
SOFTWARE QUALITY ASSURANCE & BUSINESS ANALYST AT NEXERP

BY

Md. Maruf Boksh

ID: 191-15-12292

This Report Presented in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

Supervised By

Md. Mahade Hasan

Lecturer

Department of CSE

Daffodil International University

Co-Supervised By

Raja Tariqul Hasan Tusher

Sr. Lecturer

Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

04 JANUARY 2022

©Daffodil International University i

APPROVAL

This Project/internship titled “SOFTWARE QUALITY ASSURANCE & BUSINESS

ANALYST AT NEXERP”, submitted by Md. Maruf Boksh, ID No: 191-15-12292 to the

Department of Computer Science and Engineering, Daffodil International University has been

accepted as satisfactory for the partial fulfillment of the requirements for the degree of B.Sc. in

Computer Science and Engineering and approved as to its style and contents. The presentation has

been held on 04 January 2022.

BOARD OF EXAMINERS

Dr. Touhid Bhuiyan (DTB)

Professor and Head

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Chairman

Md. Sadekur Rahman (SR)

Assistant Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Internal Examiner

Afsara Tasneem Misha (ATM)

Lecturer

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Internal Examiner

Shah Md. Imran

Industry Promotion Expert

LICT Project, ICT Division, Bangladesh

External Examiner

©Daffodil International University ii

DECLARATION

We hereby declare that, this project has been done by us under the supervision of Md. Mahade

Hasan, Lecturer, and Department of CSE Daffodil International University. We also declare

that neither this project nor any part of this project has been submitted elsewhere for award of any

degree or diploma.

Supervised by:

Md. Mahade Hasan

Lecturer

Department of CSE

Daffodil International University

Co-Supervised by:

Raja Tariqul Hasan Tusher

Sr. Lecturer

Department of CSE

Daffodil International University

Submitted by:

Md. Maruf Boksh

ID: 191-15-12292

Department of CSE

Daffodil International University

©Daffodil International University iii

ACKNOWLEDGEMENT

It is my great pleasure that I acknowledge whose suggestion and encouragements contributed to

the preparation of this report, this report was incomplete without their help and guidance.

 First we express our heartiest thanks and gratefulness to almighty Allah for His blessing make

possible to complete the final year internship successfully.

We really grateful and wish our profound our indebtedness to Md. Mahade Hasan, Lecturer,

Department of CSE Daffodil International University, Dhaka. Deep Knowledge & keen interest of

our supervisor in this internship to carry out this project. His endless patience ,scholarly guidance

,continual encouragement , constant and energetic supervision, constructive criticism , valuable

advice ,reading many inferior draft and correcting them at all stage have made it possible to

complete this project.

I would like to express our heartiest gratitude to Professor Dr. Touhid Bhuiyan, Professor and

Head, Department of CSE, for his kind help to finish our project and also to other faculty member

and the staff of CSE department of Daffodil International University.

We would like to thank our entire course mate in Daffodil International University, who took part

in this discuss while completing the course work.

Finally, we must acknowledge with due respect the constant support and patients of our parents.

©Daffodil International University iv

ABSTRACT

The aim of the Internship was to learn the core operation of Software Quality Assurance &

Business Analyst. The aim was implement the SQA & Business Operation Analysis. Software

Company is an organization that provides services for Business Process Automation. They had

made the Business Process on their Software and make it user friendly for the user as per their

requirement. In this internship test the Software Quality Assurance and analysis the Business

Logic & Processes. It helped me to gain the Professional and hands on experience Software

Quality Assurance & Business Analyst. Nevertheless, this Internship Report can be used as the

Manual for New Software Quality Assurance & Business Analysts.

