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ABSTRACT 
 

This study aimed to identify significant gene expression profiles of the human lung epithelial 

cells caused by SARS-CoV-2 infections. We performed a comparative genomic analysis to 

show genomic observations between SARS-CoV and SARS-CoV-2. A phylogenetic tree has 

been carried for genomic analysis that confirmed the genomic variance between SARS-CoV 

and SARS-CoV-2. Transcriptomic analyses have been performed for SARS-CoV-2 infection 

responses and pulmonary arterial hypertension (PAH) patients’ lungs as a number of patients 

have been identified who faced PAH after being diagnosed with COVID-19. Gene expression 

profiling showed significant expression levels for SARS-CoV-2 infection responses to human 

lung epithelial cells and PAH lungs as well. Differentially expressed genes (DEGs) 

identification and integration showed concordant genes (SAA2, S100A9, S100A8, SAA1, 

S100A12, and EDN1) for both SARS-CoV-2 and PAH samples including S100A9 and 

S100A8 genes that showed significant interaction in the Protein-protein interactions (PPIs) 

network. Extensive analyses of Gene ontology and signaling pathways identification provided 

evidence of inflammatory responses regarding SARS-CoV-2 infections. The altered signaling 

and ontology pathways that have emerged from this research may influence the development 

of effective drugs especially for the people with pre-existing conditions. Identification of 

regulatory bio-molecules revealed the presence of active promoter gene of SARS-CoV-2 in 

TF-miRNA coregulatory network. Predictive drug analyses provided concordant drug 

compounds that are associated with SARS-CoV-2 infection responses and PAH lung samples 

and these compounds showed significant immune response against the RNA viruses like 

SARS-CoV-2, which is beneficial in therapeutic development in the COVID-19 pandemic.  
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CHAPTER 1: INTRODUCTION 
 

1.1 Background: 
 

COVID-19 is caused by a virus called SARS-CoV-2, which belongs to the 

Coronaviridae family (Gorbalenya, 2020). The widespread behavior of this virus has 

immensely influenced the death rate and proved it as the most internecine global 

epidemic of the 21st century. Angiotensin-converting enzyme 2 (ACE2), which is used 

by SARS-CoV-2 forms an entrance in host human cells and binds with human ACE2 

that eventually leads to the intense spread of this lethal virus among human (Walls, 

2020). Spike protein is considered to be a potential therapeutic target against SARS-

CoV-2 (Chi X, 2020). 

The first severe case of COVID-19 that led to death eventually was indicated on January 

11, 2020 (Al-Awadhi, 2020). As of September 10, 2020, the number of confirmed 

COVID-19 cases all over the world is 27,688,740 including 899,315 deaths 

(https://covid19.who.int/). A large proportion of the total patients of COVID-19 are 

male (54.3%), where the mortality rate of the elderly patients is higher (15%), compare 

to younger patients (Nain, 2020). Due to the rapid spread of COVID-19, the pace of 

vaccine production has not been able to keep pace with demand. The transference of 

lethal SARS-CoV-2 from one person to another mostly occurs through respiratory 

droplet transmission (Mackenzie, 2020). The prevalence of SARS-CoV-2 is increasing 

because pre-symptomatic infectious diseases are difficult to detect (Ferretti, 2020). 

Pulmonary arterial hypertension (PAH) is considered to be a progressive disorder and 

causes right heart affliction and the arteries of human lungs get affected by PAH as well 

(Schermuly, 2011). Dyspnea, fatigue, chest pain are among the major symptoms of 

PAH, which is significantly associated with lung vascular scheme and causes premature 

death (Lai, 2014). Although early diagnostic therapy can certainly reduce the death rate 

of PAH (Natarajan, 2011). COVID-19 has caused many people to suffer from cardiac, 

age-related, and pulmonary diseases, including pulmonary arterial hypertension (Horn, 

2020). Meanwhile, researchers have produced results that demonstrate the activity of 

SARS-CoV-2 in promoting pulmonary microthrombi, vascular leak through different 

ways including inflammation, damage of DNA, and mitochondrial dysfunction (Chen, 

2020). Based on these studies, PAH can be considered as a major risk factor of COVID-

19. Due to the mentioned reasons, it is revealed that there may be a number of 

pathological compatibility between COVID-19 and PAH. To get an idea of this 

compatibility we have tried to identify altered pathways that are common for SARS-

CoV-2 infections and PAH-affected samples. To accomplish these tasks, large-scale 

transcriptomic datasets have been used in this research. 

