

An Adaptation Middleware Supporting

Continuous Adaptation Of End User Driven

Application Composition Framework

Sakhawat Hossain

(153-35-1335)

A thesis submitted in partial fulfillment of the requirement for the degree

of Bachelor of Science in Software Engineering

Department of Software Engineering

DAFFODIL INTERNATIONAL UNIVERSITY

Fall – 2019

© 2019 Daffodil International University i

APPROVAL

This Thesis titled “An Adaptation Middleware Supporting Continuous Adaptation Of An End User

Driven Application Composition Framework”, submitted by Sakhawat Hossain, 153-35-1335 to the

Department of Software Engineering, Daffodil International University has been accepted as satisfactory for

the partial fulfillment of the requirements for the degree of B.Sc. in Software Engineering and approved as

to its style and contents.
BOARD OF EXAMINERS

Dr. Touhid Bhuiyan

Professor and Head Chairman

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Md. Habibur Rahman

Lecturer (Senior Scale) Internal Examiner

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

© 2019 Daffodil International University ii

DECLARATION

I hereby, declare that I have taken this project under the supervision of Mr. K.M. Imtiaz-Ud-Din,

Assistant Professor, Department of Software Engineering, Daffodil International University. I also

declare that neither this thesis nor any part of this has been submitted elsewhere for award of any

degree.

………………………………………

Sakhawat Hossain

ID: 153-35-1335

Batch: 18th

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Certified by:

………………………………..

K.M. Imtiaz-Ud-Din

Assistant Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

© 2019 Daffodil International University iii

ACKNOWLEDGEMENT

Every good approach starts with the initiative of some person who has the vision to do something

amazing. This research is a combination of some good ideas and there are many people who are

behind those ideas. I hereby will be thankful forever to my supervisor K.M. Imtiaz-Ud-Din,

Assistant Professor, Department of Software Engineering, Daffodil International University for the

guideline he provided me from the starting of this research till today. His continuous monitoring

always kept pushing me to think precisely and not to lose hope even if something not working

properly. It was always motivating to work with my respected supervisor. If i had the chance or

ability to work with some research works, I will definitely go along with my supervisor Mr. K.M.

Imtiaz-Ud-Din. I also want to thanks my lab members who directly or indirectly helped me to

complete my research work. I will say that without their help it would be so much tough to complete

my research work.

I am also thankful to our honorable Professor Dr. Touhid Bhuiyan, Head of the Department of

Software Engineering, Daffodil International University who always encourage us to do good works

and all the other teachers in the Department of Software Engineering. I am also very grateful to

those researchers who works helped me to find relevant things to my research and find the place

where I can contribute more. Finally, I want to thank my parents because they are the reason behind

all of my success. Without the blessings of my parents I would not able to come this long. Specially

to my mother Mrs. Sabina Yasmin who is still trying her best to reach my goal.

© 2019 Daffodil International University 2

Table of Contents

APPROVAL .. i

DECLARATION ... ii

ACKNOWLEDGEMENT .. iii

Table of Contents .. 2

List of Figures .. 4

ABSTRACT ... 5

CHAPTER I INTRODUCTION ... 6

1.1 Background .. 6

1.2. Objective ... 7

1.3. Research Method and Outline of Thesis .. 9

CHAPTER II LITERATURE REVIEW .. 11

2.1. Taken from Existing Works ... 12

2.2 Related Technologies and Frameworks ... 12

CHAPTER III PROPOSED ARCHITECTURE .. 14

STEPS AT A GLANCE ... 15

3.1. Service Repositories .. 17

3.2. Service Registry... 17

3.3. Watcher ... 17

3.4. Block Generator .. 17

3.5. Service Creator ... 18

3.6. Interface Creator .. 18

3.7. Service & Interface Connector Creator ... 18

3.8. Meta Blocks ... 19

© 2019 Daffodil International University 3

3.9. Interactive Application Creator ... 19

3.10. Generated Blocks & Services .. 19

3.11. Other Blocks .. 20

3.12. Composite Composition .. 20

3.13. Orchestration Service.. 20

3.14. End-User Development Interface and Code Generation Engine 20

PROPOSED ARCHITECTURE ... 22

3.15. Application Manager .. 26

3.16. Context Manager... 26

3.17. Variant Manager ... 27

3.18. Adaptation Engine .. 27

3.19. Runtime Engine ... 28

CHAPTER IV EVALUATION .. 29

CHAPTER V CONCLUSION ... 33

5.1. Limitation .. 33

5.2. Future Work ... 34

REFERENCES .. 35

APPENDIX A ... 36

APPENDIX B ... 36

APPENDIX C ... 37

APPENDIX D... 40

APPENDIX E ... 43

APPENDIX F ... 45

© 2019 Daffodil International University 4

List of Figures

Figure 1 . Research Methodology .. 9

Figure 2 . Previous Team Architecture ... 14

Figure 3 . Proposed Architecture ... 22

Figure 4 . Proposed Architecture Only Present Work ... 23

Figure 5 . User making composition with services .. 29

Figure 7 . News Result for Sunny.. 30

Figure 8 . News result Rainy ... 30

Figure 9 . Working flow of each part .. 31

Figure 10 . Continuous adaptation of services .. 32

© 2019 Daffodil International University 5

ABSTRACT

The usage of IOT devices in our daily life is increasing at a good rate. By IOT here it means the

