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ABSTRACT 

There are many ways to stop traffic jams from spreading, and one of the most effective is to detect 

the vehicle. The uniqueness of Dhaka's traffic situation creates a complicated and difficult 

occurrence, with over eight million passengers passing through the city every day in a 306 square 

kilometer area. To address this issue, our research includes a deep learning methodology for 

autonomous vehicle detection and localization from optical scans. Data preparation was done using 

annotated data from Poribohon-BD with vehicle images. 

 

Vehicle detection is a vital stage in the development of autonomous vehicles (ITS). The camera 

position, context fluctuations, obstacle, multiple current frame objects, and transportation stance 

all contribute to the difficulty of vehicle detection on urban highways. The current study provides 

a synopsis of state-of-the-art vehicle identification techniques, which are classified thus according 

to motion and aesthetics techniques, beginning with frame differencing and background 

subtraction and continuing to feature extraction, a more complicated model in comparative 

analysis. The pre-processed data, as well as the fine-tuning hyperparameter, are then fed further 

into cutting-edge YOLOv5s deep learning algorithm.  
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                                                                                      CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Traffic congestion is a widespread issue, especially in urban areas. So, it is crucial to analyze the 

traffic flows for urban planning and maintenance. To deal with this heavy traffic, people have to 

deal with many serious problems. Pain, suffering, loss of time, stress, and, more importantly, road 

accidents have a tremendous economic and social cost. This road-related issue is a significant 

challenge for the region of the Indian subcontinent countries like Bangladesh. In Bangladesh, there 

are more than enough manual guard systems in each important junction. But that can’t control the 

miseries effectively. To solve this problem, an automated system has high demand now. Though 

it’s difficult and takes a long process, vehicle detection and classification play a vital role in 

achieving this goal. 

Modern Ai Research applications and techniques, specifically the Neural Network, assist traffic 

analysis systems [1]. Using CNN, both vehicle detection and object detection are more successful 

(Deep Convolutional Neural Networks). CNNs can extract characteristics such as bounding box 

classification and regression [1], and they can perform a variety of related tasks. Furthermore, deep 

learning methods necessitate a large amount of data, and it may automatically learn the features 

that reflect the difference in data and can more effectively represent it. 

CNN has been employed in a range of high-resolution image capture and detection applications, 

including semantic segmentation [2, 3], object detection [4, 5], missing data restoration [6, 7]. 

Deep learning is one of the most rapidly increasing areas of machine learning, and it has been 

successfully applied to object identification data processing. It has gained traction as a viable 

solution for speeding up image recognition while maintaining high accuracy [6, 7, 8]. ing detection 

performance across classes, the result for cars objects remains limited since it fails to recognize 

many road elements. [10] - [11] have used aerial view angle photos. 

There are mainly two parts for detecting vehicles as well as for object detection – region proposal 

and regression. Regression methods and region proposal processes are commonly referred to as 

one-stage approaches and two-stage approaches, respectively [12]. In the two-stage approach, a 

light set of candidate object boxes is first generated by selective search or region proposal network, 

and then, they are classified and regressed. In the one-stage approach, the network 

straightforwardly generates dense samples over locations, scales, and aspect ratios; at the same 

time, these samples will be classified and regressed. The main advantage of one-stage is real-time; 

however, its detection accuracy is usually behind the two-stage, and one of the main reasons is the 

class imbalance problem [13]. The one-stage approaches contain mostly YOLO (You Only Look 

Once) [14], SSD (Single Shot MultiBox Detector) [15], RetinaNet [16], and Center Net [17].  
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In a one-stage detection model, YOLOv3 provides a perfect balance between rapid detection pace 

and higher identification precision [18]. In the areas of cultivation [21], topography [22], remote 

sensing, and medical science [23], YOLOv3 has been providing satisfying results. Moreover, with 

applications such as traffic sign recognition [24], traffic flows [25], and surface potholes [26], it is 

extensively used in transportation [19]. The YOLO series has recently been upgraded and contains 

Newer iterations now, YOLOv4 [27] and YOLOv5 [28], respectively (other versions of YOLOv5 

[29] as well). 

These versions use state-of-the-art methods for object detection that have increased in accuracy 

and acceptability. Among all the versions of YOLO, YOLOv5s has better mean average precision 

and faster times of inference than others. 

1.2 Research Questions 

 How can I achieve good accuracy for vehicle image detection tasks when the dataset is 

highly annotated?  

       • How can we achieve high accuracy for vehicle image segmentation tasks when we have 

limited computational resources?  