Large-scale microarray datasets are important for uncovering gene expression based 

biological information (Wichert, 2004). High-throughput sequencing has immensely 

influenced the advancement of biomedical research by contributing to the rapidly 

growing genome sequencing field. High-throughput sequencing-based analysis has 

already been implemented on severe acute respiratory syndrome coronavirus (SARS-

CoV) that has also produce remarkable gene expression results (Irigoyen, 2016). 
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The significance of the research is that we performed the largest comparative and 

transcriptomic study against SARS-CoV-2 infection responses to human lung epithelial 

cells. The potential biomarkers we have been able to figure out have proved the 

significance in terms of appropriate immune responses. The following analyses attempt 

to find cell informative pathways and drug compounds based on the transcriptomic 

analysis on SARS-CoV-2 and PAH. But initially, the genomic analysis was introduced 

to identify genomic differences of SARS-CoV and SARS-CoV-2 effect on Homo 

sapiens. This genomic level study eventually allows the research to put emphasis on 

SARS-CoV-2 and the major risk factors. As a result, two datasets (GSE147507 and 

GSE117261) were selected for the transcriptomic level study. Hence, the research went 

through the identification process of finding out differentially expressed genes (DEGs) 

from GSE147507 and GSE117261. However, similar DEGs were conducted as input 

data for a further molecular level study that includes Gene ontology (GO) terms 

identification and predictive analysis on cell informative pathways. The visualization 

of the Protein-protein interactions (PPIs) network is regarded as the focal point of the 

analysis as hub nodes and significant modules were identified from the PPIs. Herein, 

transcriptional regulators are also traced based on the similar DEGs of GSE147507 and 

GSE117261. Finally, potential drug compounds are suggested. 

 

 

1.2 Motivation of the Research: 
 

The study of COVID-19 is the most essential research in the world today. The outbreak 

of the SARS-CoV-2 virus appear to be exacerbated during the time period of last two 

years. The principal target of this catastrophic virus is the human respiratory system. 

This is why in our research we try to see its compatibility with Pulmonary Arterial 

Hypertension disease. A number of current studies have shown a similarity between the 

SARS-CoV-2 virus and PAH, which has made us more interested in revealing the link 

between the two diseases and the solution in terms of bioinformatics study. Spike 

protein of SARS-CoV-2 virus which enters the host body and helps in the transmission 

of the virus to the host body. The most frightening thing is that as soon as it enters the 

host body, it does not show any risk symptoms other than a few common symptoms. 

Infected patients with this disease show no symptoms other than mild problems like fever, 

chills, headache, sore throat, and cough are seen at an early stage. Symptoms are associated 

with final phases, but then there is no prior system to treat the patient as any substantial 

vaccine has not yet been developed. However, the vaccine that has been developed is 

still in a face of crisis as the demand is extremely high. 
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1.3 Problem Statement: 
 

Since learning about previous similar works, I've noticed some weaknesses, which may 

take this to the next level of the study. 

 Limited volumes of data is used for COVID-19 analysis. 

 No work related to SARS-CoV-2 and PAH has been done yet. 

 Unable to generate Genomic analysis. 

 Did not work with Transcriptomic analysis.  

 No computational biology approach has been done yet. 

1.4 Research Question: 
 

A research question is an answerable inquiry into a specific problem or topic. In a 

research, this is the initial step. Once, an understanding of what to explore, the 'initial 

step' means that the research topic is the first important step in the research. Some 

questions are explored. The list of questions is given below: 

 How to collect the data set for selected diseases? and where? 

 How to mine the data set? 

 How to show difference in between SARS-CoV and SARS-CoV-2 viruses? 

 How to identify Differentially Expressed genes? 

 How to analyze the Topological Properties in finding significance of PPI 

network? 

 How to add the references? 

1.5 Research Objectives: 
 

The key goals of this thesis are given below: 

 Identify the Differences between SARS-CoV and SARS-CoV-2. 

 Perform transcriptomic and genomic analyses. 

 Generate PPI diagram. 

 Apply topological algorithm on the PPI network. 

 Predict drug compounds in terms of the hub nodes of PPI network. 

1.6 Research Scope: 
 

The study's scope applies to the areas covered by the research. The scopes are given 

below: 

 Downloading larger data set. 

 Differentially expressed genes identification using R. 

 PPI network. 

 Analyzing Topological Properties. 

 Gene ontology and Pathway Identification. 

 Prediction of potential therapeutic drugs. 

1.7 Thesis Organization: 
 

In a certain section, the whole paper is organized. Where the relevant analysis is 

discussed in Section 2 to extract the conceptual framework. The source of supporting 
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Proof of arguments to not only validate the statement or theory, but also serve as a basis 

for the results. The Proposed methodology is presented in the section 3. I have clarified 

my results and final outcome in section 4 with the support of some graphs and network. 

In that section, all the outcomes have been described. A small summery of the whole 

research is presented as conclusion in section 5. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Definition of the Thesis Topic or Area: 
 

Computational biology and bioinformatics are interdisciplinary field in which 

computational techniques are created and applied in order to analyze vast biological 

data sets, including genetic sequences, cell populations or protein samples, to allow new 

hypotheses or to explore new biology. In molecular biology and medicine, 

bioinformatics is the application and implementation of computer science techniques to 

solve problems. There is a reliable healthy workplace potential for the next several years 

with the success and faster growth in this area. A computational biologist has a very 

successful research profile in the research and innovation field of biotech, 

pharmaceutical, and analytical software farms. 

2.2 The Direction of Research: 
 

The present study attempted to examine the relationship between SARS-CoV-2 and 

PAH. Differentially expressed genes among the selected diseases are identified using 

the method of computational biology. The top 6 weighted genes are selected from 

common gene results. It establishes and analyzes PPI, Topological Properties, Hub 

nodes identification and module analysis. 