TABLE OF CONTENTS

CONTENTS

PAGE

Board of examiners i

Declaration ii

Acknowledgements iii

Abstract iv

CHAPTER

CHAPTER 1: INTRODUCTION

1-2

1.1 Introduction 1

1.2 Motivation 1

1.2 Internship Objectives 1

1.3 Expected Outcome 2

CHAPTER 2: Internship at NEXERP 3-3

2.1 Introduction to the Company 3

2.2 Product and Market Situation 3

2.3 Target Group 3

CHAPTER 3: TASKS, PROJECTS, AND ACTIVITIES 4-10

3.1 Requirements Engineering 4

3.2 Requirements analysis 4

3.3 Classification of Requirements 5

3.4 Elements of the analysis model 6

3.5 Use-Cases 7

3.6 Example: Use Case Scenario 9

CHAPTER 4: Object Oriented Modeling 11-24

4.1: Learning Goal 11

4.2 : UML Diagram Types 11

4.3: Diagram Types 12

4.4: Essential elements Class Diagram 14

4.5: Relationships 17

4.6: Object Diagrams 21

4.7: Multi Objects 22

4.8: Example of UML Class Diagram 23

CHAPTER 5: Software Testing Strategies 25-32

5.1: Program Testing 25

5.2: Verification & Validation 26

5.3: Design of Software Test Cases 26

5.4 : Functional Testing & Structural Testing of Software 27

5.5: Software Unit Testing 28

5.6: Software Black-Box Testing 29

5.7: Software White-Box Testing 32

CHAPTER 6:Software Maintenance and Maintenance Process Model 33-36

6.1 Software Maintenance 33

6.2 Maintenance Process Models 34

6.3 Estimation of Approximate Maintenance Cost 36

CHAPTER 7: CONLUSION AND LIMITATION 37

7.1 Conclusion and Limitation 37

REFERENCES 38

PLAGIARISM REPORT 39-41

LIST OF FIGURES

FIGURES PAGE NO

Figure-3.1: Classification of Requirements 5

Figure-3.2: Elements of the analysis model 6

Figure-3.3: Use Cases Elements Symbol 7

Figure-3.4: Use-Case UML Diagram 8

Figure-3.6: Use Case Scenario Example 9

Figure-3.7: use case description example 10

Figure-4.1: Types of UML Diagram 11

Figure-4.2: Class Diagram 12

Figure-4.3: Object Diagram 13

Figure-4.4: Class Name 14

Figure-4.5: Class Attribute 15

Figure-4.6: Class Attributes Type 15

Figure-4.7: Attributes Type 16

Figure-4.8: Class Operation 16

Figure-4.9: UML Relationship 17

Figure-4.10: Dependency Relationship 17

Figure-4.11: Generalization Relationships 18

Figure-4.12: Association Relationship between Two Classes 18

Figure-4.13: Multiplicity Association Relationship 18

Figure-4.14: Behavior Association Relationship 19

Figure-4.15: Dual Associations Relationship 19

Figure-4.16: Associations Object 19

Figure-4.17: Aggregation Relationship 20

Figure-4.18: Composition Relationship 20

Figure-4.19: Object Diagram 21

Figure-4.20: Multi Objects 21

Figure-4.21: UML Class Diagram of an ATM Machine 22

Figure-4.22: Class Diagram for course offerings 23

Figure-5.1: Functional Testing vs. Structural Testing of Software 26

Figure-5.2: Software Unit Testing 27

Figure-5.3: Software Black-Box Testing 28

Figure-5.4: Software White-Box Testing 31

Figure-6.1: Types of Software Maintenance 33

Figure-6.2: Software Maintenance Process Model-1 35

Figure-6.3: Software Maintenance Process Model-2 36

Figure-6.4: Software Maintenance Cost Chart 37

©Daffodil International University 1

CHAPTER 1

Introduction

1.1 Introduction

SQA (Software Quality Assurance) could be a set of measures to make sure the standard of

software. Activities identify and evaluate production processes. Includes process-centric action.

And a Business Analyst is someone who analyzes the domain (actual or hypothetical) of a

company or business and records its business, process or system, evaluates its integration with the

business model or technology.

1.2 Motivation

As I’m studied my BSc Degree in CSE which is the sector of Information Technology, I believe

that this Internship in the same sector will help me to gain the practical & professional

experience with academic study.

There is another reason for choosing SQA and Business Analyst sector due to day by day

increase the demand and advantage of Business Automations. The demand of Business Analyst

& SQA is highly valued in the Software Automation.

1.3 Internship Objectives

I want to gain practical experience from this Internship on Software Automation Company

sector. I want to earn corporate experience from this reputed Company & want to execute this

experience in real life.

This internship SQA and Business Analyst will help me to gain the actual scenario of practical

experience with my academic study, which help me a lot for my career.