      • How can I measure the good results using computer vision model? 

1.3 Research Objectives 

My research goal was to develop a model that ca detect the vehicle from a set of PoribohonBD 

vehicles images, and if vehicle is present, our model also indicates the location of the detected 

vehicle. Finally detection the vehicle and indicates the accuracy to which types of vehicle can 

detect. 

 

1.4 Thesis Organization 

Chapter 1: In this chapter, I discuss the introduction of our thesis. Here we also discuss our 

research objective and our research questions. 

  Chapter 2: In this chapter, I discussed background, literature review and previous work 

which are related to this work. We also add their limitations, research type and their key notes in 

our thesis. 

Chapter 3: In this chapter, I discuss research methodology and my proposed model. 

  Chapter 4: In this chapter, I show the experiment setup and result of it. 

 Chapter 5: In this chapter, I represent the conclusion, my limitations and future plan.  
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                                                                          CHAPTER 2: LITERATURE REVIEW 

 

2.1 Data Set & Data Processing  

For this proposed model, to evaluate the vehicle detection methods used ‘PoribohonBD’ datasets 

included images; these images are gathered from different ways, such as beaches, roads, highways, 

and Bangladesh locations. The PoribohonBD dataset has been collected from two different 

sources: smartphone cameras, and social media. In this dataset, 15 native vehicle images are 16 

folders shown in Fig.1. These vehicles are: Bicycle, Boat, Bus, Car, CNG, Easy-bike, Horse-cart, 

Launch, Laguna, Motorbike, Rickshaw, Tractor, Truck, Van, Wheelbarrow, and multi-class 

images. In a variety total of 9058 images are obtained from angles, weather conditions, 

background, and poses. In this dataset, all the class images are JPG format. 

 

 

             Fig.1.    Different classes of the vehicle image dataset. 

 

In the PoribohonBD dataset, every folder has images and annotation files for single images. In 

addition, the dataset comprises 9058 images with annotations containing all the annotated files, 

Featuring class names, and vehicle combinations. From this dataset, the values of the annotations 

were initially stored in XML files. 
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Fig.2. Demography of different classes of PoribohonBD dataset with the average percentage of total data among 

vehicle classes, various colors identifies the vehicle class name. 
 

According to, the dataset images are categorized into three groups, namely i) Train, ii) Test, and 

iii) Validation. In the PoribohonBD dataset, 70% of image data are used for training purposes, 

20% of images are used in tests, and 10% of images are used in validation above 9058 images. 

             

 
 

Fig.3. Image annotation in XML to TXT file. 
 

An annotated file object position can signify the coordinates and labels of the images. Firstly, 

every image file is open in the tool. Then, the annotation folder extracts the image into X-Y 

coordinates. 
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                                                                                     CHAPTER 3: METHODOLOGY 

 

3.1. The detection principle of YOLOv5s 

 

YOLO is a prominent object detection technique at the moment. This model identifies objects as 

regression issues. The detection mechanism and network design of YOLOv5s, the smallest form 

of the YOLOv5 series, were introduced in this study. YOLOv5s, like earlier versions, is a one-

stage detection network. For object detection, YOLOv5 outperforms YOLOv4 and YOLOv3 [31]. 

The object detection algorithms and system architectures of those models are also the same. 

 

Initially, YOLOv5s accepts input images. As demonstrated in Fig.4 [33], the model separated the 

input image into S*S grid lines. Image categorization and localization are applied to each grid cell 

After that, YOLOv5s predict B which is a bounding box, confidence score for bounding boxes and 

their corresponding class probabilities for image objects in each and every grid cell.  

 

 
 

Fig.4. The detection method of YOLOv5s. It takes input images at first, then the model divided the input image into 

SS grid lines. After that, all bounding boxes with their confidence score for those boxes which are allocated in grid 

cells are predicted and one class probability for image detection is predicted. And finally, detection result is shown. 
 

These predictions convert as SSB5+Ctensor. Here SS is the number of horizontal and vertical  grid 

cells, B bounding boxes, (4+1) = 5 indicates the coordinates (bx,by,bw and bh) of bounding boxes, 

confidence score and class probabilities labeled as C.  
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The YOLOv5s model predicts bounding boxes by using dimension clusters as anchors. For each 

grid sell this model predicts 4 coordinates which is (tx,  ty, twand th )  . If any object found in the 

top of left corner grid cell for those given image (cx , cy) and bounding boxes height and width is 

( ph , pw) then the corresponding prediction is fig.5. 
 

