

# Differential Gene Expression in Progression of Breast Cancer using Bioinformatics Approach

## Submitted by

Rakhi Moni Saha ID: 181-35-2416 Department of Software Engineering Daffodil International University

## Supervised by

Dr. Imran Mahmud Associate Professor, Head Department of Software Engineering Daffodil International University

This Project report has been submitted in fulfillment of the requirements for the Degree of

Bachelor of Science in Software Engineering.

© All right Reserved by Daffodil International University

#### APPROVAL

This thesis titled on "Differential Gene Expression in Progression of Breast Cancer using Bioinformatics Approach", submitted by Rakhi Moni Saha, ID: 181-35-2416 to the Department of Software Engineering, Daffodil International University has been accepted as satisfactory for the partial fulfillment of the requirements for the degree of Bachelor of Science in Software Engineering and approval as to its style and contents.

June

Chairman Dr. Imran Mahmud Associate Professor and Head Department of Software Engineering Daffodil International University

\_\_\_\_\_

2mmman

Examiner 1 Afsana Begum Assistant Professor Department of Software Engineering Daffodil International University

\_\_\_\_\_

Examiner 2 Tapushe Rabaya Toma Senior Lecturer Department of Software Engineering Daffodil International University

-----

it le 18tz

-----

Examiner Prof. Dr. Md. Saiful Islam Professor Institute of Information and Communication Technology (IICT) Bangladesh University of Engineering and Technology (BUET Internal

Internal

External

## THESIS DECLARATION

I announce hereby that I am rendering this study document under **Dr. Imran Mahmud**, **Associate Professor**, **Head**, Department of Software Engineering, **Daffodil International University**. I therefore state that this work or any portion of it was not proposed here therefore for Bachelor's degree or any graduation.

Supervised by:

June

**Dr. Imran Mahmud** Associate Professor, Head Department of SWE Daffodil International University

Submitted by:

Kakhi

**Rakhi Moni Saha** ID: 181-35-2416 Department of SWE Daffodil International University

## ACKNOWLEDGEMENT

First, I express our heartiest thanks and gratefulness to almighty God for His divine blessing makes us possible to complete the final year thesis successfully.

I really grateful and wish our profound our indebtedness to **Dr. Imran Mahmud**, **Associate Professor and Head in Charge**, Department of Software Engineering, Dhaka. Deep Knowledge & keen interest of our supervisor in the field of "*Data Science*" to carry out this thesis. His endless patience, scholarly guidance, continual encouragement, constant and energetic supervision, constructive criticism , valuable advice, reading many inferior draft and correcting them at all stage have made it possible to complete this project.

I would like to express our heartiest gratitude to Dr. Imran Mahmud, Head In-Charge of the Software Engineering faculty for his kind help to finish the thesis and also to other faculty member and the staff of SWE department of Daffodil International University.

I would like to thank our entire course mate in Daffodil International University, who took part in this discuss while completing the course work.

Finally, I must acknowledge with due respect the constant support and patients of my parents.

### ABSTRACT

Breast cancer is the most well-known malignancy among women. Cancer is spread by cells in the human body. This is caused by certain DNA and RNA sequence protein data. In RNA, a gene is similar to a protein chain. We're just looking at the RNA sequences of breast cancer patients in this study, and we're attempting to figure out which genes are active at each stage of the disease. Differentially expressed genes have been identified using differential gene expression analysis. AL158154.2, F10, ELOVL6, PPEF1, IGFBP6, PAX1, AC011893.1, TMED6, AC090877.2, FAM163A, HBG2, ITLN1, HBA2, ALAS2, IL17REL genes have been downregulated and AL158154.2, F10, ELOVL6, PPEF1, IGFBP6, PAX1, AC011893.1, TMED6, AC090877.2, FAM163A, HBG2, ITLN1, HBA2, ALAS2, IL17REL genes have been upregulated. Then we tried to explain the biological and molecular roles that led to the discovery of differentially expressed genes. The main concern of this study, trying to identify novel genes in each breast cancer stage which are responsible for this stage.