©Daffodil International University 2

1.4 Expected Outcome

Through this Internship, I can increase my skills, understand the specific roles & responsibilities

for professional job life. And it will be very helpful for decision making and understand the right

step of my career, which is very important.

Also, it will grow self-confidence and clear the concept of working responsibilities on SQA and

Business Analyst.

©Daffodil International University 3

CHAPTER 2

Internship at NEXERP

2.1 Introduction to the Company

NexERP provides user-friendly ERP software, ensures after sales customer support, and offers a

variety of the best quality products - all in the most affordable price. With optimized ERP software

technology stack to deliver dynamic performance, we are best at providing SOHO ERP systems

that deliver unparalleled capabilities to run businesses efficiently. NexERP has developed an

integrated system to maintain all kinds of day-to-day business operation with operational

efficiency. Read More.

2.2 Product and Market Situation

At NexERP we all know that creating customer-oriented software requires a mixture of technical excellence

and clear communication and that we make sure you to receive both. We’ve got over 20 (Twenty) years of

system development expertise in various business model. We all know that each single customer is

exclusive and that we try and deliver it individualized, innovative and affordable ERP system for every

client.

2.3 Target Group

It's an integrated Enterprise Software Platform comprising 100+ modules for ERP, supply chain, e-

Commerce, CRM, HR, self-service portals, vertical apps, work flow, content management, digital media,

project collaboration and social media, that empowers growing businesses by automating their operations,

end-to-end, and enabling seamless collaboration between people over processes, affordably.

NEXERP Limited

House-752, Road-1, Avenue -4, Mirpur DOHS, Dhaka-1216.

Phone: +880 1919 111444

info@nexerp.com.bd

nexerp.com.bd

©Daffodil International University 4

CHAPTER 3

TASKS, PROJECTS, AND ACTIVITIES

3.1 Requirements Engineering

Requirements are a statement of the system must do, how it must be treated, features it must

display, qualities it must have, and hinders the system and its development to be satisfied.

3.2 Requirements analysis

 Specifies the operational features of the software

 Indicates the interface of the software with other systems material

 The software sets limits that must be meet

a) Inception

 Ask a group of questions that establish ...

 Early realization of the matter

 Those who want solutions

 The nature of the specified solution, and

 The effectiveness of initial communication and collaboration between the customer and

also the developer

b) Elicitation

 Disclose requirements from all stakeholders

c) Specification - may be anyone (or more) of the following:

 A papers

 A set of models

 A formal mathematician

 A collection of user situations (in case of use)

 A prototype

d) Validation: A review process that seeks

 Error in content or interpretation

 Areas where clarification is also required

 Missing information

 Inconsistency (a big problem when big products or could be a system engineer)

Conflicting or unrealistic (impossible) requirements.

©Daffodil International University 5

3.3 Classification of Requirements

Figure-3.1: Classification of Requirements

a) Business requirements: This includes High-level messages Goals, objectives and wish.

b) Stakeholder requirements: A separate solution also identifies the requirements of specific

groups to define what they expect.

c) Solution requirements: Solution requirements are indications that a product must meet the

wants of stakeholders and therefore the business itself.

 Non-functional requirements indicate the overall characteristics of a system. These also

are called qualities.

 Functional requirements determine how a product behaves; describes its features and

functions.

Transition requirements: a necessity group defines what a corporation has to successfully

move from its current state to its desired state with a brand new product.

©Daffodil International University 6

3.4 Elements of the analysis model

Figure-3.2: Elements of the analysis model

a) Scenario-based elements

 Functional— Description Working for software Function.

 Use-Case— Description Interaction between "actor" and system

b) Class-based elements

 Implied by scenarios

c) Behavioral elements

 State diagram

d) Flow-oriented elements

 Data flow diagram

©Daffodil International University 7

3.5 Use-Cases

Describe In terms of system and usage, the interaction between external users leads to the

achievement of defined goals.

There are three main components to each use:

 Actors: that are users outside of this system Communicate with the system.

 Method: Goal Behavior Products Round is defined by functional requirements.

 Goal: Purpose of It outlines the interactions between users and the system. As

the goal.