 

bx=( tx) + cx 

by= ( ty) + cy 

bw=pwetw 

bh= pheth 
 

Where (x) used as a sigmoid function. Its satisfies is (x) = 1/ (1+e-x). 

 

 
 

Fig.5. Dimension priors of bounding boxes and location prediction. The width and height of the bounding box prior 

as an anchor labeled as Pw and Ph. If any object shown at the top of left corner grid cell of the given image (Cx, Cy) 

and the following coordinates (tx, ty, tw and th) for each and every grid cell. Width and height of the predicting 

bounding boxes (bw, bh) can be acquired by using an exponential function ex. 
 

 

To predict objectness score YOLOv5s apply logistic regression in each and every bounding box 

[32]. If any bounding box prior is overlapping a ground-truth more than others bounding boxes 

then this confidence score should be 1. Sometimes predictions are ignored because of threshold. 

The bounding boxes overlapped the ground truth at this stage but did not get the best bounding 

box prior. Then threshold 0.5 is being used. After the prediction of the bounding boxes, each box 

can predict the classes using multilevel classification. For class prediction binary cross-entropy 

loss function is used. And using non-maximum suppression (NMS) to reduce unnecessary 

prediction for the best match at final detection.  
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3.2 Network Architecture of YOLOv5s 

 

Usually, there are three part combinations in a modern object detector. Backbone is the first portion 

of this modern object detector. Its main principle is extracting features from input images. The 

next portion is neck and its main principle is to collecting feature maps from various stages. And 

the last portion is head which is used for predicting categories and the bounding box of input 

images. Structure of YOLOv5s shown in fig.6. Functions and components of the modules as 

follows: 

 

 
Fig.6. YOLOv5s Network Architecture. YOLOv5s architecture builds off the Darknet53 backbone. 

 

3.2.1 Backbone 

 

Backbone is the first portion of YOLOv5s network architecture which is shown in fig.7. Backbone 

builds by concatenating several components such as focus, CSP structure. In focus structure, the 

key operation is slicing operation and converting into a feature map. Taking the structure of 

YOLOv5s as an example, the original image 608×608×3 input into the focus structure, and the 

slicing operation is getting started to become a 304×304×12 feature map, and then after a 

convolution operation of 32 convolution kernels, the final change a feature map of 304×304×32 is 

formed. Then the feature map changed by leaky relu.  

 

The CBL (Convolution (CONV), Batch Normalization (BN), and Leaky-ReLU) consist of 

backbone. It is a primary module composed of convolutional layers and the active functions are 

batch normalization and leaky relu. This active function is most frequently used in YOLO. 

 

CSPX is the last part of the backbone [34] and two types of CSP structure are used in YOLOv5s. 

CSP1_X structure used in backbone network and CSP2_X used in neck network. 
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In CBL, residual units (RES) are the primary element and it is used to make network architecture 

deeper. For being the basic component of CBL, realized the direct superposition of tensors to 

adding layers.  

                      

3.2.2. Neck 

 

The second portion of the YOLOv5s network architecture is called the neck. The neck uses the 

Feature Pyramid Network (FPN) and Path Aggregation Network structure fig.8. In the Neck 

structure of YOLOv5s, the CSP2 structure designed by CSPnet is used to strengthen the ability of 

network feature integration [35]. 

 

 
 

Fig.8. YOLOv5 neck architecture. 
 

 

3.2.3 Head 

 

The head is the final component of YOLOv5's network design and is also known as a predictor. 

Head estimates the class or object size based on neck features based on input image size and boxes 

(large, medium, small). YOLOv5s identifies large, medium, and tiny sized objects, but previous 

versions of YOLO could not recognize different sized things. The target rectangular area must be 

fewer than 32 pixels * 32 pixels in order to detect small-sized objects. 96 pixels * 96 pixels for 

medium-sized things, on the other hand. Finally, to detect large items, the target area must be larger 

than 96 pixels * 96 pixels [36]. 
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In YOLOv5s network architecture, regression loss of bounding box and intersection over union 

(IOU) function. This function will calculate as follows: 

 

IoU = BBgtBBgt 

 

Here Bgt represents the ground-truth and the other hand B represents the predicted bounding box. 