2.3 Theoretical Framework: 

 

In this study, PPI network is discussed. Protein-protein interactions are incredibly 

efficient biological connections formed between two or more protein molecules as a 

result of the interaction that involve electrostatic forces, hydrogen bonding and the 

hydrophobic effect guided by biological pathways. Based on PPI network, topological 

properties are produced through Cytoscape tool. TF-miRNA coregulatory network is a 

significant mechanism in deciding the activity, delivery, rate of excretion, and toxicity 

of drug molecules is the binding of drugs to proteins in the blood, serum or plasma. The 

TF-miRNA coregulatory network is also developed in Cytoscape. 

2.4 Resources: 
 

In this research, COVID-19 and PAH are selected. All genes are obtained from GEO 

database (NCBI), based on the diseases. NCBI is a database which is trusted. The genes 

that have been founded substantially differentially expressed are obtained for analysis. 

All the genes have been identified as Homo sapiens. The tools that are used in the whole 

analysis are all downloaded from the internet. 
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CHAPTER 3: METHODOLOGY 
 

The experimental workflow of the ongoing research is presented in Figure 1. 
           

Figure 1: The workflow of current analysis. Genomic differences between SARS-CoV 

and SARS-CoV-2 are visualized through a phylogenetic analysis. Two datasets 

GSE147507 and GSE117261 are collected according to SARS-CoV-2 infection in human 

lung epithelial cells and PAH lung, respectively. Differentially expressed genes (DEGs) 

were identified using R programming language and similar DEGs were identified from 

total DEGs of both the datasets. Corresponding similar DEGs were used to perform 

transcriptomic analyses. The gene expression profiling was performed for both the 

datasets and Gene ontology (GO) terms, cell informative pathways, PPIs network, Hub 

gene identification and TF-miRNA based analyses were performed. According to the 

corresponding similar DEGs, drug compounds were predicted. 

3.1 Comprehensive genomic level phylogenetic study 
 

Comparison between SARS-CoV and SARS-CoV-2 at the viral genomic level is generated with 

the collection of a number of genome sequences. The sequences were gathered from the Virus 

Pathogen Database and Analysis Resource (ViPR). Total 32 sequences were analyzed where 

SARS-CoV and SARS-CoV-2 both contain 16 sequences respectively. The sequences for SARS-

CoV: JN247391, JN247392, JN247393, JN247394, JN247395, JN247396, JN247397, 

GU553363, GU553364, AY274119, MK062179, MK062180, MK062181, MK062182, 

MK062183, and MK062184. Besides, sequences for SARS-CoV-2: MT008022, MT008023, 

MN988668, MN988669, LC521925, LC522972, LC522973, LC522974, LC522975, 

MN938385, MN938387, MN938384, MN938388, MN938386, MN938389 and MN938390. 

According to the sequences, a PHYLIP formatted comprehensive phylogenetic guided tree was 

designed using Clustal Omega. Clustal Omega contains significant features and exploits 

comprehensive information based on sequence alignments (Sievers, 2011]. The phylogenetic tree 

was re-designed using the interactive tree of life (iTOL). iTOL provides graphical representations 

of numerous phylogenetic trees and the representations can be customized (Letunic, 2007). 

3.2 Details information of the datasets 
 

Last GSE147507 and GSE117261 datasets were assembled from the Gene Expression 

Omnibus (GEO) database (Clough, 2016). GEO database provides gene expression-
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based analysis, which is under the platform of National Center for Biotechnology 

Information (NCBI) (Edgar, 2002). GSE147507 dataset interprets host responses to 

SARS-CoV-2 and transcriptional responses in lung epithelium cells. GPL18573 

Illumina NextSeq 500 (Homo sapiens) platform is utilized for GSE147507 to retrieve 

the analysis of RNA sequence. The contributor of the GSE147507 dataset was Blanco-

Melo D et al. However, the GSE117261 dataset represents transcriptomic analysis and 

systems biology representation on PAH lung. GPL6244 platform was used for 

GSE117261 dataset, which is [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 

[transcript (gene) version]. GSE117261 consists of a total of 83 samples that include 

PAH lung: 58 samples and control lung: 25 samples. 

3.3 Data filtering and retrieval of DEGs, and identification of common DEGs 

between SARS-CoV-2 and PAH 
 

The Transcriptomic datasets GSE147507 for SARS-CoV-2 infection in human lung 

epithelial cells and GSE117261 for PAH lung is used for this research. The initial 

preprocessing phase of the research goes through the retrieval of DEGs for both 

datasets. Identification of DEGs for the dataset GSE147507 is achieved with the assist 

of the R programming language. Herein, limma (Smyth, 2005) and DESeq2 (Love, 

2014) packages of R programming language are used for obtaining DEGs for the 

GSE147507 dataset. Absolute log2 fold change >1.0 and an adjusted p-value <0.05 

were considered as cutoff criteria to determine significant DEGs from the GSE147507 

dataset. GEO2R, which is a web-based platform for the analysis of microarray datasets 

is used for the identification of DEGs for the GSE117261 dataset. GEO2R performs the 

analysis in a comparative manner by comparing infected samples vs controlled samples 

and the comparison is generated through limma and GEOquery (Davis, 2007) packages 

from Bioconductor (Gentleman, 2004) project in the platform of R programming 

language. Benjamini-Hochberg methodology was implemented for GSE147507 and 

GSE117261 datasets with the purpose of the false discovery rate (FDR) controlling 

(Benjamini, 1995). Similar DEGs were also acquired using the R programming 

language. 