sensor and actuators that we use to satisfy our needs. But when we think by the perspective of a

user we always want things in our own ways. Where everything will be flexible like if we want to

add or remove certain service we need to have the capability to do so. Precisely if a user wants to

add a new sensor without having programming knowledge, he or she cannot do that because most

of the services that different organizations provide are not configurable. Yet as a user we cannot

to that because there are some complexities when we say configurable services. Researchers are

trying to provide user these sorts of configurable services, yet we are not able to provide these sort

of services right now. So, this is a huge scope or place to work on because whenever a problem

arises there is a solution for it and we need to find it and utilize that solution at its best.

The past researchers of “Ambient Intelligence Lab” proposed an architecture where the end-user

can plug sensors and actuators without the help of professionals. They also provide the examples

to emphasize that the architecture works properly or the way it should have worked. But they had

some lacking too. One of them was having no adaptive environment. By adaptive environment we

meant that our system should listen to the different context of different services that user use to

fulfill his/her requirements. An Adaptation Engine with the help of some additional components it

provides the user an ultimate flexibility where the end user just provides his/her queries by using

service composition and our system will always listen to the different contexts of those services

which leads our system as a continuous adaptation system.

© 2019 Daffodil International University 6

CHAPTER I INTRODUCTION

1.1 Background

The thing which most effects our life is IOT services. It just making our life simpler and easier

because it provides the simplicities and functionalities that we need in our life. When we say IOT

it just does not mean only the hardware devices rather it summarizes the relation between both the

hardware and software because they are both dependent and can work simultaneously. But most

of the services that we used like home automation, office managerial etc. these things are provided

by some companies. They provide these solutions. Every different company has different services

that they offer to their user. But all these services are rigid. By rigid we meant that these services

are not configurable by the user themselves. And the main thing to point here is there no existing

technology that satisfies the adaptation of environment of a system. Adding with that, only the

professionals who has the knowledge to alter those devices can perform the configuration. So user

has this uncomfortable zone not being configure his/her own services.

1.1.1 Scenario

We will try to describe our scope of this thesis by providing a scenario based problem and later we

will try to collect requirements from that scenario.

Suppose Mr. David wants to view the email based on the current weather. And he wants a

composition where he will attach web service and other service like reading newspaper. So he uses

our previous system to make service composition along with our web service. What he wants is if

© 2019 Daffodil International University 7

the weather is rainy he wants to know the news headlines. And if the weather is not rainy he doesn’t

want to do any sort of staff.

But Mr. David wants to make his composition as an interactive application which will always

observe the weather like there will be times when the weather turns rainy to sunny or sunny to

rainy etc. But there are industrial or research works which can satisfy this adaptation along with

IoT sensor and actuator. But we know that everything is possible if we try. So to deliver an adaptive

environment along with IoT sensor and actuator we need bunch of web services and their

respective context values. And to do this we also need an architecture which will provide the

desired output.

1.2. Objective

The purpose of this thesis work is to provide an end-user an adaptive environment where the

system can listen or observe any kind of environment changes. We tried to build an architecture

which will adopt the changes that occurs into an environment. An adaptive application provides

user the desired output by looking up the context values or what’s the current context of the

services that user uses. To understand the goal of this thesis more clearly let’s dive in the scenarios

problem described in section 1.1. Following are the requirements that being collected from that

scenario:

1.2.1 Requirements

Firstly, we need an environment where we can manage the service compositions that users are

using. Because there might be several users using our system and they have their respective

© 2019 Daffodil International University 8

requirements. In order to fulfill their requirements, they will use different service composition and

interactive application. The environment needs continuous adaptation so we also need a separate

environment where the continuous adaptation will occur. Because we always tend to divide

services as loosely coupled as we can. And there will be a co-relation between the management

thing and adaptation environment. And last of all we will be required a place or engine which will

be responsible for the execution of user interactive applications. Which means system should be

able to break the barrier between physical and virtual world.

Overall our objective is to crossing the boundary between the virtual and physical world. Providing

users flexibility to create application on the basis of his/her needs without having programming

knowledge and our system will have the ability to observe the environment changes. Before this

work our previous lab members worked on making or giving the user to config his/her services.