In this study,BBgt is shown the intersection of B and Bgt and BBgt is shown the union of Band 

Bgtis clearly seen. IoU loss has been formed when the bounding box has any overlapping otherwise 

not. Then here is offered generalized IoU (GIoU) loss with penalty term: 

GIoU = IoU - c(BBgt)c 

LossGIoU =1 -IoU+ c(BBgt)c 

In this equation, the smallest box is labeled as C and B is the predicted box. Bgt is the ground truth 

box fig.9. In non-overlapping cases, the predicted bounding box will be moved forwards to the 

target box because of the penalty term. In GIoU, there are several limitations in spite of vanishing 

gradient issues for non-overlapping cases [37]. For researchers, YOLOv5s is a good choice to 

detect objects and classes.  

 

Fig. 9. IoU regression errors, GIoU losses are highlighted. (a) Bgt is the ground-truth and B is the predicted bounding 

box.(b) B intersection Bgt. (c) B union Bgt. (d) B and Bgt’s smallest box is C. (e) C minus B and Bgt’s union.  
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Fig.10. Training and detecting process flow chart of YOLOv5s model. At the training period, the training image data 

is input into the YOLOv5s model through data increment and resizing. Then the predicted bounding box in the 

YOLOv5s model, that information can be acquired based on anchor boxes. After that, to perform the training epoch, 

calculate loss between the predicted bounding boxes and the ground-truth. Subsequently, various training epochs until 

the predetermined number is reached. In this phase, the detection process obtained from the YOLOv5s model can be 

the first expected bounding box to be reliable, and then the final detection results could be acquired with the non-

maximum suppression (NMS) or its alternative, which is used to reduce irrelevant detection and find out the best 

match. 
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                                                                                  CHAPTER 4: MODEL TRAINING 

 

4.1 Training Setting 

The YOLOv5s is based on PyTorch 1.8.1 framework. Using Google Colab the test has been 

accomplished which is prepared with Intel(R) Xeon(R), NVIDIA Tesla K80 GPU  to detect the 

vehicle,12.72 GB disk space, 13 GB RAM. 

 

Mosaic fliplr scale translate hsv_h hsv_s hsv_v 

1.0 0.5 0.5 0.1 0.015 0.7 0.4 

 
Table.1: Different augmentation techniques for data. 

 

The training set produces optimal hyper parameter values for weight augmentation increase and 

learning rate. In YOLOv5s, pre-trained model can be using the COCO dataset over 80 classes, 

which significantly reduces the over-fitting. Table.1 presents the different augmentation 

techniques as follows: Image mosaic, flip left-right, image HSV-Hue augmentation, HSV-

Saturation, HSV-Value augmentation, image translation, and scale used to overcome data 

deficiency. 

 

Epochs Batch 

Size 

Image 

Size 

Initial 

Learning 

Rate 

Moment

um 

Weight 

Decay 

Warm-

up 

epoch 

Warm-

up 

moment

um 

Warm-up 

Bias 

Learning 

Rate 

160 64 640* 

640 

0.01 0.937 0.0005 3.0 0.8 0.1 

                         

          Table 2: Numerous hyper-parameters for this proposed investigation. 

                             
Table.2 shows that the model runs with 160 epochs where the batch size is 64. For each and every 

image size is 640*640. The Initial learning rate and warm-up bias learning rate are 0.1 for the 

YOLOV5s model whenever the weight decay and momentum are 0.0005 and 0.937. Moreover, 

the warm-up epoch and warm-up momentum enumerated are 3.0 and 0.8 respectively. In the case 

of detection, the execution of the YOLOV5s model is considered or equally responsive. 
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                                                                   CHAPTER 5: RESULT AND DISCUSSION 

 

5.1. Model evaluation metrics 
 

According to this study, several part acceptances have been applied to determine the existence of 

the selected model:  F1 score, precision (P), recall rate (R), mean average precision (mAP), frames 

per second (FPS), and inference time (IT). 

 

5.1.1. Precision and recall rates 
 

In the object detection model, precision and recall rates are the most fundamental assessment 

indicators. Precision is represented as the ratio of the accurately identified object to all detected 

objects, where recall counts how many actual positive images the model contains by labeling it as 

positive (true positive). 

 

The equation of precision and recall are:- 

 

 
 

  Precision=True positiveTrue positive+False positive                  (38) 

 

 Recall=True positiveTrue positive+False negative                                 (39) 

                                        

 

Measure   Description 

TP  Number of images correctly classified as including vehicle detection. (vehicle 

correctly identified) 

 TN  Images are correctly classified as excluding vehicle detection. 

 

  FP   Images are mistakenly classified as including vehicle detection. 

   FN   Images are mistakenly classified as including vehicle detection. 

 

         Table 3: Briefly describe the measure of precision and recall.          