There are two formats to represent use case issues:

 Use case specification/description

 Use case diagram

Figure-3.3: Use Cases Elements Symbol

©Daffodil International University 8

Figure-3.4: Use-Case UML Diagram

©Daffodil International University 9

3.6 Example: Use Case Scenario

A user can request a puzzle for the system. The system selects multiple questions from its

database and tests them together. It rates the user's response and displays it at the user's request.

In addition to users, we have tutors who provide questions and hints. The test takers must

acknowledge that the questions are not trivial and that they are sensual.

Produce a deployment illustration to model this system. To work for some of

your operations. Then we don't have a real vessel part, you don't want to be frustrated if you

cannot get the right pitch so invest in a good capo.

Figure-3.6: Use Case Scenario Example

©Daffodil International University 10

Figure-3.7: use case description example

©Daffodil International University 11

CHAPTER 4

Object Oriented Modeling

4.1 Learning Goal

 Understand what the analysis and design of an object-oriented system is and

 Appreciate its usefulness.

 Understand the generalities of Unified Modeling Language (UML),

 The ideal system for modeling a system in the object- acquainted world.

 Follow the way used in the URL to resolve the system into a use case model and also

a class model.

 Diagram system with UML toolset so that they can be described and

 Suitably designed.

 Register and interact with new model object-oriented systems to users and other

analysts.

4.2 UML Diagram Types

Figure-4.1: Types of UML Diagram

©Daffodil International University 12

4.3 Diagram Types

 A class diagram presents a static view of the system. It describes the features and

activities of the class.

 Class diagrams are the foremost commonly used modeling diagrams for will be}

because object-oriented systems can be mapped on to object-oriented languages.

Figure-4.2: Class Diagram

 User, customer, administrator, order, order details class. Each class has features

and methods. Properties describes properties while methods describe behaviors

or activities.

©Daffodil International University 13

 Another structural diagram is an object diagram. It's like a class diagram, but it

focuses on the object.

 The basic concepts of an object diagram are similar to a class diagram. These

images help to understand the behavior of objects at a particular moment and their

relationship.

Figure-4.3: Object Diagram

 s1, s2, and s3 are the student objects, and they are admitted to the c1 course

object. L1 Lecturer Teaches Object Course c1. Lecturer Object l2 special course

c2 teaches. Students are admitted to s3 c1 course as well as c2 special course.

This Figurer explains how a set of objects are related to each other

©Daffodil International University 14

4.4 Essential elements Class Diagram

Essential elements of Class Diagram are:

 Class Name

 Attributes

 Operations

i. Class Names:

Figure-4.4: Class Name

The class name is that the only required tag for the graphic representation of the category.

Always shown at the highest.

©Daffodil International University 15

ii. Class Attributes:

Figure-4.5: Class Attribute

 A feature defines an object named after a class that represents an object model.

 In the class diagram, the features appear within the second carriage slightly below the

name compartment.

 Attributes are usually listed within the form:

attributeName: Type

 The derived attribute is computable by other attributes but isn't practical. as an

example, a human life is often calculated from his date of birth. The derived attribute

is defined by a preceding ‘/’ as in:

 / age: Date

Figure-4.6: Class Attributes Type

©Daffodil International University 16

 Attributes can be:

+ public

protected

- private

/ derived

Figure-4.7: Attributes Type

iii. Class Operations:

Figure-4.8: Class Operation

 The operations describe the behavior of the class and appear in the third carriage.

©Daffodil International University 17

4.5 Relationships

Figure-4.9: UML Relationship

 In UML Object interactions (logical or physical) are modeled as relationships.

 There are three varieties of relationships in UML:

i. Dependencies
ii. Generalizations

iii. Associations

i. Dependency Relationships:

 A relation indicates a vocabulary / note relationship between two or more elements.

 Example : CourseSchedule has dependency on Course

Figure-4.10: Dependency Relationship

ii. Generalization Relationships

 A subclass is generally associated with its superclass.

©Daffodil International University 18

It refers to the inheritance of attributes and behaviors from superclass to superclass to

subclass and indicates specialization within the subclass of the final superclass

Figure-4.11: Generalization Relationships

UML does not inherit many programming languages (such as Java), but it does allow

one class to be inherited from multiple super classes.

iii. Association Relationships

 If two rows during a model must be connected to every other, there must be a connection

between them. An association refers thereto link.