But the main intention of this research work it to provide an end-user an adaptive environment

where user does not need to interact with the system whenever the environment changes.

© 2019 Daffodil International University 9

1.3. Research Method and Outline of Thesis

In order to emphasize our goal as efficient as possible we needed to follow a research lifecycle

which can lead our work in the right way.

Figure 1 . Research Methodology

Every thesis or research has made or carried out to solve a solve that was not solves or even though

before. We found this thesis interesting while we faced the scenario that we described in Section

1.1.1. And whenever there are some problems there might be some solutions too.

© 2019 Daffodil International University 10

By the time we were able to figure out the issues that arises we break down the problems from the

largest to the smallest one which will later be helpful for us to understand and design the problem

statement properly. The problems and requirements statements were covered properly in the

Section 1.2.1.

When we figured out the problem statement properly then we spent some time to find some better

solutions which possibly could solve the problems and the solution must have the capability to

engage more the end user with their IoT sensors and actuators and other services. And then we

have created research lifecycle which have been followed thought out the research.

We all know that every whenever there are some problem that raised and needs to provide solution

we intend to divide those or that problem into separate segments so that we can work more

efficiently. That is why we follow the methodology that we have attached in Figure1.1. We also

need to follow the work that might be previously done by other researchers which will help us to

find our solution and let us compare our solution to theirs. The best help that we got is from out

lab “Ambient Intelligent Lab”, the work of all previous groups summarizes a good amount of work

and their help was emerging while implementing our thought to solve the problem.

We have prepared an architecture in which our system lies on. Every system has its own working

flow and in order to maintain a perfect working procedure we prepared a well-furnished system

architecture which is attached into the next section. We followed that model throughout our whole

system. Every research work has theoretical segment and there must have an implementation

whether the proposed solution effects the user or not. For this reason, we attached out proof of

concept in Chapter 4, where we tried to show that our work actually satisfied the users need. After

that section we tried to carry out the Appendix part which is attached into the section 5.

© 2019 Daffodil International University 11

CHAPTER II LITERATURE REVIEW

To start the work of our thesis we tried to take out some observation on the work that has been

done previously which goes along with our working area. Although there are some scopes in which

some good work been done before. So we tried to review and use those work both of research and

implemented based, in a sense we can use them as per our requirements. Let’s point some of the

work like as visual computer programing language like as Blockly, micro service architecture

along with the loosely coupled scenarios, IoT sensors and actuators service along with web service

like as third party api, multi-agent environment, distributed architecture etc. We had to take some

of these work in order to establish a proper architecture which made our system more efficient.

And we always believe in a product which is fully functional so we provide our architecture first

then we tried to implement our architecture by the help of existing technologies.

The most recent works regarding on context aware or interactive application is the paper titled as

Context-Awareness for Self-Adaptive Applications in Ubiquitous Computing Environments by

Kurt Geihs and Michael Wagner. They tried to explain the how context aware application can

affect the user mobility at a lower level to the highest. Another paper titled as Supporting Adaptive

Application Mobility by Francis M. David, Bill Donkervoet, Jeffrey C. Carlyle, Ellick M. Chan,

Roy H. Campbell. They also tried to establish an architecture to provide the opportunity for

applications to better adapt their user interface to the new environment. Although they tried to

follow two more approaches, one is Model-View-Controller design pattern which provides more

efficiency into the system and another one is JADE mobile agent platform. Its worthy to mention

another important paper titled as A Survey of Approaches to Adaptive Application Security,

© 2019 Daffodil International University 12

although their main focus was to provide a clearer view about how we can provide more security

in adaptive application.

2.1. Taken from Existing Works

As, this is an extended work on our existing lab members, we had to inherit some things that had

been done before by our previous groups. We needed to use Blocks [Made along with visual

programming language Blockly], Compositions, Services [sensor service, actuator service and web

services] on which our previous lab members worked on. We will add some new things along with

previous groups, like as Application Manager, Context Manager, Variant manager, Adaptation

Engine and Runtime Engine which will make the work more valuable. I believe, this work can

change the problem that an end-user faced in the scenario and at the end of this thesis work an end-

user can have an adaptive environment along with IoT sensor and actuator and other web services.

2.2 Related Technologies and Frameworks

In order to fulfill the vision, we need to use some technologies that are already available. And they

are,

 Blocky: Blocky is a client-side JavaScript library for creating block. Worth mentioning that

it is a visual programming language which is widely used by other developers and

researchers out there.

 Django: Django is a Python-based free and open-source web framework, which follows

the model-view-template architectural pattern.

© 2019 Daffodil International University 13

 Ajax: we will need this to create asynchronous web applications and it will also be helpful

for communicating data between our web application and database.