3.4 Gene ontology and cell informative pathways analysis 
 

Gene Gene set enrichment analysis (GSEA) is generally a computational and statistical 

methodology that defines whether a set of determined genes show statistical 

significance in different biological conditions (Subramanian, 2007). The resources of 

Gene Ontology (GO) provides structural and computational information considering 

the gene product based functions (Podder, 2020). GO can be categorized into three 

subsections including molecular function, biological process, and cellular component 

for annotation of gene products (Doms, 2005). GO terms for the current study are 

obtained using Enrichr (https://amp.pharm.mssm.edu/Enrichr/) platform. Enrichr is a 

web-based program that contains large gene sets consisting of 102 libraries and 

performs experiments that are genome-based (Kuleshov, 2016). For cell informative 

pathway analysis KEGG (Kanehisa, 2000), Reactome (Fabregat, 2018), WikiPathways 

(Slenter, 2018), and BioCarta databases are employed. The results from the databases 

are also implemented using the Enrichr platform.   
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3.5 Designing of Protein-protein Interactions (PPIs) network 
 

Prominent information about the functions of protein is achieved with the analysis of 

protein interactions, which is regarded as the primary step in drug discovery and 

systems biology (Sikic, 2009). The number of complex biological processes are 

determined with the advanced study of Protein-protein interactions (PPIs) networks 

(Pagel, 2005). Identified similar DEGs for SARS-CoV-2 and PAH lung, were provided 

as an input in InnateDB (Breuer, 2013) using the NetworkAnalyst 

(https://www.networkanalyst.ca/) web-based platform. Numerous omics data analysis 

is achieved through a visual representation of NetworkAnalyst platform including 

complex PPIs network (Xia, 2015). The network was further designed using Cytoscape 

(https://cytoscape.org/). Cytoscape software can be regarded as a prominent source in 

integrating protein-interactions and genetic-interactions (Shannon, 2003). 

3.6 Establishment of the topological algorithm on the PPIs network and 

detection of hub nodes 
 

Hub nodes generally defined by the highly-interconnected nodes in a large-scale 

complex PPIs network (Hsing, 2008). The hub nodes for the current research are 

determined by the degree topological algorithm. The degree algorithm is applied to the 

PPIs network using a plugin of Cytoscape software, which is cytoHubba 

(http://apps.cytoscape.org/apps/cytohubba). cytoHubba is a comprehensive plugin of 

Cytoscape software that consists of 11 topological algorithms to rank the nodes in a 

specific network (Chin, 2014). In the areas where the hub genes are highly-

interconnected, these areas are regarded as prominent modules from the PPIs network. 

Distinguishing the modules from the PPIs network will provide better visualization of 

the hub nodes in separated modules. For specific module analyses for the corresponding 

PPIs network is generated by ClusterViz (http://apps.cytoscape.org/apps/clusterviz), 

which is also a Cytoscape plugin. Cluster identification and detection of functional 

modules from a number of networks including PPIs network, metabolic network, and 

gene network are determined by ClusterViz plugin (Wang, 2014). 

3.7 Analysis of TF-miRNA co-regulatory network 
 

RegNetwork repository was used to generate the analysis of the TF-miRNA co-

regulatory network (Liu, 2015). The miRNAs and TFs are identified from the co-

regulatory network, which is responsible for the regulation of DEGs at transcriptional 

and post-transcriptional levels. The visualization of the network was provided using 

NetworkAnalyst web-based platform. For system-level data understanding, 

NetworkAnalyst has been used as a leading bioinformatics tool as a demand of 

immensely growing gene expression-based datasets (Zhou, 2019). 

3.8 Therapeutic drug compounds prediction 
 

According to similar DEGs, a number of drug compounds are predicted from the Drug 

Signatures database (DSigDB) using the Enrichr platform. DSigDB consists of gene 

sets: 22,527, gene: 19,531 and unique compound: 17,389 (Yoo, 2015). DSigDB 

predominantly predicts drugs on gene expression based datasets and each set of the 

gene are regarded as targeted genes considering a compound. Performing genome-
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based characterization including RNA, DNA, and protein-based biomedical, 

pharmacological, and biological information can be gathered with more accuracy and 

at an inexpensive post using the Enrichr web-platform (Chen, 2013). 
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CHAPTER 4: RESULT AND DISCUSSION 
 

4.1 Genomic and phylogram differences between SARS-CoV and SARS-

CoV-2 
 

Genomic differences are observed through phylogenetic analysis of SARS-CoV and 

SARS-CoV-2. The 16 genome sequences for SARS-CoV are the sequences from the 

year 2003-2018 and the host responses were for humans. However, another 16 genome 

sequence sample for SARS-CoV-2 are the sequences from the year 2019-2020 and host 

responses were for humans as well. The result of the phylogenetic analysis shows that 

SARS-CoV and SARS-CoV-2 do not produce any clade between them but the samples 

share ancestral origin among themselves. This distinguishes SARS-CoV and SARS-

CoV-2 at the genomic level. Phylogenetic visualization of SARS-CoV and SARS-CoV-

2 genome sequences are displayed in Figure 2. 