Figure-4.12: Association Relationship between Two Classes

 We can indicate the diversity of a team, for example, indicate that a student has one or

more coaches:

Figure-4.13: Multiplicity Association Relationship

 Role names are often wont to indicate the behavior of an object in a company (that is,

the role of an object).

©Daffodil International University 19

Figure-4.14: Behavior Association Relationship

 We can specify dual associations.

Figure-4.15: Dual Associations Relationship

 Teams can also be things called link classes or group classes themselves.

Figure-4.16: Associations Object

©Daffodil International University 20

iv. Relationships (Aggregation)

 Aggregation may be a special form of organization that designs the link between a full

a part of a company and its components.

Figure-4.17: Aggregation Relationship

 For example, a class college consists of one or more students. Inside Integration, the

included classes are never completely dependent on it the life cycle of the pot. There

will be college classes even if there are no students.

v. Relationships (Composition)

 The compositions are characterized by a full-diamond symbol in the association.

Figure-4.18: Composition Relationship

 A compound is a compound that refers to a solid property between two rows when it is

part of a class.

 For example, in college, classes are organized with students. The college can

accommodate a large number of students, with only one college per student. As a

result, the college expelled all students if they did not work.

©Daffodil International University 21

4.6 Object Diagrams

 Model samples of things described by a category.

 Each object diagram shows a collection of objects from time to time and their

interrelationships.

 Each object has an optional name and set of classes. This is often an example, also the

worth for the properties of this class.

Figure-4.19: Object Diagram

4.7 Multi Objects

 A multi object may be set of objects, with an undefined number of elements

©Daffodil International University 22

Figure-4.20: Multi Objects

4.8 Example of UML Class Diagram

i. The ATM system is incredibly simple as customers must press some buttons to receive

cash. However, every ATM system has several layers of security that require to be

overcome. It requires details to stop fraud and pay or banking customers.

Figure-4.21: UML Class Diagram of an ATM Machine

©Daffodil International University 23

ii. Example of A class diagram for course offerings

Figure-4.22: Class Diagram for course offerings

©Daffodil International University 24

CHAPTER 5

Software Testing Strategies

The purpose of the testing process is to spot all bugs during a wares. For many systems, even

after satisfactorily performing the test phase, the software cannot guarantee that there aren't any

errors. That’s why it's happened the computer file domain of most software products is extremely

large. Careful testing of software that respects each value that may capture input file isn't

practical. Although there are practical limitations to the testing process, the importance of the

experiment mustn't be underestimated. It should be noted that the test can detect many errors.

There’s a merchandise. Thus the test provides a practical thanks to reduce and increase the errors

of a system Confidence of users in a complicated system.

5.1 Program Testing

 The program is configured to watch a program installation test (or in an

exceedingly test state) and if the program is performing obviously. If you fail to

act as an expected program, Defective situation are described later for

troubleshooting and correction.

 Some commonly used terms related to testing are:

a) Failure: This can be a sign of an error (or bug or bug). But making a

blunder won't result in failure.

b) Test case: This can be the third time I’ve got added data to the system, S

is that the state of the info entry system and O is that the expected output

of the system.

c) Test suite: This can be a group of tests that has got to be done to check a

given product.

©Daffodil International University 25

5.2 Verification & Validation

 Verification is that the process of determining whether the end result of a phase

of software development is in step with its previous phase.

a) Verification is worried with phase containment of errors.

 Validation may be a prerequisite for incompatibility with a totally developed

system and may be a process of determining legitimacy.

a) Aim of validation is that the ultimate product be error free.

5.3 Design of Test Cases

 One complete test of just about every non-trivial system is data quality that's

virtually unrealistic in large or endless practical software systems.

 THEREFORE, WE MUST DESIGN THE TEST KIT TO A REASONABLE SIZE AND IDENTIFY

AS MANY BUGS AS POSSIBLE IN THE SYSTEM.

 But larger test suite does not always detect more error. For example, let’s consider

the following code:

if (x>y)

max = x;

else

max = x;

 For the above code segment, consider the subsequent test suites

a) Test suite 1: { (x=3,y=2); (x=2,y=3) }

b) Test suite 2: { (x=3,y=2); (x=4,y=3); (x=5,y=1) }

 Test suite 1 can detect the error.