 HTML/CSS/Bootstrap: To design a better user interface.

 jQuery: jQuery is a JavaScript library designed to simplify HTML DOM tree traversal and

manipulation, as well as event handling, CSS animation, and Ajax

© 2019 Daffodil International University 14

CHAPTER III PREVIOUS AND PROPOSED ARCHITECTURE

Before proposing our architecture to provide solution on the scenario problems. Let’s see what we

have already in our hand. We have attached the previous team architecture in the below and later

section we discussed about each component. This part of this document is a very important one

because we will try to dive in what our previous groups did. Then we can find out what can be

done to fulfill the problem that we collected from the above scenario. We will provide a latest

solution for the scenario problem later of this section.

Figure 2 . Previous Team Architecture

© 2019 Daffodil International University 15

STEPS AT A GLANCE

Let’s see how the previous architecture act when a user wants to run service composition.

 Firstly, End-user create composition with the help of our existing services.

 Then the service composition gets segmented through Orchestration service. It is a sort

of navigator which lies in between our Service Repository and Generated Interface,

Service and Block creator.

 Our service repository holds the information related to the components i.e. Api, sensor,

actuator etc. Following are some of the services for sensor and actuator.

 Our services have interfaces to interact with user. Suppose an end-user wants to use

location service. There is an interface in our previously implemented system where user

can use it. Following is a simple demonstration of it, which will print the location

information.

 All of the points mentioned above is for those service which are registers in our system.

Whenever a new service is attached like and end-user beings a sensor to control his/her

© 2019 Daffodil International University 16

door. So he/she plugs the sensor into our system. At that point it is a new sensor and we

need to create services against that sensor. So that is when watcher comes to play.

Watcher always watches over our service repository to check if there is any new service.

As a new sensor been plugged into our system watcher instantly informed different

service components. It will call block generator to generate block, interface creator to

create interface, service creator which will execute against the generated interface.

In the following pages we have elaborate all this components.

© 2019 Daffodil International University 17

3.1. Service Repositories

It is basically the repository or storage where the sensor, actuator, interactive block, web services

and user preferable composition will be stored. Later we will use their references to work on.It

3.2. Service Registry

Whenever a user wants to use a service with blocks to generate services, those services need to

registered from our Service Repositories first and later the watcher watches on those services.

3.3. Watcher

Watcher does the obvious thing related to its name. It always watches the Service Registry table

to check whether there is any new service or not. If there is a new service arrives then it calls some

other pointers like Block Generator, Service Creator, Interface Creator, Service Middleware etc.

We can call it a simple intelligent agent which just watches over a component and if it finds any

changes on the components then it notifies other respective components to avail all the services.

Other’s additionally call their own respective block engenderer, accommodation engenderer and

etc.

3.4. Block Generator

Block Generator is responsible for generating blocks for different kinds of services like api,

mailbox, sensor, actuator or web services. These blocks also have the interactions with user

© 2019 Daffodil International University 18

whereas in api service the api blocks will have some extra input field. And the other like web,

sensor, actuator or mailbox has their own respective inputs because we gave the user ultimate

flexibility. These all are part of the previous groups works and I didn’t alter those work.

3.5. Service Creator

Service Generator will be responsible for generating services against the blocks we created like

api blocks will have api services or sensor blocks will have its own sensor service and so as web

blocks will have web services. And all these services constructed with the help of micro service

architecture.

3.6. Interface Creator

Here by only interface we tried to meant the User Interface. Two types of interfaces are available

in our system. One is general blocks which needs inputs and interface will help to take inputs from

the end user and another is conditional block which don’t need any inputs so we don’t need

interface for those blocks and conditional blocks just displays the output message or result.

3.7. Service & Interface Connector Creator

Service and interface connector creator will only be called whenever it gets positive result from

watcher like a new service has arrived. After that it generates some functions against those service

and those functions will later be used for data communication.

© 2019 Daffodil International University 19

3.8. Meta Blocks

 Meta Blocks are responsible for creating a block which will have additional blocks into it. Like

combining several blocks into a block. Our system has two meta block as default. One is API

Creator which creates api by taking necessary inputs and another one is interactive Block

Generator which will try to generate Interactive Application.

3.9. Interactive Application Creator

Interactive application can only work with several services. We provided some place where user

can drag and place their services to make an interactive application. User can create several

interactive applications there is boundary on it but at a time they can run or use only one interactive

application. After making an interactive application with several services user just need to press

create app button which will automatically create the necessary interfaces and connectors to run

the interactive application.

3.10. Generated Blocks & Services

By Generated Blocks and Services, we meant that there will be some blocks related to API, sensor,

actuators and Mailbox. And the input of these blocks and services depends on the end user. End

user can use single or multiple services to make a composition.

