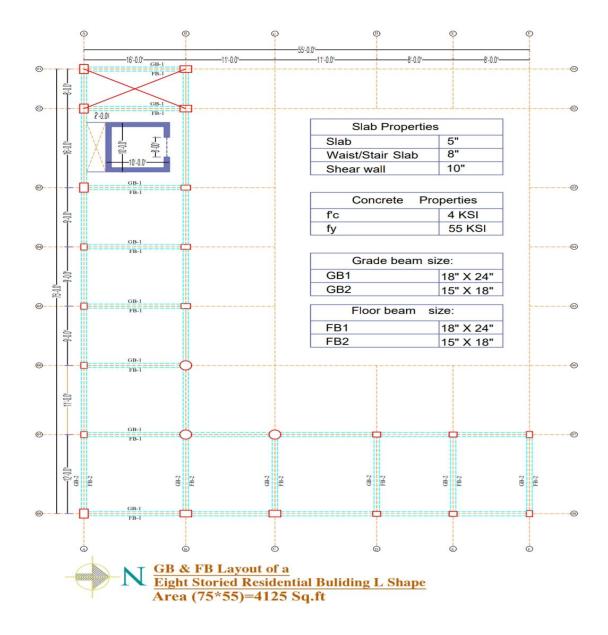


Fig. 4.1: Architectural plan of L shape building

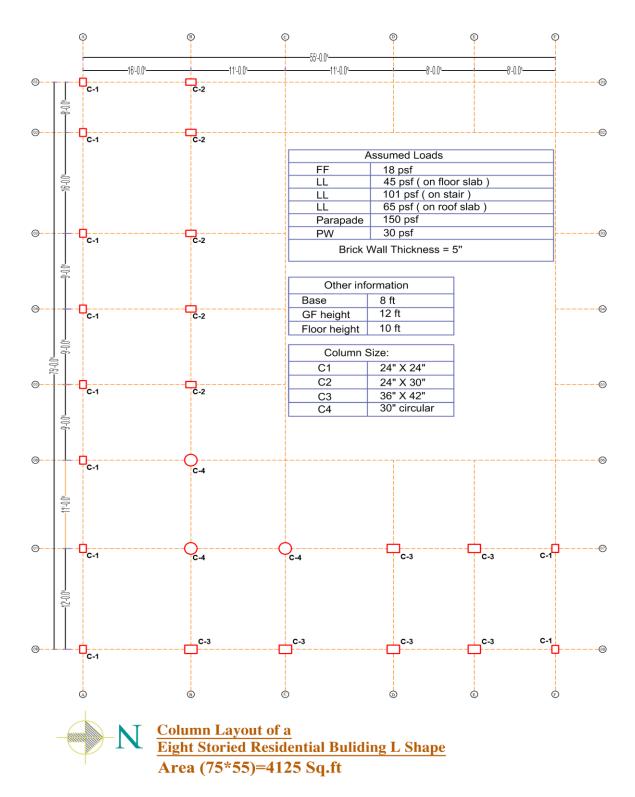


Fig 4.2: Layout of L shape residential building

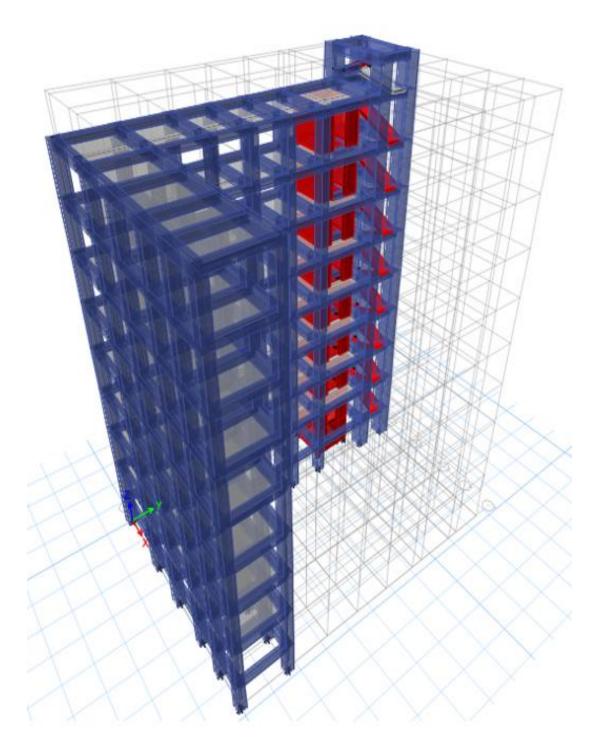


Fig 4.3: 3D view of L shape residential building

New Model Quick Templates					>
Grid Dimensions (Plan)			Story Dimensions		
Uniform Grid Spacing			Simple Story Data		
Number of Grid Lines in X Direction	8		Number of Stories	2	
Number of Grid Lines in Y Direction	10		Typical Story Height	10	ft
Spacing of Grids in X Direction	2	ft	Bottom Story Height	8	ft
Spacing of Grids in Y Direction	12	ft			
Specify Grid Labeling Options	Grid	Labels			
O Custom Grid Spacing			O Custom Story Data		
Specify Data for Grid Lines	Edit G	rid Data	Specify Custom Story Dat	a E	idit Story Data
Add Structural Objects	I H I I I I I I I Steel Deck Stagg	HHH HHH gered Truss	Flat Slab Flat Slab with Perimeter Beams	Waffle Slab	Two Way or Ribbed Slab
		OK	Cancel		