# **TABLE OF CONTENTS**

Contents

| THESIS DECLARATION                                                          | iii |
|-----------------------------------------------------------------------------|-----|
| ACKNOWLEDGEMENT                                                             | iv  |
| ABSTRACT                                                                    | v   |
| CHAPTER 1                                                                   | 1   |
| INTRODUCTION                                                                | 1   |
| CHAPTER 2                                                                   | 14  |
| LITERATURE REVIEW                                                           | 14  |
| Gene expression meta-analysis of potential metastatic breast cancer markers | 20  |
| CHAPTER 3                                                                   | 22  |
| RESEARCH METHODOLOGY                                                        | 22  |
| CHAPTER 4                                                                   | 32  |
| RESULTS AND DISCUSSION                                                      | 32  |
| CHAPTER 5                                                                   | 63  |
| CONCLUTION                                                                  | 63  |
| Reference                                                                   | 63  |

# LIST OF FIGURES

| FIGURES                                                    | PAGE NO |  |
|------------------------------------------------------------|---------|--|
| Figure 1: Upregulated and downregulated gene visualization | 33      |  |
| Figure 2: Upregulated and downregulated gene visualization | 34      |  |
| Figure 3: Significantly downregulated biological processes | 43      |  |
| Figure 4: Significantly upregulated biological processes.  | 50      |  |
| Figure 5: Significantly downregulated molecular functions  | 53      |  |
| Figure 6: Significantly upregulated molecular functions    |         |  |
| Figure 7: Significantly upregulated KEGG human pathways    | 57      |  |

## LIST OF TABLES

| TABLES                                                                                                                                                                                                                   | PAGE NO |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 1: Description of the TNM cancer classification system.                                                                                                                                                            | 8       |
|                                                                                                                                                                                                                          |         |
| Table 2 : Identified gene list from literature review                                                                                                                                                                    | 20      |
| Table 3: Summary of the important demographic and clinical features of<br>the dataset grouped by different sample types. Percentages of the subtypes,<br>prior treatments, and vital status are calculated within sample | 24      |
| Table 4: Stage wise data split                                                                                                                                                                                           | 25      |
| Table 5: R Library description of bioinformatics                                                                                                                                                                         | 29      |
| Table 6: Differentially expressed gene from this study                                                                                                                                                                   | 33      |
| Table 7: GO Biological process downregulated                                                                                                                                                                             | 42      |
| Table 8: GO Biological process upregulated                                                                                                                                                                               | 50      |
| Table 9: Go molecular function downregulated                                                                                                                                                                             | 52      |
| Table 10: Go molecular function upregulated                                                                                                                                                                              | 55      |
| Table 11: KEGG 2021 Downregulated                                                                                                                                                                                        | 56      |
| Table 12: KEGG 2021 upregulated                                                                                                                                                                                          | 57      |

#### CHAPTER 1 INTRODUCTION

#### 1.1 Background

Breast cancer is considered the most prevalent cancer in women and specifically the second most common cancer in the world. It is the leading cause of disability-adjusted life years (DALYs) in women across the world. About 1 in every 8 women at some point in their lives are affected and if it's caught early enough, there's a decent chance of recovery [1] The American Cancer Society (ACS) reports that the chance of dying from breast cancer is around 1 in 38 which is 2.6 %[2]. Breast cancer mortality did not change significantly from the 1930s to the 1970s. 2.3 million women were diagnosed with carcinoma and 6, 85,000 deaths worldwide in 2020, and 7.8 million women have been diagnosed with carcinoma in the previous five years. In nations where early detection programs were paired with multiple treatment choices to remove invasive sickness, survival rates began to improve in the 1980s. In Bangladeshi women, breast cancer is still the most frequent and deadly malignancy. According to the International Agency for Research on Cancer, over 13,000 women are diagnosed with breast cancer in Bangladesh each year, with over 7,000 dying [3].

Cancer is a condition in which some cells in the body grow out of control and spread to other regions of the body. It may begin practically anywhere in the billions of cells that make up the human body. Human cells normally expand and multiply (via a process known as cell division) to generate new cells as needed by the body. Cells die as they get old or injured, and new cells replace them. This ordered process can sometimes break down, resulting in aberrant or damaged cells growing and multiplying when they shouldn't. Tumors, which are masses of tissue, can grow from these cells. Tumors may or may not be malignant (benign). Cancerous tumors can infect adjacent tissues and spread to other parts of the body, resulting in the formation of new tumors (a process called metastasis). Malignant tumors are another name for cancerous tumors. Many malignancies, including leukemias, create solid tumors, whereas cancers of the blood do not. Benign tumors do not penetrate or spread into neighboring tissues. Benign tumors seldom reappear after being excised, although malignant ones do. However, benign tumors can grow to be extremely enormous. Some, such as benign brain tumors, can produce significant symptoms or even be fatal[4].