© 2019 Daffodil International University 20

3.11. Other Blocks

There are some other blocks like conditional blocks, mathematical term blocks, blocks related to

email like [email read, label, search]. But most of these will be the default block provided by

Blockly Library and these block has their own structure which cannot be changed. And user may

have the permission to interact with them not to write them.

3.12. Composite Composition

A composite (Imtiaz-Ud-Din, K. M., 2011) composition is created by adjoining multiple tasks or

services. If we want to elaborate Service Composition Concepts and Notation then we can say it

is a composite combination can be made of triggers, services, conditions or/and queries.

3.13. Orchestration Service

This component helps to navigate between sensor or actuator and user. Whenever the value of a

sensor or actuator changes based on the end users need our Orchestration Service will fire and it

will change the value for sensor or actuator.

3.14. End-User Development Interface and Code Generation Engine

End-user development interface refers to the term (Graphical Interface). Which will be helpful for

an end user to interact with our system. And which will be much easier to understand because all

the things will be clearer when there is a good development interface. End-user can customize their

© 2019 Daffodil International University 21

own services as per their needs and can use i.e. used visual programming language Blockly which

we find more catchable by the end-user.

© 2019 Daffodil International University 22

PROPOSED ARCHITECTURE

Above we describe what our previous groups did and what they offered the end-user. But there was a

place where the previous architecture cannot function properly. We are talking here about a continuously

adaptive environment. Which will always react in accordance with the latest information from the

environment. A continuous adaptive environment will always respond to the environment changes. Our

architecture looks like,

Figure 3 . Proposed Architecture

© 2019 Daffodil International University 23

Figure 3 shows a complete picture about our proposed architecture. In Figure 4 we will try to demonstrate

a workflow about how our proposed architecture works within their own components.

Figure 4 . Proposed Architecture Only Present Work

© 2019 Daffodil International University 24

Following are some of the steps that our architecture follows to fulfill the scenario problem.

Steps here are:

 At the very first step Application Manager receives the user composition. After that

Application Manager generates a unique application id for that composition. And finally

it sends two request, one is to Context Manager to register the application along with

application id and code and another one is to Variant Manager along with same

application id and code.

 Secondly Context Manager does four important things. First one is to register an

application with application id and code. Second one is it can unregister an application

with further request. Third one and most important one is it reads the code and finds out

the different contexts and store those contexts. Finally, it can watch over those contexts

to receive required context values only if Adaptation Engine requests for.

 Third step is into Variant Manager. Variant Manager has also four important jobs. The first

one is, it can register an application with application id and code. Second one is can

unregister an application. Third one and which is an important one and that is, it separates

conditional service and normal services by reading the code. Lastly it provides all the

conditional services and non-conditional services to Adaptation Engine as per request.

 In fourth step Adaptation Engine receives an application id along with the code. It creates

a mapped value where [context, required context and conditional service] these three

components are mapped against each other. Later it requests context manager to get

context values and variant manager to get all the variants. The request between

© 2019 Daffodil International University 25

Adaptation Engine and Context Manager remains in a continuous process. Finally,

Adaptation Engine picks the right variant from the mapped value based on the context

and passes that variant to Runtime Engine for further processing.

 Runtime Engine receives the variant from Adaptation Engine. Runtime engine then

extracts that variant and make that variant executable. And finally it executes that variant

and gets the result.

In the following page we have added more elaborate description for each component. And in

addition we have added this working flow in Figure7.

© 2019 Daffodil International University 26

3.15. Application Manager

Application manager does things as its name suggest. It receives the composition that user created.

It generates some unique id for each application that it receives in order to track the application.

After id generation it does two more things. One is it request the Context Manager to register the

application with its id and services.

Another one is it request another registration to Variant manager with application id and some

code. Which will later use by Adaptation Engine. Finally, it passes application id and code to

adaptation engine so that adaptation engine may perform its query. We have attached how our

Application Manager looks like in Appendix A.

3.16. Context Manager

Context Manager always done two major things. One is to register the services along with the

application id that it gets from Application Manager. And the other thing is, it will watch over that

registered service always and will return the current context value to Adaptation Engine. And in

addition it can unregister some applications contexts. There is a code snippet in Appendix C where

we showed how Context Manager will work.

© 2019 Daffodil International University 27

3.17. Variant Manager

Variant Manager does two important things. The first one is, it registers with the user service

composition and application id that it gets from Application Manager. And the second things it

does, is it calculate how many compositions can be occurred based on the number of Conditional

Step and Step and returns those variant to Adaptation Engine. It also has the unregister

functionality to unregister an application and Variant manager can unregister a service only when

end-user request to do so. The role of variant manager along with application manager and

adaptation engine is mentions in Appendix D.

3.18. Adaptation Engine

Adaptation Engine receives application id and user used composition from Application Manager.