Fig. 4.4: Grid input in ETABS

🏰 Material Property Data

Material Name	Concrete		
Material Type	Concrete		\sim
Directional Symmetry Type	Isotropic		\sim
Material Display Color		Change	
Material Notes	Modif	y/Show Notes	
Material Weight and Mass			
Specify Weight Density	⊖ Spe	cify Mass Density	
Weight per Unit Volume		150	lb ∕ft³
Mass per Unit Volume		4.662	lb-s²/ft⁴
Mechanical Property Data			
Modulus of Elasticity, E		3605	lb∕in²
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A		0.0000055	1/F
Shear Modulus, G		1502.08	lb/in²
Design Property Data			
Modify/Show Ma	aterial Property	/ Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping Pr	operties
Time De	ependent Prop	erties	
ОК		Cancel	

Fig. 4.5: Material properties application

 \times

📲 Frame Section Property Data

Property Name	GB 18 X 24	
Material	Concrete ~	2
Notional Size Data	Modify/Show Notional Size	3
Display Color	Change	→ •
Notes	Modify/Show Notes	• •
hape		• • •
Section Shape	Concrete Rectangular 🗸 🗸	
ection Property Source		
Source: User Defined		Property Modifiers
ection Dimensions		Modify/Show Modifiers
Depth	24 in	Currently Default
Width	18 in	Reinforcement
WIGH	110 111	Modify/Show Rebar
		ОК
	Show Section Properties	Cancel

Property/Stiffness Modification Factors

Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	1
Moment of Inertia about 2 axis	0.35
Moment of Inertia about 3 axis	0.35
Mass	1
Weight	1
ОК	Cancel

Fig. 4.6: Section properties application

18

 \times

 \times

🕌 ASCE 7-05 Seismic Loading

Direction and Eccentricity		Seismic Coefficients	
🗹 X Dir	Y Dir	O Ss and S1 from USGS Database - b	y Latitude/Longitude
X Dir + Eccentricity	Y Dir + Eccentricity	O Ss and S1 from USGS Database - b	y Zip Code
X Dir - Eccentricity	Y Dir - Eccentricity	Ss and S1 - User Defined	
Ecc. Ratio (All Diaph.)	0.05	Site Latitude (degrees)	?
Overwrite Eccentricities	Overwrite	Site Longitude (degrees)	?
Time Period		Site Zip Code (5-Digits)	?
O Approximate Ct (ft), x =		0.2 Sec Spectral Accel, Ss	2.29
O Program Calculated Ct (ft), x =		1 Sec Spectral Accel, S1	0.869
User Defined T =	1.137 sec	Long-Period Transition Period	2 sec
Story Range		Site Class	F v
Top Story for Seismic Loads	Strair Roof 🛛 🗸 🗸	Site Coefficient, Fa	1.15
Bottom Story for Seismic Loads	Base \lor	Site Coefficient, Fv	1.725
Factors		Calculated Coefficients	
Response Modification, R	6	SDS = (2/3) * Fa * Ss	1.7557
System Overstrength, Omega	2.5	SD1 = (2/3) * Fv * S1	0.9994
Deflection Amplification, Cd	5		
Occupancy Importance, I	1.25	ОК	Cancel