 

 

Figure 2: Phylogram of SARS-CoV and SARS-CoV-2 that provide genomic 

differences between human coronaviruses of 2003-2018 (SARS-CoV) and 2019-2020 

(SARS-CoV-2). Two colors are implemented to differentiate SARS-CoV (purple) and 

SARS-CoV-2 (green). 
 

 

4.2 Gene expression analysis of PAH patients and SARS-CoV-2 infected 

human lung epithelial and associative cells 
 

The Form the GSE147507 dataset, 24 samples were filtered, and those samples were 

involved with SARS-CoV-2 infection to primary human bronchial epithelial cells, lung 

adenocarcinoma, and lung biopsy cells. The gene expression of the top 20 genes from 

the selected samples has been visualized in Figure 3, which provides the report of the 

high expression profile of S100A9 and KRT5 gene. Besides, among all 83 samples of 

PAH lung and healthy controls, characterization of gene expression is presented for 20 

samples including 3 healthy controls (GSM3290083, GSM3290086, and 

GSM3290085), and the remaining of them are PAH samples. Differentiating PAH 
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samples and healthy controls provide evidence of distinct groups of PAH samples 

according to hierarchical clustering and comparing both samples at RNA level provides 

different infection response of PAH sample compared to healthy controls (Figure 4A). 

A volcano plot is visualized and considered the adjusted p-value <0.05, which showed 

the up-regulated and down-regulated genes that have been identified through a 

comparative analysis between PAH samples and normal samples for the GSE117261 

dataset (Figure 4B). 

 

 
          

Figure 3: Gene expression profiling of SARS-CoV-2 infection in human lung 

epithelial cells for the top 20 genes and selected 24 samples from the GSE147507 

dataset. 

 

    Figure 4: (A) Gene expression visualization of healthy controls (GSM3290083, 

GSM3290086 and GSM3290085) and PAH samples. (B) Volcano plot shows the 

regulation of genes (up-regulated and down-regulated) for GSE117261. 
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4.3 Common DEGs identifications for further molecular analysis and ensure 

the efficiency of predictive drugs 
 

For SARS-CoV-2 infection responses to human lung epithelial cells observation, the 

DEGs of dataset GSE147507 is identified. Regarding the analysis, a total of 108 DEGs 

was found. Notably, 93 DEGs show upregulation, and the remaining 15 DEGs show 

downregulation. However, comparison analysis between PAH lung and healthy 

controls for GSE117261 shows a total of 59 DEGs of which 27 DEGs show 

upregulation and another 32 DEGs show downregulation. Comparing SARS-CoV-2 

infection responses and PAH samples, 6 DEGs (SAA2, S100A9, S100A8, SAA1, 

S100A12, and EDN1) manifest concordance, which is used for identifying GO terms 

and pathway results, PPIs network, hub nodes, and module identification and TF-

miRNA regulation and prediction of drug compounds. The concordance produced from 

the comparison between these two datasets is visualized using a Venn diagram (Figure 

5A). The heat map regarding the log fold change for the shared common genes between 

SARS-CoV-2 and PAH showed unparalleled transcriptional signature impelled upon 

SARS-CoV-2 infection (Figure 5B). The gene validation is provided according to the 

risk groups of the genes in a heat map that provides information regarding S100A9 and 

S100A8 that are highly prone to inflammation (Figure 6A). The boxplot of the risk 

group comparison also indicates that S100A9 and S100A8 are highly risked prone 

(Figure 6B).    

 

Figure 5: (A) Concordant gene identification between GSE147507 and GSE117261 

dataset that provide evidence of 6 common differentially expressed genes in between 

108 genes of GSE147507 (COVID-19) and 59 genes of GSE117261 (PAH) dataset. 

(B) Heat map according to the log fold changes for the shared common DEGs 

between COVID-19 dataset and PAH dataset. 
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Figure 6: (A) Heat map for the identification of highly risk prone nature of S100A9 

and S100A8 genes. (B) Risk group comparisons between the shared common genes of 

SARS-CoV-2 and PAH. 

 

4.4  Gene ontology and pathway analysis based on the similar DEGs 
 

NetworkAnalyst After the identification of unique DEGs aligned with SARS-CoV-2 

infection profile to lung epithelial cells, a number of databases (KEGG, Reactome, 

WikiPathways, BioCarta, and The Gene Ontology) were utilized to identify gene 

ontology terms and cell informative pathways. Among all the GO terms, the top 10 

biological processes, cellular components, and molecular functions were predicted 

(Table 1). Analysis of biological processes provides neutrophil chemotaxis, granulocyte 

chemotaxis, and regulation of inflammatory responses to SARS-CoV-2 infections 

according to the number of genes interaction. Molecular function regarded studies show 

enrichment of calcium ion binding, zinc ion binding, transition metal ion binding, and 

metal ion binding factors. Cytoplasmic vesicle lumen cellular component factor is 

significantly involved with the corresponding identified DEGs which eventually refer 

to SARS-CoV-2 infection responses to the human lung. Notably, top pathways based 

on the DEGs were allied in the current study (Table 2). IL-17 signaling pathway, TNF 

signaling pathway, Vitamin B12 Metabolism are among the top pathways that were 

identified through the analysis of the curated databases. The comparison of GO terms 

is represented in Figure 7(A) and the comparison of pathways from numerous databases 

is provided in Figure 7(B). 