Breast cancer is a disorder in which the cells of the breast get uncontrollably large. There are several types of breast cancer. The kind of breast cancer is determined by which cells in the breast become cancerous. Breast cancer can start in a variety of places in the breast. Lobules, ducts, and connective tissue are the three primary components of a breast. The glands that generate milk are known as lobules. The ducts are tubes that transport milk from the breast to the nipple. Everything is held together by connective tissue, which is made up of fibrous and fatty tissue. Breast cancer usually starts in the ducts or lobules. Breast cancer can spread to other parts of the body via blood and lymph arteries. Breast cancer is considered to have metastasized when it spreads to other regions of the body. The most prevalent types of breast cancer are described below.

Invasive ductal carcinoma is a kind of cancer that spreads throughout the body. The cancer cells start in the ducts and spread outside of them to various regions of the breast tissue.

Invasive cancer cells can also travel to other places of the body, which is known as metastasis.

Invasive lobular carcinoma is a kind of cancer that spreads throughout the body. Cancer cells start in the lobules and then travel from the lobules to nearby breast tissues. These invasive cancer cells have the potential to spread throughout the body.

Other types of breast cancer, such as Paget's disease and ovarian cancer, are less prevalent. DCIS (ductal carcinoma in situ) is a kind of breast cancer that can progress to invasive breast cancer. The cancer cells have only spread to the duct lining and have not migrated to other breast tissues [5].

The human body has trillions of cells. The growth, maturity, division, and death of these cells are all controlled by a strictly regulated cell cycle. Normal cells divide more quickly in childhood to allow a person to grow. Cells divide once they reach adulthood to replace worn-out cells and repair injuries. The cellular blueprint, or DNA and genes, which are found within the nucleus, control cell division and growth. When cells in one section of the body begin to grow out of control, cancer develops. All types of cancer, regardless of origin, are caused by abnormal cell proliferation, which results in the formation of tumors and lesions.

Breast cancer is a cancerous tumor that begins in the breast cells. There are various factors that can increase the risk of breast cancer, just as there are for other cancers. Experiments have connected estrogen exposure to DNA damage and genetic abnormalities that can lead to breast cancer. Some people are born with abnormalities in their DNA and genes such as BRCA1, BRCA2, and P53. Those who have a family history of ovarian or breast cancer **3** | Page ©Daffodil International University

are more likely to develop breast cancer. Cancer cells and cells with damaged DNA are generally sought out and destroyed by the immune system. Failure of such a strong immune defense and monitoring system could lead to breast cancer [6]. The third and last stage of tumor growth is tumor progression. The tumor cells' growth rate and invasiveness both accelerate during this period. Phenotypical alterations occur as a result of the progression, and the tumor becomes more aggressive and has a higher malignant potential.

The spread of cancer cells from the main tumor to surrounding tissues and distant organs is known as metastasis, and it is the leading cause of cancer morbidity and death. It is believed that 90 percent of cancer fatalities are caused by metastasis. In more than 50 years, this estimate hasn't altered much. Metastasis is made up of a succession of interconnected phases. Cancer cells must detach from the initial tumor, intravasate into the circulatory and lymphatic systems, avoid immune response, extravasate at distant capillary beds, then infiltrate and proliferate in distant organs to complete the metastatic cascade. Metastatic cells also create a microenvironment that promotes angiogenesis and proliferation, culminating in macroscopic secondary tumors that are malignant. Despite the fact that systemic metastasis is responsible for over 90% of cancer deaths, most cancer research does not include metastasis in the in vivo condition. The fact that around 1,500 individuals die from cancer every day demonstrates the disease's failure to be managed once it has spread throughout the body [7].

Cancer is a genetic illness, meaning it is caused by alterations in genes that regulate how our cells behave, particularly how they divide and develop. Cancer cells, on average, exhibit more genetic alterations than healthy ones. However, each person's cancer has a

unique set of genetic mutations. Some of these alterations might be the effect rather than the cause of cancer. Additional alterations will occur as the malignancy progresses. Cancer cells may have diverse genetic alterations even within the same tumor.

TP53, which generates a protein that inhibits tumor development, is the most often altered gene in all malignancies. Furthermore, germline mutations in this gene can induce Li-Fraumeni syndrome, a rare genetic condition associated with an increased risk of some malignancies.