Later it calls Context Manager and Variant Manger parallels with the application id. Later Context

Manager and Variant Manager provides the respective context values and variants. After the

context and variant retrieving process Application Manager selects the right variant based on the

context and pass it to Runtime Engine. So it has relation with all the components like as

Application Manager, Context Manager, Variant Manager and Runtime Engine. Finally,

adaptation engine can unregister an application if the user wants to stop i.e. have added the

necessary steps that adaptation engine does in Appendix E.

© 2019 Daffodil International University 28

3.19. Runtime Engine

Runtime engine has only connections with adaptation engine. It receives the variant from

adaptation engine. And runtime engine has two tasks. One is make the variant executable and

second one is show the result to the end-user with the help of console. We have attached the code

snippet of runtime engine in Appendix F.

© 2019 Daffodil International University 29

CHAPTER IV EVALUATION

In this chapter we will show that our work satisfies the end-user needs to observe and adopt an

environment. According to the scenario user wants to creates a service which will have weather

and some other services and we will shoe here that the composition that he or she used will

adopt while the environment changes.

End-User can user multiple services that are currently available to engage his/her needs.

Figure 5 . User making composition with services

© 2019 Daffodil International University 30

User provides his/her composition based on the needs and system provides the output on the

result section.Following are the two different result for two different context.If the weather is

sunny then we will get the following result.

Figure 6 . News Result for Sunny

And here is the news result for rainy weather.

Figure 7 . News result Rainy

© 2019 Daffodil International University 31

Following figure is the visual representation about what we mentioned and discussed in our

architectures each step thing.You can have a visual look on it that provides how everything goes

through starting from Application Manager to Runtime Engine.

Figure 8 . Working flow of each part

© 2019 Daffodil International University 32

Following attached image shows the output of continuous adaptation of a service. We used here

weather service as our context and we used a newspaper service which has that condition that

in order to read newspaper the weather should be rainy but in here we get the weather status

as Clear so newspaper service does not execute.

Figure 9 . Continuous adaptation of services

© 2019 Daffodil International University 33

CHAPTER V CONCLUSION

In this work we tried to build an environment where user can satisfy his/her needs based on his

comfort zone. All the previous work that we have analyzed none of them provided the user an

adaptive environment. User has less comfort on those systems because every time the environment

changes the user need to again customize his service. But we tried to build an architecture and we

showed the evaluation of that architecture on the user scenario problems. By adaptive environment

we meant if any changes happen on the environment the system will adopt it and provide the actual

result.

And the other thing is there are no system which has the capability to adopt environment changes

with IoT sensor and actuators. Our architecture provides that service too. User can plug and play

with his/her sensors and actuators and have them adopt on the environment changes.

5.1. Limitation

We have done some work on the purpose that we have started with. Yet there are some limitations

in this work. Our system yet cannot get the user input while adoption the environment changes. So

a user interaction engine will be needed to fulfill this limitations, though we had less time to

establish our work.

© 2019 Daffodil International University 34

5.2. Future Work

In future there will be some good scope to work on. One is to execute multiple application and

adopt those application in the environment and another scope will be the ultimate user

integration engine.

© 2019 Daffodil International University 35

REFERENCES

Imtiaz-Ud-Din, K.M. (2011). Collaboration based intelligent service composition at runtime by end users.

Kurt Geihs, Michael Wagner (ICCASA 2012) Context-Awareness for Self-Adaptive Applications in

Ubiquitous Computing Environments.

Francis M. David, Bill Donkervoet, Jeffrey C. Carlyle, Ellick M. Chan, Roy H. Campbell (OTM 2007).

Supporting Adaptive Application Mobility.

Ahmed Elkhodary, Jon Whittle (2007). A Survey of Approaches to Adaptive Application Security

Ortin, F. and O’Shea, D. (2018). Towards an Easily Programmable IoT Framework Based on Micro

services. Journal of Software, 13(1), pp.90-102.

Tammy R. Fuller, Gerald E. Deane (FTC-2016). IoT applications in an adaptive intelligent system with

responsive anomaly detection.

Salman Taherizadeh, Andrew C. Jones, Ian Taylor, Zhiming Zhao, Vlado Stankovskia (2018). Monitoring

self-adaptive applications within edge computing frameworks: A state-of-the-art review.

Yousef Abuseta ((IJCSSE-2018). Towards an MDD Based Framework for Self Adaptive IoT Applications

Development.

Young-Joo Kim, Jong-Soo Seok, YungJoon Jung, and Ok-Kyoon Ha (2016). Light-Weight and Versatile

Monitor for a Self-Adaptive Software Framework for IoT System.