Fig. 4.7: Seismic load application

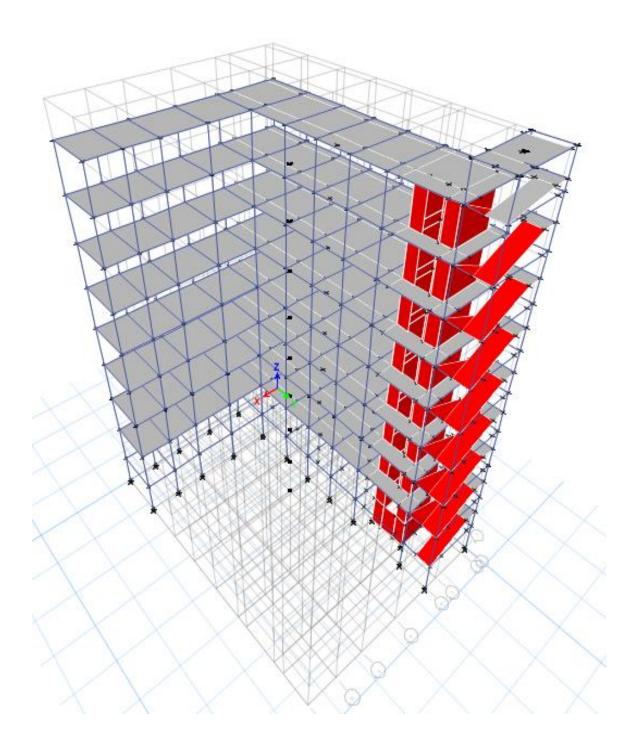


Fig. 4.8: Stair 8 shear wall application

Exposure and Pressure Coefficients		Wind Coefficients	
Exposure from Extents of Diaphragms		Wind Speed (mph)	147.2
O Exposure from Frame and Shell Objects Include Shell Objects		Exposure Type	B ~
Include Frame Objects (Open Stru	icture)	Importance Factor	1
Nind Pressure Coefficients		Topographical Factor, Kzt	1
	am Determined	Gust Factor	0.85
	0.8	Directionality Factor, Kd	0.85
Leeward Coefficient, Cpl	0.4	Solid / Gross Area Ratio	
Nind Exposure Parameters		Exposure Height	
Wind Direction and Exposure Width	Modify/Show	Top Story	Strair Roof \sim
Case (ASCE 7-05 Fig. 6-9)	Create All Sets 🗸 🕕	Bottom Story	GF v
e1 Ratio (ASCE 7-05 Fig. 6-9)	0.15	✓ Include Parapet	
e2 Ratio (ASCE 7-05 Fig. 6-9)	0.15	Parapet Height	3.5 ft

Fig. 4.9: Wind load application

CHAPTER 5

Results and Discussions

Analysis of Residential Building Using (ETABS)

5.1 Maximum storey displacement with lateral load

SL	Storey	Displacement (in)	Displacement (in)
No.	Name	X Direction	Y Direction
01	Base	0.035549	0.0405922
02	GF	0.4062845	0.38677
03	Storey 01	0.45964124	0.433479
04	Storey 02	0.55856177	0.487197
05	Storey 03	0.63744027	0.663551
06	Storey 04	0.75609639	0.722918
07	Storey 05	0.8939405	0.902921
08	Storey 06	0.91030209	1.029475
09	Storey 07	1.10458347	1.08516
10	Roof	1.2017357	1.22842
11	Stair Roof	1.4873883	1.5188425

 Table 5.1: Maximum storey displacement with lateral load

5.2 Maximum storey displacement without lateral load

SL	Storey	Displacement (in)	Displacement (in)
No.	Name	X Direction	Y Direction
01	Base	0.164664	0.1805922
02	GF	0.2862845	0.23677
03	Storey 01	0.32964124	0.293479
04	Storey 02	0.44856177	0.387197
05	Storey 03	0.55744027	0.478783551
06	Storey 04	0.72609639	0.55878718
07	Storey 05	0.8539405	0.6087502921
08	Storey 06	0.88030209	0.800075
09	Storey 07	1.0258347	1.000816
10	Roof	1.1517357	1.17842
11	Stair Roof	1.2573883	1.288425

Table 5.2: Maximum storey displacement without lateral load

5.3 Maximum storey drift with lateral load

SL No.	Storey Name	Drift	Drift
		X Direction	Y Direction
01	Base	0.000062	0.000062
02	GF	0.000411	0.000411
03	Storey 01	0.900283	0.313937
04	Storey 02	0.776782	0.168919
05	Storey 03	1.011913	0.413446
06	Storey 04	0.896125	0.258696
07	Storey 05	0.935099	0.284147
08	Storey 06	0.921427	0.271125
09	Storey 07	1.005739	0.267695
10	Roof	0.584073	0.210082
11	Stair Roof	3.014445	0.518458

Table 5.3: Maximum storey drift with lateral load

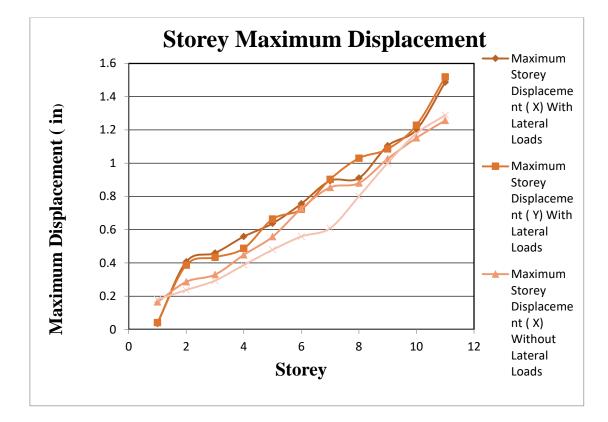
5.4 Maximum storey drift without lateral load

SL No.	Storey Name	Drift	Drift
		X Direction	Y Direction
01	Base	0	0
02	GF	0.000015	0.000004
03	Storey 01	0.000041	0.00001
04	Storey 02	0.000069	0.00002
05	Storey 03	0.000136	0.000063
06	Storey 04	0.000175	0.000086
07	Storey 05	0.000208	0.000104
08	Storey 06	0.000231	0.000117
09	Storey 07	0.000251	0.000127
10	Roof	0.000251	0.000121
11	Stair Roof	0	0