Hereditary breast and ovarian cancer syndrome is characterized by an elevated lifetime risk of breast and ovarian cancers in women due to inherited mutations in the BRCA1 and BRCA2 genes. This condition has been linked to a variety of malignancies, including pancreatic and prostate tumors, as well as male breast cancer.

PTEN is another gene that creates a protein that inhibits tumor development. Cowden syndrome is a hereditary illness in which mutations in this gene increase the risk of breast, thyroid, endometrial, and other forms of cancer [8].

Six biological characteristics developed throughout the multistep evolution of human malignancies are the hallmarks of cancer. The hallmarks serve as a framework for understanding the intricacies of neoplastic illness. Maintaining proliferative signals, evading growth suppressors, resisting cell death, enabling replicative immortality, initiating angiogenesis, and activating invasion and metastasis are only a few of them. Genome instability, which creates the genetic diversity that speeds up their acquisition, and inflammation, which supports many hallmark activities, are at the root of these hallmarks. Reprogramming of energy metabolism and escaping immune destruction are two key  $5 \mid Page$ 

features of potential universality that have emerged in the previous decade. Tumors have additional layer of complexity in addition to cancer cells: they comprise a collection of recruited, presumably normal cells that help to the acquisition of characteristic qualities by forming the "tumor microenvironment." The general application of these principles will progressively influence the development of novel cancer treatments for humans [9].

The stage of your cancer relates to how far it has spread and how large the tumor is. The TNM classification system is the most extensively used cancer classification method. The TNM system is the most common way for hospitals and medical institutes to report cancer. The TNM system is as follows the T stands for the major tumor's size and extension. The major tumor is frequently referred to as the main tumor. Then the N stands for the number of cancerous lymph nodes in the area. Lastly, the M indicates whether or not the malignancy has spread. This indicates that cancer has gone beyond the initial tumor and into other regions of the body. When the TNM system is used to characterize your cancer, there will be numbers following each letter that provide more information, such as T1N0MX or T3N1M0. The meanings of the letters and digits are explained in the following:

| The primary tumor (T)   | Lymph nodes in the region (N)  | Distant metastasis is a term   |
|-------------------------|--------------------------------|--------------------------------|
|                         |                                | that refers to the spread of   |
|                         |                                | cancer cells (M)               |
|                         |                                |                                |
|                         |                                |                                |
| TX: There is no way to  | NX: Cancer in adjacent lymph   | MX: Metastasis is impossible   |
| quantify the main       | nodes is impossible to detect. | to quantify.                   |
| tumor.                  |                                |                                |
|                         |                                |                                |
|                         |                                |                                |
| T0: The primary         | N0: There is no malignancy in  | M0: There has been no spread   |
| tumor has not been      | the lymph nodes in the area.   | of cancer to other sections of |
| located.                |                                | the body.                      |
|                         |                                |                                |
|                         |                                |                                |
| T1, T2, T3, T4: The     | N1, N2, N3: Indicates the      | M1: The cancer has spread      |
| size and/or extent of   | number and location of cancer- | throughout the body.           |
| the primary tumor is    | bearing lymph nodes. The       |                                |
| indicated by these      | greater the number following   |                                |
| letters. The larger the | the N, the more cancerous      |                                |
| tumor or the more it    | lymph nodes there are.         |                                |
| has expanded into       |                                |                                |
| neighboring tissues,    |                                |                                |
| the higher the number   |                                |                                |

| following the T. T's  |  |
|-----------------------|--|
| can be subdivided     |  |
| further to offer more |  |
| information, such as  |  |
| T3a and T3b.          |  |
|                       |  |
|                       |  |

Table 1: Description of the TNM cancer classification system.

The TNM system aids in the detailed description of cancer. But TNM combinations are classified into five less-detailed phases for various malignancies. These are Stage 0 Abnormal cells exist, but they have not spread to adjacent tissue. Also known as carcinoma in situ (CIS). CIS is not cancer, but it has the potential to become cancer. Then cancer in stages I, II, and III are present. The larger the cancer tumor and the more it has spread into neighboring tissues, the higher the number. The cancer has spread to other places of the body at this stage IV.

Another cancer staging method, which is used for all forms of cancer, divides the disease into five categories. Cancer registries utilize this staging method more frequently than doctors. However, our doctor may still refer to our cancer in one of this ways. Abnormal cells are present in situ, but they haven't disseminated to surrounding tissue. Cancer is localized- it only affects the area where it began, with no signs of spreading. Cancer has spread to adjacent lymph nodes, tissues, or organs on a regional level. Cancer has spread to sections of the body that are far away. Unknown- There is insufficient information to determine the stage [10].