© 2019 Daffodil International University 36

APPENDIX A

Application Manager which will manage all the incoming and outgoing communication.

class ApplicationManager:
 code = ""
 app_id = ""

 def __init__(self):
 print("in init")

 def get_app(self, code):
 code = code
 print(code)
 app_id = generate_id()
 ContextManager.register(ContextManager, app_id, code)
 VariantManager.register(VariantManager, app_id, code)
 AdaptationEngine.set_details(AdaptationEngine, app_id, code)
 def generate_id():
 app_id = app_name + "" + str(random.randint(1, 100))
 print('application_id::'+app_id)
 return app_id

APPENDIX B

Regular expressions which will be used to find out conditional step and non-conditional step from

a code snippet.

© 2019 Daffodil International University 37

regex_if_true = re.compile(r"^if\strue:|^if\sTrue:$", re.MULTILINE)
regex_if_false = re.compile(r"^if\sfalse|^if\sFalse:$", re.MULTILINE)
regex_service = re.compile(r"(if).*?:$", re.MULTILINE)
regex_step_only = re.compile(r".*?", re.MULTILINE)

APPENDIX C

Context Manager which has the responsibility to find out the context and later watch those

contexts required values and pass those values to Adaptation Engine as per request.

© 2019 Daffodil International University 38

class ContextManager:
 code = ""
 app_id = ""
 context_list = []

 def __init__(self):
 print("in init")

 def register(self, app_id, code):
 self.code = code
 self.app_id = app_id
 print("-------------------Context Manager------------------")
 print("Context registered with application id :> " + app_id)
 self.find_context(self)
 print("-------------------Context Manager------------------")
 return

 def unregister(self):
 self.code = ""
 self.app_id = ""
 self.context_list = []
 print("Unregistered >> Context Manager")

 def find_context(self):
 new_lines = len(self.code.split('\n'))
 print("New lines ===>> " + str(new_lines))

 # Split string into segments based on new line
 code_list = self.code.splitlines()
 for item in code_list:
 print("Item :> " + item + " Space count ==>> " + str(item.count(' ')))
 if len(code_list) > 1:
 for i in range(len(code_list)):
 item_code = code_list[i].strip()
 if item_code.startswith('if'):
 if regex_if_true.match(item_code):
 match_str = regex_if_true.match(item_code.strip())
 print('matched_str[if_true]::' + match_str.group()[2:-1])
 context = match_str.group()[2:-1]
 self.context_list.append(context)
 print('separated_service=>>>' + context)
 elif regex_if_false.match(item_code):
 match_str = regex_if_false.match(item_code.strip())
 print('matched_str[if_false]::' + match_str.group()[2:-1])

© 2019 Daffodil International University 39

 context = match_str.group()[2:-1]
 self.context_list.append(context)
 print('separated_service=>>>' + context)

 elif regex_service.match(item_code):
 match_str = regex_service.match(item_code.strip())
 print('matched_str[service]::' + match_str.group()[2:-1])
 context = match_str.group()[2:-1]
 self.context_list.append(context)
 print('separated_service=>>>' + context)
 elif regex_step_only.match(item_code):
 match_str = regex_step_only.match(item_code.strip())
 print('matched_str[step_only]::' + match_str.group())
 context = match_str.group()[2:-1]
 self.context_list.append(context)
 print('separated_service=>>>' + context)
 else:
 print("Does not match")
 else:
 print("No match found.")
 elif len(code_list) == 1:
 print("Only One Statement")
 return

 def watch_context(self):
 while True:
 time.sleep(2)
 for context in self.context_list:
 print("Watching ::::: "+context)
 return

© 2019 Daffodil International University 40

APPENDIX D

Variant Manager which calculates and separates conditional service and non-conditional service

and then pass it to Adaptation Engine as per its request.

© 2019 Daffodil International University 41

class VariantManager:
 code = ""
 app_id = ""
 conditional_services = []
 services = []
 variants = {}

 def __init__(self):
 print("in init")

 def register(self, app_id, code):
 self.code = code
 self.app_id = app_id
 print("-------------------Variant Manager------------------")
 print("Variant Registered with application id :> "+app_id)
 self.extract_variant(self)
 self.make_variant(self)
 print("-------------------Variant Manager------------------")
 return

 def unregister(self):
 self.app_id = ""
 self.code = ""
 self.services = []
 self.conditional_services = []
 self.variants = {}
 print("Unregistered >> Variant Manager")

 def extract_variant(self):
 # Split string into segments based on new line
 code_list = self.code.splitlines()
 for item in code_list:
 print("Item :> " + item + " Space count ==>> " + str(item.count(' ')))
 if len(code_list) > 1:
 for i in range(len(code_list)):
 if code_list[i].strip().startswith('if'):
 item_code = code_list[i+1].strip()
 print('matched_str[step_only]::' + item_code)
 conditional = item_code
 self.conditional_services.append(conditional)
 print('separated_service=>>>' + conditional)
 else:
 print("No match found.")
 elif len(code_list) == 1:
 print("Only One Statement")
 return