Table 5.4: Maximum storey drift without lateral load

5.5 Storey overturning moment with lateral load

SL No.	Storey Name	Overturning moment	Overturning moment
		(kip-in)	(kip-in)
		X Direction	Y Direction
01	Base	136407	-50997
02	GF	129972	-50997
03	Storey 01	116013	-48073
04	Storey 02	97555.610842	-41506
05	Storey 03	80080.786307	-34983
06	Storey 04	62682.801739	-28417
07	Storey 05	46127.85461	-21850
08	Storey 06	30654.019059	-15283
09	Storey 07	16512.832663	-8716.745725
10	Roof	4415.760816	-2152.26892
11	Stair Roof	44.8056	-44.8056


Table 5.5: Storey overturning moment with lateral load

5.6 Storey overturning moment without lateral load

SL No.	Storey Name	Overturning moment	Overturning moment
		(kip-in)	(kip-in)
		X Direction	Y Direction
01	Base	84150.423445	-50997
02	GF	84150.423424	-50997
03	Storey 01	78179.257846	-48073
04	Storey 02	67476.08114	-41506
05	Storey 03	57316.360434	-34983
06	Storey 04	46613.183728	-28417
07	Storey 05	35910.007022	-21850
08	Storey 06	25206.830316	-15283
09	Storey 07	14503.65361	-8716.745725
10	Roof	4248.331304	-2152.26892
11	Stair Roof	345.744	-44.8056

Table 5.6: Storey overturning moment without lateral load

Graphical Representation

5.7 Storey Maximum Displacement

Fig. 5.1: Storey maximum displacement

5.8 Storey Maximum Drift

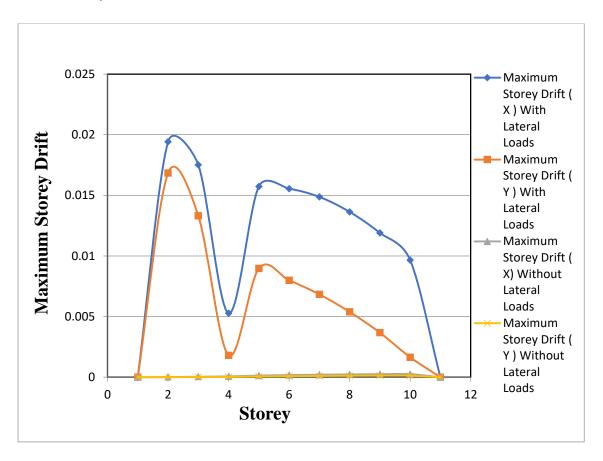


Fig. 5.2: Storey maximum drift

5.9 Storey Overturning Moment

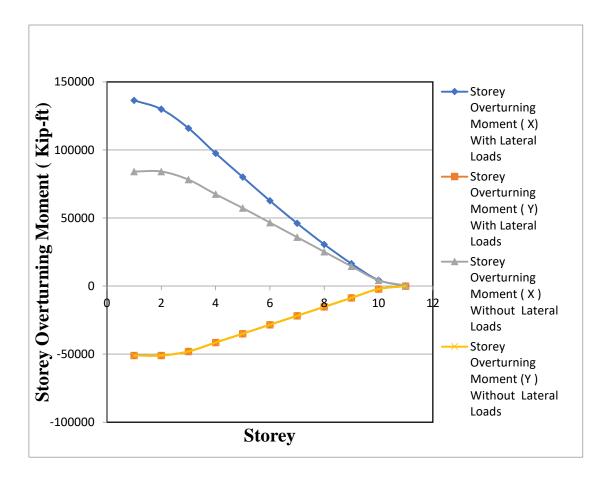


Fig. 5.3: Storey overturning moment

CHAPTER 6

CONCLUTION & RECOMMENDATION

- It has been found that maximum storey displacement is 15.6173 in for roof in X direction and 8.56842 in Y direction for roof with lateral load condition.
- It has been found that maximum storey displacement is 3.014445 in for stair roof in X direction and 0.518458 in Y direction for stair roof without lateral load condition.
- It has been found that maximum storey drift is 0.0194 for ground floor in X direction and 0.0168 Y directions for ground floor with lateral load condition.
- It has been found that maximum storey drift is 0.000251 for storey 7 in X direction and 0.000127 Y directions for storey 7 without lateral load condition.
- It has been found that maximum overturning moment is 136407 kip-in for base in X direction and -50997 kip-in Y direction for base with lateral load condition.
- It has been found that maximum overturning moment is 84150.423445 kip-in for base in X direction and -50997 kip-in direction for base without lateral load condition.
- Maximum storey displacement is found 15.617357 in for roof among X & Y direction.
- Maximum storey drift is found 0.19405 for ground floor among X & Y direction.
- Maximum overturning moment is found 136404 kip-in for base among X & Y direction.
- It has been found that storey displacement, storey drift & overturning moment is maximum between with lateral load and without lateral load.