 

Table 1: The association of concordant genes in GO terms and GO pathways and the 

proportional p-values. 
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Category GO ID Term P-value Genes 

 

 

 

 

 

 

 

GO 

Biological 

Process 

GO:0030593 neutrophil chemotaxis  6.563e-10 SAA1, 

S100A12, 

S100A9, 

S100A8 

GO:0071621 granulocyte chemotaxis  8.230e-10 SAA1, 

S100A12, 

S100A9, 

S100A8 

GO:1990266 neutrophil migration  9.506e-10 SAA1, 

S100A12, 

S100A9, 

S100A8 

GO:0050832 defense response to fungus 1.018e-8 S100A12, 

S100A9, 

S100A8 

GO:0050727 regulation of inflammatory 

response 

6.777e-8 SAA1, 

S100A12, 

S100A9, 

S100A8 

GO:0051091 positive regulation of 

sequence-specific DNA 

binding transcription factor 

activity 

1.915e-7 EDN1, 

S100A12, 

S100A9, 

S100A8 

GO:0050729 positive regulation of 

inflammatory response 

9.257e-7 S100A12, 

S100A9, 

S100A8 

GO:0031349 positive regulation of 

defense response 

9.647e-7 S100A12, 

S100A9, 

S100A8 

GO:0070486 leukocyte aggregation 

 

0.000001574 

 

S100A9, 

S100A8 

GO:0032103 positive regulation of 

response to external 

stimulus 

0.000001745 S100A12, 

S100A9, 

S100A8 

 

 

 

 

GO 

Molecular 

Function 

GO:0050786 RAGE receptor binding 1.259e-9 

 

S100A12, 

S100A9, 

S100A8 

GO:0035325 Toll-like receptor binding 0.000002697 S100A9, 

S100A8 

GO:0005509 calcium ion binding  0.00005490 

 

S100A12, 

S100A9, 

S100A8 

GO:0008270 zinc ion binding 0.00006592 

 

S100A12, 

S100A9, 

S100A8 

GO:0046914 transition metal ion 

binding 

0.0001507 

 

S100A12, 

S100A9, 

S100A8 

GO:0046872 metal ion binding 0.0002040 

 

S100A12, 

S100A9, 

S100A8 
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GO:0008017 microtubule binding 0.001383 

 

S100A9, 

S100A8 

GO:0015631 tubulin binding  0.002348 

 

S100A9, 

S100A8 

GO:0005507 copper ion binding 0.01224 

 

S100A12 

 

 

 

 

 

 

 

 

 

GO 

Cellular 

Component 

GO:0060205 cytoplasmic vesicle lumen 

 

2.453e-8 SAA1, 

S100A12, 

S100A9, 

S100A8 

GO:0071682 endocytic vesicle lumen 0.005388 SAA1 

GO:0005881 cytoplasmic microtubule  0.01135 

 

SAA1 

GO:0034774 secretory granule lumen  0.00007614 

 

S100A12, 

S100A9, 

S100A8 

GO:0045111 intermediate filament 

cytoskeleton 

0.02111 

 

S100A8 

GO:0005856 cytoskeleton  0.0003296 S100A12, 

S100A9, 

S100A8 

GO:0030139 endocytic vesicle 0.03197 SAA1 

GO:0005874 microtubule 0.06138 SAA1 

 

 

Table 2: The association of concordant genes in KEGG, WikiPathways, Reactome and 

Biocarta databases and the proportional p-values. 

 

Databases Pathways P-value Genes 

 

 

 

 

 

 

 

 

 

KEGG 

IL-17 signaling pathway 0.0003170 

 

S100A9, S100A8 

Renin secretion 0.02052 

 

EDN1 

Hypertrophic cardiomyopathy 

(HCM) 

0.02523 

 

EDN1 

AGE-RAGE signaling pathway 

in diabetic complications 

0.02963 

 

EDN1 

HIF-1 signaling pathway 0.02963 

 

EDN1 

Melanogenesis 0.02992 EDN1 
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TNF signaling pathway 

 

0.03255 

 

EDN1 

Relaxin signaling pathway 0.03838 

 

EDN1 

Vascular smooth muscle 

contraction 

0.03896 

 

EDN1 

Fluid shear stress and 

atherosclerosis 

0.04099 

 

EDN1 

 

 

 

 

WikiPathways 

Vitamin B12 Metabolism 

WP1533 

0.00009129 SAA1, SAA2 

Folate Metabolism WP176 0.0001595 

 

SAA1, SAA2 

IL1 and megakaryocytes in 

obesity WP2865 

0.007179 S100A9 

Physiological and Pathological 

Hypertrophy of the Heart 

WP1528 

0.007477 

 

EDN1 

Selenium Micronutrient 

Network WP15 

0.0002711 SAA1, SAA2 

 

 

 

Endothelin Pathways WP2197 0.009860 EDN1 

Photodynamic therapy-induced 

HIF-1 survival signaling 

WP3614 

0.01105 

 

EDN1 

Melatonin metabolism and 

effects WP3298 

0.01105 

 