 Test suite 2 cannot detect the error despite of being large.

©Daffodil International University 26

5.4 Functional Testing & Structural Testing

Figure-5.1: Functional Testing Vs Structural Testing

 Functional Testing: Within the black-box test approach, the tests are performed

using only the software specifications of the software. this implies that without

knowing the interior structure of the software, means for this reason, black-box

testing is termed functional testing.

 Structural Testing: On the opposite hand, within the white-box test approach,

designing test cases requires a radical knowledge of the software's internal

structure; therefore, white-box testing is termed structural testing.

©Daffodil International University 27

5.5 Unit Testing

 The unit is tested after having a module Coded and reviewed successfully. Unit

test (or Module test) is that the test of various units (or Module) of an isolated

system.

 To test one module, a whole the environment must provide everything required

for module execution. That's it, additionally to the modules under test, the

subsequent Steps are needed to be able to test Module:

a) Procedures associated with other modules are called the module under

test.

b) Non-region data structures accessed by the module

c) A procedure to call the functions of a module under test with appropriate

frames.

Figure-5.2: Unit Testing

©Daffodil International University 28

5.6 Black-Box Testing

 In the black-box test, Test cases are designed to test only the input / output values.

 In the black-box testing, no knowledge of design or code is required.

Figure-5.3: Black-Box Testing

 The following are the 2 main approaches to designing recorder test cases.

a) Equivalence class portioning

b) Boundary value analysis

©Daffodil International University 29

a) Equivalence Class Partitioning:

 In this method, the domain of the input values of a program is split into a group of

equivalent classes.

 The following are some general guidelines for designing the equivalence classes:

i. If the input file values to a system is specified by a spread of values, then one

valid and two invalid equivalence classes should be defined.

ii. If the computer file assumes values from a collection of discrete members of

some domain, then one equivalence class for valid input values and another

equivalence class for invalid input values should be defined.

 Example: A software can compute the square root of an input integer which can assume

values in the range of 0 to 5000. Design 3 Equivalence Class Partitioning test cases.

Solution: There are three equivalence classes:

 The set of negative integers.

 The set of integers within the range of 0 and 5000 and

 The integers larger than 5000.

 Therefore, the test cases must include representatives for every of the three equivalence

classes and possible 3 test sets can be:

 Test suite 1: {-5, 500, 6000}, Test suite 2: {-15, 900, 6020} and Test suite 3: {-3, 4999,

5100}.

©Daffodil International University 30

b) Boundary Value Analysis:

 A type of software error often occurs due to its distinct equality class boundaries. The

rationale behind this sort of input error is maybe psychological. Often programmers fail to

appear for special functions that need input values with different classes of equal classes.

for instance, Programmers use <= rather than <; or contrariwise <= for <. Boundary value

analysis ends up in equality class selection when performing experiments at different

boundary lines.

 Example: For a function that computes the root of integer values within the range

of 0 and 5000, the test cases must include the subsequent values: {0, -1,5000,5001}.

©Daffodil International University 31

5.7 White-Box Testing

Figure-5.4: White-Box Testing

 WHITE BOX TESTING (Also referred to as Clear Box Testing, Open Box

Testing, Glass Box Testing, Transparent Box Testing, Code-Based Testing, or

Structural Testing) could be a method of testing software that identifies the interior

structure / design / implementation of what's being tested. Software Tester.

 The so-called white-box test technique, if there are more defects than any other

technique, the first test is technically identified and the second test is technically

detected, and the second test method detects further types of errors. The two tests

are called complementary, with at least some of the errors being used to

differentiate between different errors.

 White-box test (also referred to as clear box) test box; Glass box test; transparent

box testing and structural testing method.

©Daffodil International University 32

 Example:

Consider the Euclid’s GCD computation algorithm:

int compute_gcd(x, y) {

int x, y;

while (x! = y) {

if (x>y)

x= x – y;

else

y= y – x;

}

return x;

}

 By choosing the test set {(x=3, y=3), (x=4, y=3), (x=3, y=4)}, we are able to

exercise the program such all statements are executed a minimum of once.

©Daffodil International University 33

CHAPTER 6

Software Maintenance and Maintenance Process Model

6.1 Software Maintenance

 Software maintenance could be a process of change that distributes software

products to customers.