RECOMMENDATION

- Lateral loads effect on RCC building can be performed by STAAD Pro software.
- Shear force, bending moment and other parameters may be computed by ETABS analysis and hand calculations.

REFERENCES

[1] Based on nonlinear dynamic time-history analyses. The Structural Design of Tall and Special Buildings, 21(4), 233- 248.

[2] UBC-1994

[3] V. Boonyapinyo, N. Choopool, & P. Warnitchai. (2008, October). Seismic Performance Evaluation of Reinforced-Concrete Buildings by Static Pushover and Nonlinear Dynamic Analyses. In The 14th World Conference on Earthquake Engineering October (pp. 12-17).

[4] W. T. Thwin, (2014). Seismic Response Evaluation of Reinforced Concrete Building with Time History Analysis

[5] Abhay Guleria. (Structural Analysis of a Multi-Story Building using ETABS for different Plan Configurations), International Journal of Engineering Research & Technology (IJERT). 2014; 3(5):2278-0181. ISSN: IJERTV3IS051552.

[6] Atol Vancouver, B.C World Conference on Earthquake Engineering, Vancouver,B.C, Canada August 1-6, 2004.

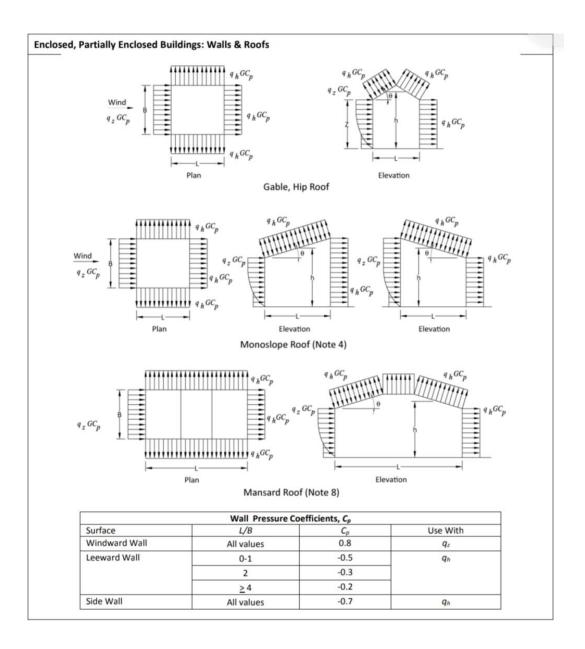
[7] A. M. Memari, A.Y. Motlagh, A. Scanlon. Seismic evaluation of an existing reinforced concrete framed tube building based on inelastic dynamic analysis. Engineering structures. 2000 Jun 30; 22(6):621-37.

[8] A. Alchalbi. (2000). Seismic evaluation & dynamic response analysis for existing reinforced concrete building. Individual studies by participants to the International Institute of Seismology and Earthquake Engineering, 36, 303-314.

Appendix A

Table 6.1: Response Reduction Factor, Deflection Amplification Factorand Height Limitations for Different Structural Systems

Seismic Force–Resisting System	Response Reduction Factor, R	System Overstrength Factor, Ω_o	Deflection Amplification Factor, C _d	Seismic Design Category B	Seismic Design Category C	Seismic Design Category D
					eight limit (r	
A. BEARING WALL SYSTEMS (no frame)						
1. Special reinforced concrete shear walls	5	2.5	5	NL	NL	50
2. Ordinary reinforced concrete shear walls	4	2.5	4	NL	NL	NP
3. Ordinary reinforced masonry shear walls	2	2.5	1.75	NL	50	NP
4. Ordinary plain masonry shear walls	1.5	2.5	1.25	18	NP	NP
B. BUILDING FRAME SYSTEMS (with bracing or shear wall)						
 Steel eccentrically braced frames, moment resisting connections at columns away from links 	8	2	4	NL	NL	50
 Steel eccentrically braced frames, non- moment-resisting, connections at columns away from links 	7	2	4	NL	NL	50
3. Special steel concentrically braced frames	6	2	5	NL	NL	50
 Ordinary steel concentrically braced frames 	3.25	2	3.25	NL	NL	11
5. Special reinforced concrete shear walls	6	2.5	5	NL	NL	50
6. Ordinary reinforced concrete shear walls	5	2.5	4.25	NL	NL	NP
7. Ordinary reinforced masonry shear walls	2	2.5	2	NL	50	NP
8. Ordinary plain masonry shear walls	1.5	2.5	1.25	18	NP	NP
C. MOMENT RESISTING FRAME SYSTEMS (no shear wall)						
1. Special steel moment frames	8	3	5.5	NL	NL	NL
2. Intermediate steel moment frames	4.5	3	4	NL	NL	35
3. Ordinary steel moment frames	3.5	3	3	NL	NL	NP
 Special reinforced concrete moment frames 	8	3	5.5	NL	NL	NL
5. Intermediate reinforced concrete moment frames	5	3	4.5	NL	NL	NP
6. Ordinary reinforced concrete moment frames	3	3	2.5	NL	NP	NP
D. DUAL SYSTEMS: SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)						
1. Steel eccentrically braced frames	8	2.5	4	NL	NL	NL
2. Special steel concentrically braced frames	7	2.5	5.5	NL	NL	NL
3. Special reinforced concrete shear walls	7	2.5	5.5	NL	NL	NL
4. Ordinary reinforced concrete shear walls	6	2.5	5	NL	NL	NP