EDN1 

Prostaglandin Synthesis and 

Regulation WP98 

0.01343 EDN1 

Vitamin D Receptor Pathway 

WP2877 

0.001206 S100A9, S100A8 

 

 

 

 

 

 

 

 

 

Reactome 

Advanced glycosylation 

endproduct receptor signaling 

Homo sapiens R-HSA-879415 

0.000005841 

 

SAA1, S100A12 

DEx/H-box helicases activate 

type I IFN and inflammatory 

cytokines production Homo 

sapiens R-HSA-3134963 

0.000005841 SAA1, S100A12 

Scavenging by Class B 

Receptors Homo sapiens R-

HSA-3000471 

0.001499 SAA1 

RIP-mediated NFkB activation 

via ZBP1 Homo sapiens R-

0.00001571 SAA1, S100A12 
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HSA-1810476 

 

TRAF6 mediated NF-kB 

activation Homo sapiens R-

HSA-933542 

0.00002064 SAA1, S100A12 

ZBP1(DAI) mediated induction 

of type I IFNs Homo sapiens R-

HSA-1606322 

0.00002430 SAA1, S100A12 

TAK1 activates NFkB by 

phosphorylation and activation 

of IKKs complex Homo sapiens 

R-HSA-445989 

0.00002430 SAA1, S100A12 

Formyl peptide receptors bind 

formyl peptides and many other 

ligands Homo sapiens R-HSA-

444473 

0.002398 SAA1 

Cytosolic sensors of pathogen-

associated DNA Homo sapiens 

R-HSA-1834949 

0.0001595 

 

SAA1, S100A12 

TRAF6 Mediated Induction of 

proinflammatory cytokines 

Homo sapiens R-HSA-168180 

0.0001899 SAA1, S100A12 

 

 

 

 

 

 

 

BioCarta 

 

 

 

 

G-Protein Signaling Through 

Tubby Proteins Homo sapiens h 

tubbyPathway 

0.002997 

 

EDN1 

Activation of PKC through G-

protein coupled receptors Homo 

sapiens h pkcPathway 

0.003296 

 

EDN1 

Hypoxia-Inducible Factor in the 

Cardiovascular System Homo 

sapiens h hifPathway 

0.004791 EDN1 

Cystic fibrosis transmembrane 

conductance regulator (CFTR) 

and beta 2 adrenergic receptor 

(b2AR) pathway Homo sapiens 

h cftrPathway 

0.005986 

 

EDN1 

Corticosteroids and 

cardioprotection Homo sapiens 

h gcrPathway 

0.007477 EDN1 

Beta-arrestins in GPCR 

Desensitization Homo sapiens h 

bArrestinPathway 

0.008372 EDN1 

Activation of cAMP-dependent 

protein kinase, PKA Homo 

sapiens h gsPathway 

0.008670 EDN1 
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Role of Beta-arrestins in the 

activation and targeting of MAP 

kinases Homo sapiens h barr-

mapkPathway 

0.008967 EDN1 

Role of EGF Receptor 

Transactivation by GPCRs in 

Cardiac Hypertrophy Homo 

sapiens h cardiacegfPathway 

0.009860 EDN1 

Roles of Beta-arrestin-

dependent Recruitment of Src 

Kinases in GPCR Signaling 

Homo sapiens h bArrestin-

srcPathway 

0.01016 

 

EDN1 
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Figure 7(A): GO terms regarding biological process, molecular function and cellular 

component according to the associative p-values. 

 

 

 

 Figure 7(B): Cell informative pathways (KEGG, BioCarta, Reactome and 

WikiPathways) analysis result regarding associative p-values. 

 

4.5 PPIs network construction to perceive hub nodes 
 

Topological Using the NetworkAnalyst platform, 6 DEGs (SAA2, S100A9, S100A8, 

SAA1, S100A12, and EDN1) were provided as input and the generated network file 

was further customized in Cytoscape. The representation of the PPIs network show 

immense interaction of S100A9 and S100A8 genes and the interaction reveals the 

evidence of enrichment of S100A9 and S100A8 genes to SARS-CoV-2 responses in 

the human lung. Hub gene identification, module analysis, and prediction of effective 

drug compounds are mainly concerned with the corresponding PPIs network. The PPIs 
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network is represented in Figure 8 with customized visualization that contains 125 

nodes and 136 edges. 

 

 
Figure 8: PPIs network for identified common DEGs that refers to SARS-CoV-2 

infections in human lung and PAH lung. The common genes are highlighted with 

purple node (SAA2, S100A9, S100A8, SAA1 and S100A12). The network consists of 

125 nodes and 136 edges. 

 

4.6 Hub nodes identification based on the topological analyses and module 

detection from the PPIs network 
 

Among the similar DEGs, hub nodes from the PPIs network are identified using 

cytohubba. The identified top 3 hub nodes are S100A9, S100A8and SAA1. The Degree 

algorithm was used for the identification purpose and the degree algorithm shows the 

highest number of interaction in a specific network. The highlighted hub genes in a hub 

node identification network are presented in Figure 9 and the network consists of 124 

nodes and 135 edges. The regions where the hub nodes are established in the PPIs 

network are considered as the prominent modules. Module analysis network is 

represented in Figure 10 that consists of 13 nodes and 13 edges. Topological analysis 

results for the top 3 hub genes are presented in Table 3. 
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Figure 9: Hub gene detection from the similar DEGs based on the PPIs network. The 

highlighted nodes S100A9 (red), S100A8 (orange) and SAA1 (yellow) are regarded 

as highly interconnected nodes considered as hub nodes. The network is made up of 

124 nodes and 135 edges. 