    

5.1.2. Mean average precision and F1 score  

    
The mean average precision (mAP) is used to find the average value of object detection models 

like YOLO. The mAP provides the score by corresponding the ground-truth bounding box with 

the detected box. To calculate mAP you first need to calculate average precision (AP) in each 

class. AP represents, an average of the maximum precision of different recall values, below the  
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PrecisionRecall curve, 

 

Shown in Eq(40): 

 

                                               AP=01P(R)dr                                        (40)                    

  

The F1 score evaluates to the best average of precision and recall rates. To find the widespread 

representations of models is used to F1 score. The equation is as follows: 

      

        F1=2Precision.RecallPrecision+Recall                               (41) 
 

5.1.3. Frames per second and inference time 
 

FPS stands for frames per second. FPS usually determines the representation of distinct images 

shown per second. The time spent processing an image is known through inference time. It can be 

reflected as real-time edit above 30fps [42]. 

 

5.2.   Training results and analysis 
 

A figure depicts a PR-curve describing different probabilities of precision and recall thresholds. 

The PR curve demonstrates great precision and recall. F1 indicates the parameters and performs 

well in the model. Mean average precision, on the other hand, demonstrates a significant 

performance in model and object detection task. 

 

 
 

                                 Fig.11. PR- Curve of YOLOv5s. 
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Table 4 

 

YOLOv5s Model training results 

 
    Model           P                R                 F1               mAP%             Weights/MB 

 
    YOLOv5s        0.821                   0.728               0.77                    0.794                              14.5 

 
 

  
Table 4, training all results are summarized in the YoloV5 model. By using YOLOv5s, the weight 

size is 14.5 MB. The precision, recall, F1 score, and map were 0.821, 0.728, 077, and 0.794 

respectively. 

 

 
   

Fig.12. YOLOv5s model training results. 
 

The YOLOv5s model can be trained in Fig.12, and the various backdrops are taken into account 

as a variable in this investigation. The PR curve of the model can achieve all-class accuracy of 

0.794 percent for vehicle detection. The PR curve in Fig.11 represents the entire test set. In 

YOLOv5s, the model's F1-score is 0.77 percent. In YOLOv5s, the mAP score is 0.794 percent, 

and the best precision, recall, and mAP scores are 0.946, 0.884, and 0.933 percent, respectively. 

This model's results show a substantial performance of mAP score. The discrepancy between the 

expected and actual values is determined by the loss value. The training model of the loss curve 

displays the box loss, obj loss, and class loss. In YOLOv5s the box_loss, obj_loss, and class_loss 

are 0.02434, 0.02104, and 0.002455. Loss functions the wrong prediction of the boxes and objects' 

constancy to specify the correct one. The box_loss of the training model finds the best accuracy of 

bounding box regression which accurately detects the vehicle. 
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5.3. Detecting result and discussion 
 

The YOLOv5s, different classes of vehicles with high and low confidence scores are shown in 

Fig.13. In the confusion matrix, a high confidence score is 0.91 and the lowest confidence score 

in some classes is 0.01. Using training and validation data that is given good performance and 

ensures that the model can’t over fit. 

 

 
 

    Fig.13. The confusion matrix of the YOLOv5s model. 
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       Fig 14: Various class detection results of the proposed model in YOLOv5s. 

 

 

The vehicle detection picture findings of the test set are depicted in Fig. 14. According to the 

results of the image detection test set, YOLOv5s large objects perform better. Clearly, there are 

numerous variances in detection confidence in the YOLOV5s object detection model. The 

minimum vehicle detection accuracy in YOLOv5s is 0.4, and the maximum accuracy is 0.9. The 

confidence in the YOLOv5s range is 0.4-0.9, and the testing result is satisfactory. The GPU can 

be used to investigate the larger object. As a result of using YOLOv5s, higher performance is 

obtained, and the speed of inference time and FPS may be identified extremely quickly. 
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                                                                                           CHAPTER 6: CONCLUSION 

 

This research study proposes operating the first deep-learning model YOLOv5s to identify 

vehicles from the images. The popular model YOLOv5 has better accuracy to detect the vehicle. 

This research proposed a real-time automatic vehicle detection method for Dhaka city traffic. 

Currently, this system can detect the vehicle in different ways. In the future, applying a different 

model to find the best accuracy that can be developed to control the traffic in Dhaka city. The 

model of YOLOv5s fastest improvement of AI edge. That recognition initiates a different section 

for classes’ analysis in real-time applying camera tricks in the field. 
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