Table 6.2: Weight of Materials & Construction

Material / Component / Member	Weight per Unit Area (kN/m²)	Material / Component / Member	Weight per Uni Area (kN/m ²)
Floor		Walls and Partitions	
Asphalt, 25 mm thick	0.526	Acrylic resin sheet, flat, per mm thickness	0.012
Clay tiling, 13 mm thick	0.268	Asbestos cement sheeting:	
Concrete slab (stone aggregate)*:		4.5 mm thick	0.072
solid, 100 mm thick	2.360	6.0 mm thick	0.106
solid, 150 mm thick	3.540	Brick masonry work, excl. plaster:	
Galvanized steel floor deck (excl. topping)	0.147-0.383	burnt clay, per 100 mm thickness	1.910
Magnesium oxychloride:		sand-lime, per 100 mm thickness	1.980
normal (sawdust filler), 25 mm thick	0.345	Concrete (stone aggregate)*:	
heavy duty (mineral filler), 25 mm thick	0.527	100 mm thick	2.360
Terrazzo paving 16 mm thick	0.431	150 mm thick	3.540
Roof		250 mm thick	5.900
Acrylic resin sheet, corrugated:		Fibre insulation board, per 10 mm	0.034
3 mm thick, standard corrugations	0.043	thickness	0.092
3 mm thick, deep corrugations	0.062	Fibrous plaster board, per 10 mm	0.269
Aluminium, corrugated sheeting:		thickness	0.961
(incl. lap and fastenings)		Glass, per 10 mm thickness	0.075
1.2 mm thick	0.048	Hardboard, per 10 mm thickness	0.092
0.8 mm thick	0.028	Particle or flake board, per 10 mm thickness	0.061
0.6 mm thick	0.024	Plaster board, per 10 mm thickness	
Aluminium sheet(plain):		Plywood, per 10 mm thickness	
1.2 mm thick	0.033		
1.0 mm thick	0.024	Ceiling	0.081
0.8 mm thick	0.019	Fibrous plaster, 10 mm thick Cement plaster, 13 mm thick	0.081
Bituminous felt (5 ply) and gravel	0.431		0.480
Slates:		Suspended metal lath and plaster	0.480
4.7 mm thick	0.335	(two faced incl. studding)	
9.5 mm thick	0.671	Miscellaneous	
Steel sheet, flat galvanized:		Felt (insulating), per 10 mm thickness	0.019
1.00 mm thick	0.082	Plaster:	
0.80 mm thick	0.067	Cement plaster, per 10 mm thickness	0.230
0.60 mm thick	0.053	Lime plaster, per 10 mm thickness	0.191
Steel, galvanized std. corrugated sheeting:		PVC sheet, per 10 mm thickness	0.153
(incl. lap and fastenings)		Rubber paving, per 10 mm thickness	0.151
1.0 mm thick	0.120	Terra-cotta Hollow Block Masonry:	
0.8 mm thick	0.096	75 mm thick	0.671
0.6 mm thick	0.077	100 mm thick	0.995
Tiles :		150 mm thick	1.388
terra-cotta tiles (French pattern)	0.575	1	
concrete , 25 mm thick	0.527	1	
clay tiles	0.6-0.9		

Table 6.3: Minimum Uniformly Distributed and Concentrated LiveLoads

Occupancy or Use	Uniform kN/m ²	Concentrated kN	
Apartments (see Residential)			
Access floor systems			
Office use	2.40	9.0	
Computer use	4.80	9.0	
Armories and drill rooms	7.20		
Assembly areas and theaters			
Fixed seats (fastened to floor)	2.90		
Lobbies	4.80		
Movable seats	4.80		
Platforms (assembly)	4.80		
Stage floors	7.20		
Balconies (exterior)	4.80		
On one- and two-family residences only, and not exceeding 19.3 \ensuremath{m}^2	2.90		
Bowling alleys, poolrooms, and similar recreational areas	3.60		
Catwalks for maintenance access	2.00	1.33	
Corridors			
First floor	4.80		
Other floors, same as occupancy served except as indicated			
Dance halls and ballrooms	4.80		
Decks (patio and roof)	Process restriction of the restriction of the	Same as area served, or for the type occupancy accommodated	
Dining rooms and restaurants	4.80		
Dwellings (see Residential)	2		
Elevator machine room grating (on area of 2,580 mm ²)		1.33	
Finish light floor plate construction (on area of 645 mm ²)		0.90	
Fire escapes	4.80		
On single-family dwellings only	2.00		
Fixed ladders	See	Sec 2.3.11	
Garages (passenger vehicles only), Trucks and buses		2.0 ^{b,c}	
Grandstands	See Stadiums of	and arenas, Bleacher	
Gymnasiums—main floors and balconies	4.80		
Handrails, guardrails, and grab bars	See	Sec 2.3.11	
Hospitals			
Operating rooms, laboratories	2.90	4.50	
Patient rooms	2.00	4.50	
Corridors above first floor	3.80	4.50	
Hotels	See	Residential	
Libraries			
Reading rooms	2.90	4.50	
Stack rooms	7.20 d	4.50	
Corridors above first floor	3.80	4.50	