 

 

 
 

 Figure 10: Highly interconnected regions (module) identification network that 

consists of 13 nodes and 13 edges. The hub genes S100A9 (orange) and S100A8 

(orange) are visualized in the corresponding module network. 
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        Table 3: Exploration of topological results for top 3 hub genes. 
 

Hub gene Degree  Stress Closeness Centrality Betweenness 

Centrality 

S100A9 83 14008 102.66667 13258 

S100A8 45 7370 82.75 7117 

SAA1 4 738 41.5 732 

 

4.7  Analysis of TF-miRNA co-regulatory network 
 

Network TFs and miRNAs interaction with the DEGs can be regarded as a reason for 

the regulation of expression of the DEGs. The co-regulatory network of TF-miRNA 

interaction is generated using the NetworkAnalyst platform and the network is 

reintroduced in Cytoscape software for better visualization. TF-miRNA co-regulatory 

network includes 69 nodes and 77 edges. Of the 69 genes, 6 are similar DEGs, 35 are 

TF genes and 28 are miRNAs. The customized representation of the TF-miRNA co-

regulatory network is presented in Figure 11. 

 

 
 

 Figure 11: Highly TF-miRNA coregulatory network visualization. The network 

includes 69 nodes and 77 edges. According to the network, there exist 35 TF genes 

(blue) and 28 are miRNAs (red) and they are interacted with 6 common DEGs 

(green). 
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4.8 Predictive drug compounds 
 

The drug compounds were proposed from the DSigDB database using the Enrichr web 

platform. The drug compounds were predicted according to identified 6 DEGs (SAA2, 

S100A9, S100A8, SAA1, S100A12, and EDN1). The results were accomplished based 

on adjusted p-value and p-value scores. MIGLITOL CTD 00002031 and metoprolol 

HL60 UP are the two prominent drug compounds with which a significant amount of 

genes are connected. Besides, among the top hub genes, S100A9 is interconnected with 

both the drug compounds, which makes the drug compounds even more eminent in 

terms of the efficiency of the drugs. The predictive drug compounds are presented in 

Table 4. 

 

Table 4: Predictive drug compounds of the concordant genes of SARS-CoV-2 and PAH  

 

Name of drugs P-value Adjusted p-value Genes 

MIGLITOL CTD 00002031 0.000004943 0.01990 S100A12, 

S100A9 

Bosentan CTD 00003071 0.003296 

 

0.5529 EDN1 

Coenzyme Q10 CTD 00001167 0.003595 

 

0.5789 EDN1 

metoprolol HL60 UP 0.00007383 0.04954 S100A12, 

S100A9 

9-(2-

Phosphonomethoxypropyl)adenine 

CTD 00003259 

0.004193 

 

0.5821 EDN1 

(+)-chelidonine HL60 DOWN 0.00009129 

 

0.05250 S100A9, 

S100A8 

sildenafil CTD 00003367 0.004492 

 

0.6028 EDN1 

norepinephrine CTD 00006417 0.00009879 0.04972 S100A9, 

S100A8 

dydrogesterone CTD 00005882 0.004791 

 

0.6028 EDN1 

1,3-Dimethylthiourea CTD 

00001818 

0.004791 0.5845 

 

EDN1 
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CHAPTER 5: CONCLUSION 
 

5.1 Findings: 
 

In this study, biological domains, regulatory elements, and identified biomarkers had 

been discussed in brief that is expected to accelerate the pace of therapeutics 

development against the ongoing COVID-19 pandemic. The superiority of our study 

can be considered as it is by far the largest genomic and transcriptomic study on SARS-

CoV-2. We provided multiple ways of analyses including comparative genomic 

differences of SARS-CoV and SARS-CoV-2, and the difference has been made to look 

for transcriptomic analyses on SARS-CoV-2 and its PAH comorbidity condition. 

Phylogenetic analyses of this research have produced genomic differences between 

SARS-CoV and SARS-CoV-2. We have identified the concordant genes between 

SARS-CoV-2 and PAH that produce further molecular results and show the association 

of the differentially expressed genes in SARS-CoV-2 affected human lung epithelial 

cells and PAH patients’ lung. A different type of transcriptional response was found 

due to the SARS-CoV-2 infection in human lung epithelial cells, which is enriched in 

inflammatory responses and neutrophil chemotaxis. The predicted drug compounds 

show activity against inflammatory responses against RNA viruses. 

 

Recommendation for Future works: 

 

It is necessary to understand that the infected genes are correlated with all these diseases 

in order to generate a medicine for more than one disease. It is also important to know 

the connection between the genes and the associated diseases in order to reach the 

destination. The current study carried out almost all the investigations with the support 

of bioinformatics tools which allow more calculations in the field of bioinformatics 

using bioinformatics software. Researchers who are willing to improve further can work 

to create a standard medicine for diseases using a microarray or microRNA data set for 

analysis. 
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