 The main purpose of software maintenance is to update software applications after

distribution and to mend bugs and enhance performance.

 There are basically four varieties of software maintenance. These are:

a) Corrective

b) Adaptive

c) Preventive

d) Perfective

Figure-6.1: Types of Software Maintenance

©Daffodil International University 34

6.2 Maintenance Process Models

 Two broad categories of process models for software maintenance are often proposed.

Figure-6.2: Software Maintenance Process Model-1

 The first design was chosen for a project that included direct modifications to the code

and then minor document modifications that directly changed the code. This maintenance

process as shown within the Figure-6.2

©Daffodil International University 35

Figure-6.3: Software Maintenance Process Model-2

 The amount required to redo the second process for software maintenance may be a

priority for significant projects. This maintenance process as shown within the Figure-6.3

 Software reengineering may be a combination of software reverse engineering and

software forward engineering as shown within the Figure-6.3.

©Daffodil International University 36

6.3 Estimation of Approximate Maintenance Cost

Figure-6.4 Maintenance Cost Chart

 It is well-known that maintenance efforts for ordinary software products require about 60%

of the whole budget items.

 However, Maintenance costs has vary from application to application.

 Boehm [1981] proposed a formula for estimating maintenance costs as a part of his

COCOMO cost estimation model. Boehm's maintenance cost estimates are supported

what's called annual conversion traffic (ACT). Boehm identified the ACT as a part of a

product resource directory that creates changes during the regular year, either by adding or

deleting ACT.

 ACT = KLOC added + KLOC deleted

 KLOC total

 Here, KLOCadded is that the total kilo lines of ASCII text file added during maintancence.

 And, KLOCdeleted is that the total kilo lines of ASCII text file deleted during maintenance.

 Lastly the Maintenance cost = ACT x Development Cost.

©Daffodil International University 37

CHAPTER 7

Conclusion and Limitation

7.1 Conclusion and Limitation

Our district is a developing district. As a developing country, the Government of Bangladesh

aims to digitize all sectors. Therefore, it is necessary to acquire a lot of technical knowledge

based on automation. Basically it focuses on the process of automating software.

Technical books are not enough to gather knowledge. But when it comes to practical knowledge,

it strengthens our knowledge and gives us confidence.

It's a quick work experience for me. There was a lot to learn in the internship. Over the last four

to three months of NEXERP, we have adapted to our corporate and software environment and

have made every effort to achieve each of these goals.

Throughout my work, I have been involved in many types of software projects.

During the internship, I'm deploying. UAT I have gained a lot of experience in SQA and

business analysts by doing software testing and implementation activities such as user end

training. Then work from the bottom of the list to eliminate issues that aren't worth the fight.

©Daffodil International University 38

REFERENCES

[1] Software Engineering A practitioner’s Approach by Roger S.Pressman, 7th edition, McGraw Hill, 2010.

[2] Software Engineering by Ian Sommerville, 9th edition, Addison-Wesley, 2011

[3] FUNCTIONAL VS NON-FUNCTIONAL REQUIREMENTS: MAIN DIFFERENCES & EXAMPLES. Available at:

<<https://theappsolutions.com/blog/development/functional-vs-nonfunctional-requirements/>>

[4] Systems Analysis and Design, Kendall and Kendall, Fifth Edition

[5] Software Maintenance Models <<https://www.professionalqa.com/software-maintenance-models>>

[6] Chapter 9 software maintenance <<https://www.slideshare.net/abhinavtheneo/chapter-9-software-

maintenance>>

[7] Software Maintenance PPT By: Dr. R. Mall.<<https://slideplayer.com/slide/13871407/85>>

[8] Manual Testing by Hematestingstuff <<https://hematestingstuff.wordpress.com/manual-testing/>>

https://theappsolutions.com/blog/development/functional-vs-nonfunctional-requirements/
https://www.professionalqa.com/software-maintenance-models
https://www.slideshare.net/abhinavtheneo/chapter-9-software-maintenance
https://www.slideshare.net/abhinavtheneo/chapter-9-software-maintenance
https://slideplayer.com/slide/13871407/85
https://hematestingstuff.wordpress.com/manual-testing/

©Daffodil International University 39

Plagiarism Report

©Daffodil International University 40

©Daffodil International University 41