Table 6.4: Internal pressure coefficient, GCpi main wind forceresistingsystem component and cladding - Method 2 (All Heights)

Table 6.5: Site Classification Based on Soil Properties

Site	Description of soil profile up to 30 meters depth	Average So	il Properties in top	30 meters
Class		Shear wave velocity, \overline{V}_s (m/s)	SPT Value, N (blows/30cm)	Undrained shea strength, \overline{S}_u (kPa)
SA	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800		
SB	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250
SC	Deep deposits of dense or medium dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 - 360	15 - 50	70 - 250
SD	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70
SE	A soil profile consisting of a surface alluvium layer with V_s values of type SC or SD and thickness varying between about 5 m and 20 m, underlain by stiffer material with V_s > 800 m/s.			
S_1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content	< 100 (indicative)	-	10 - 20
S_2	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types SA to SE or S_1		-	

Table 6.6 Description of Seismic Zones

Seismic Zone	Location	Seismic Intensity	Seismic Zone Coefficient, Z
1	Southwestern part including Barisal, Khulna, Jessore, Rajshahi	Low	0.12
2	Lower Central and Northwestern part including Noakhali, Dhaka, Pabna, Dinajpur, as well as Southwestern corner including Sundarbans	Moderate	0.20
3	Upper Central and Northwestern part including Brahmanbaria, Sirajganj, Rangpur	Severe	0.28
4	Northeastern part including Sylhet, Mymensingh, Kurigram	Very Severe	0.36

Table 6.7: Seismic Zone Coefficient Z for Some ImportantTowns of Bangladesh

Town	Z	Town	Z	Town	Z	Town	Z
Bagerhat	0.12	Gaibandha	0.28	Magura	0.12	Patuakhali	0.12
Bandarban	0.28	Gazipur	0.20	Manikganj	0.20	Pirojpur	0.12
Barguna	0.12	Gopalganj	0.12	Maulvibazar	0.36	Rajbari	0.20
Barisal	0.12	Habiganj	0.36	Meherpur	0.12	Rajshahi	0.12
Bhola	0.12	Jaipurhat	0.20	Mongla	0.12	Rangamati	0.28
Bogra	0.28	Jamalpur	0.36	Munshiganj	0.20	Rangpur	0.28
Brahmanbaria	0.28	Jessore	0.12	Mymensingh	0.36	Satkhira	0.12
Chandpur	0.20	Jhalokati	0.12	Narail	0.12	Shariatpur	0.20
Chapainababganj	0.12	Jhenaidah	0.12	Narayanganj	0.20	Sherpur	0.36
Chittagong	0.28	Khagrachari	0.28	Narsingdi	0.28	Sirajganj	0.28
Chuadanga	0.12	Khulna	0.12	Natore	0.20	Srimangal	0.36
Comilla	0.20	Kishoreganj	0.36	Naogaon	0.20	Sunamganj	0.36
Cox's Bazar	0.28	Kurigram	0.36	Netrakona	0.36	Sylhet	0.36
Dhaka	0.20	Kushtia	0.20	Nilphamari	0.12	Tangail	0.28
Dinajpur	0.20	Lakshmipur	0.20	Noakhali	0.20	Thakurgaon	0.20
Faridpur	0.20	Lalmanirhat	0.28	Pabna	0.20		
Feni	0.20	Madaripur	0.20	Panchagarh	0.20		

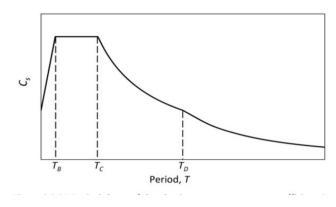


Fig. 6.4: Typical shape of the elastic response spectrum coefficient Cs

Table 6.8: Description of different site zones

Soil type	5	T _B (s)	Tc (s)	T _D (s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

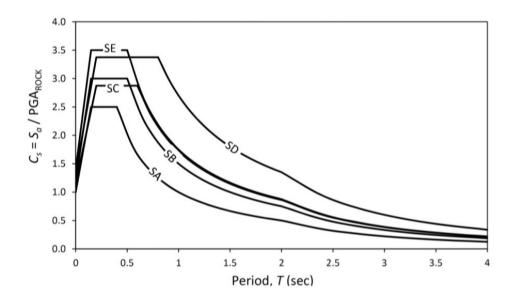


Fig. 6.5: Normalized design acceleration response spectrum for different site classes.