© 2019 Daffodil International University 42

 def make_variant(self):
 length_cs = len(self.conditional_services)
 print("Length of CS :::: "+str(length_cs))

 for index in range(length_cs - 1, -1, -1):
 print(""+self.conditional_services[index])
 list_of_1_0 = list(map(int, str(format(index, '02b'))))
 print(str(list_of_1_0))
 if all(value == 0 for value in list_of_1_0):
 print("All Values Are Zero,,So No CS")
 list_of_cs_and_s = self.services.copy()
 self.variants['variant' + str(index)] = list_of_cs_and_s
 elif all(value == 1 for value in list_of_1_0):
 print("ALl Values are One,, So ALl CS")
 list_of_cs_and_s = self.services.copy()
 for item in self.conditional_services:
 list_of_cs_and_s.insert(len(list_of_cs_and_s), item)
 self.variants['variant' + str(index)] = list_of_cs_and_s
 else:
 list_of_cs_and_s = self.services.copy()
 for value in list_of_1_0:
 if value == 1:
 index_ = list_of_1_0.index(value)
 cs_ = self.conditional_services[index_]
 list_of_cs_and_s.insert(len(list_of_cs_and_s), cs_)
 self.variants['variant' + str(index)] = list_of_cs_and_s
 for key, value in self.variants.items():
 print(key, 'corresponds to', value)
 return

 def get_variant(self):
 return self.variants

© 2019 Daffodil International University 43

APPENDIX E

Adaptation Engine plays a good role with the help of context manager and variant manager. It collects

variants from variant manager. And it requests context manager to watch over the context continuously.

Then it also checks which variant to select based on the context and it finally passes the selected variant

to runtime engine to get executed. We have attached the code snippet in the next page.

© 2019 Daffodil International University 44

class AdaptationEngine:
 app_id = ""
 code = ""
 mapping_dict = {}

 def __init__(self) -> None:
 super.__init__()

 def set_details(self, app_id, code):
 self.app_id = app_id
 self.code = code
 print("-----------------Adaptation Engine-------------")
 self.mapper(self)
 #get_context()
 #request_variant()
 print("-----------------Adaptation Engine-------------")
 return

 def mapper(self):
 new_lines = len(self.code.split('\n'))
 print("New lines ===>> " + str(new_lines))

 # Split string into segments based on new line
 code_list = self.code.splitlines()
 for item in code_list:
 print("Item :> " + item + " Space count ==>> " + str(item.count(' ')))
 if len(code_list) > 1:
 for i in range(len(code_list)):
 item_code = code_list[i].strip()
 if item_code.startswith('if'):
 if regex_mapper.match(item_code):
 print("Matched code :::>>>:::: "+item_code)
 context_with_required_value_cs = item_code.split("==")
 print("Context :::: "+str(context_with_required_value_cs))
 cs_ = code_list[i+1].strip()
 print("Conditional service _cs :::: "+cs_)

context_with_required_value_cs.insert(len(context_with_required_value_cs), cs_)
 print("context_with_required_value_cs ::
"+str(context_with_required_value_cs))
 self.mapping_dict["mapped_value"+str(i)] =
context_with_required_value_cs
 for k, v in self.mapping_dict.items():
 print(k, ':::::corresponds to::::', v)
 return

def request_variant():
 variant["variant"+str(random.randint(1,100))] = VariantManager().get_variant()
 return

def get_context():
 for index in range(len(ContextManager().watch_context())):
 context_values.insert(index, ContextManager().watch_context()[index])
 return

© 2019 Daffodil International University 45

APPENDIX F

Runtime engine catch the variant that passes by Adaptation Engine and executes that variant

and finally print the result.

class RuntimeEngine:

 variant = ""

 def __init__(self) -> None:
 super.__init__()

 def get_and_set_code(self, variant):
 self.variant = variant
 return

 def execute_code(self):
 while True:
 time.sleep(2)
 code_ast = ast.parse(self.code)

 init_ast = copy.deepcopy(code_ast)
 init_ast.body = code_ast.body[:-1]

 last_ast = copy.deepcopy(code_ast)
 last_ast.body = code_ast.body[-1:]

 exec(compile(init_ast, "<ast>", "exec"), globals())
 if type(last_ast.body[0]) == ast.Expr:
 return eval(compile(convert_expr_expression(last_ast.body[0]),
"<ast>", "eval"), globals())
 else:
 exec(compile(last_ast, "<ast>", "exec"), globals())

 def print_result(self):
 result = self.execute_code(self)
 print(result)

def convert_expr_expression(expr):
 expr.lineno = 0
 expr.col_offset = 0
 result = ast.Expression(expr.value, lineno=0, col_offset=0)

 return result