Appendix B

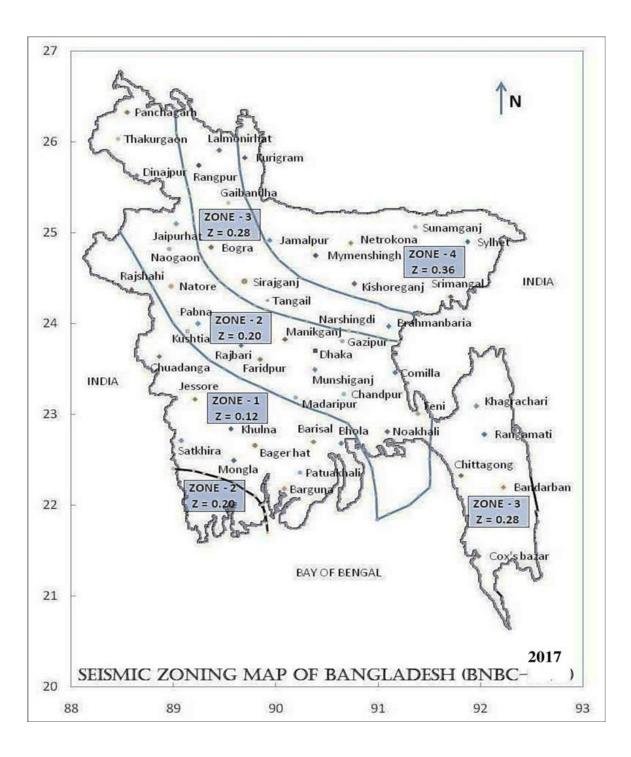


Fig. 6.1: Map

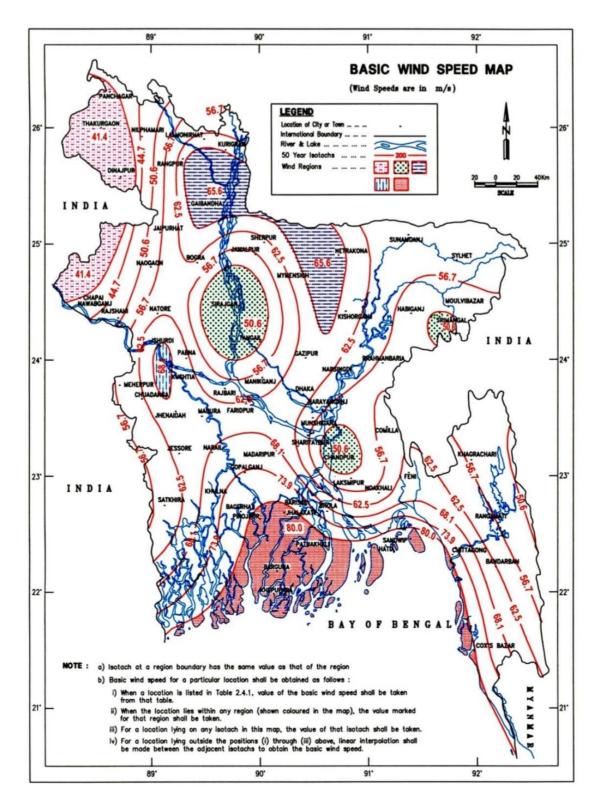


Fig. 6.2: Map

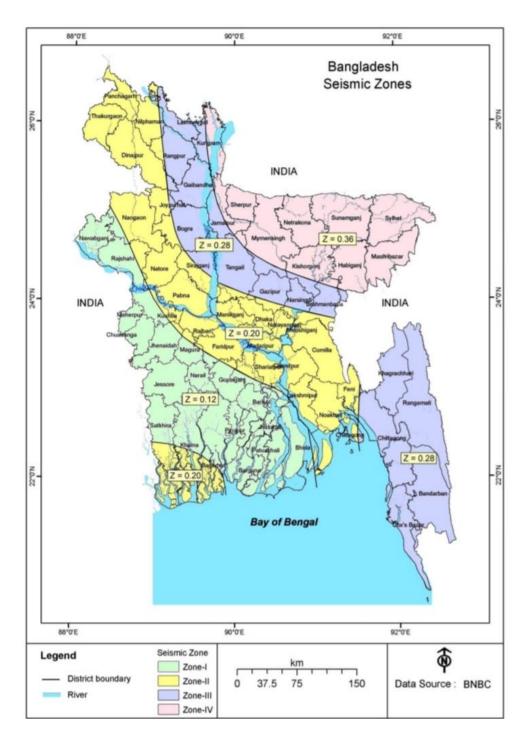


Fig. 6.3: Map

THE END