Gene expression profiling is a helpful method for predicting and investigating toxicity processes. For transcriptional profiling, RNA-Seq technology has expanded as a viable alternative to standard microarray systems. When compared to microarrays, RNA-Seq detected more differentially expressed protein-coding genes and gave a larger quantitative range of expression level alterations. Both platforms found a greater number of genes that were differentially expressed (DEGs) [11].

RNA sequencing (RNA-Seq) is quickly displacing microarrays for gene expression profiling due to its increased accuracy and sensitivity. How to find a collection of transcripts that are differently expressed under distinct experimental circumstances is one of the most prevalent questions in a standard gene profiling investigation. With or without adjustments, several of the statistical approaches established for microarray data processing may be used to RNA-Seq data. Several new approaches designed exclusively for RNA-Seq data sets have recently been created.

Transcriptomics holds the key to understanding how the genome's information is translated into cellular activities, as well as how this translation process responds to changes in the environment. One of the outstanding questions in transcriptomics is to accurately quantify the abundance of each transcript within different tissues and time points, and to correlate changes in abundance to genetic and environmental perturbation in order to understand genome function and adaptation, given a transcriptome, which is a collection of all transcripts including both protein coding mRNAs and noncoding RNAs.

The method used to estimate the steady state abundance of each transcript within a transcriptome is known as transcriptome profiling or gene expression profiling. Traditional

transcriptome profiling methods include quantitative RT-PCR for a few genes, or microarrays or whole genome tiling arrays for genome-wide transcriptional activity. Because of its remarkable sensitivity and accuracy (reviewed in), transcriptome profiling by RNA sequencing (RNA-Seq) has recently been the method of choice as a result of the cheap cost of next generation sequencing technology. Next-generation sequencing methods, unlike previous technologies, allow reference transcriptomes to be constructed directly from RNA-Seq data, obviating the requirement for existing reference genomes or transcriptomes. This feature is especially appealing to non-model species or microbial communities that lack high-quality references [12].

The identification of a limited number of gene signatures that define cancer phenotypes in relation to their prognosis is an important application of gene expression profile analysis. Breast cancer metastasis to different parts of the body and to different phases of metastasis can be connected to genes. IL3RA2, VCAM1, and MMP2 have been linked to aggressive breast cancer metastasis to the lung, whilst ST6GLANAC5 is a particular facilitator of breast cancer metastasis to the brain, and cytokeratin-19 has been discovered as a possible marker of breast stem cells. Nm23, KAI1, and BRMS1 are tumor suppressors connected to the prevention of tumor cells detaching from main tumors, whereas KISS1 and MKK4 are linked to decreased growth at secondary locations. Secreted phosphoprotein 1 (SPP1), S100 calcium binding proteins A4 (S100A4), and S100P and anterior gradient 2 (AGR2), a subgroup of metastasis-inducing proteins (MIPs), have also been shown to be overexpressed in patients with sporadic and metastatic breast cancer, and are linked to decreased patient survival. As a result, the up- and down-regulation of discovered gene signatures may be used to predict prognosis [13].

10 | Page

Gene expression that reacts to inputs or triggers; a gene regulatory mechanism. The biological mechanisms that decide which genes in a cell are actively transcribed and translated into mRNA and proteins, and under what circumstances is called differential gene expression [14].

#### **1.2 MOTIVATION OF THE RESEARCH**

Breast cancer, as stated before, is one of the most prevalent cancers worldwide, and the single most important factor of death from this type of cancer is the cancer metastasis. As the cancer progresses, there is often less chance of survival for the patients. Different types of genetic alterations are usually responsible for cancer progression. High throughput RNA-Seq technology is leveraged to measure gene expressions in cells of different conditions. Identification of novel genes that are differentially expressed in specific stages might open more opportunities to prevent cancer progression as these genes can often be used as therapeutic targets.

TCGA-BRCA is a project where thousands of breast cancer patients were recruited and their gene expression patterns of cancer tissue and normal tissue were profiled. Previous studies have mostly analyzed genes that are differentially expressed between normal tissue and cancer tissue. Some studies have analyzed differentially expressed genes between different stages of cancers. However, no study, to the best of my knowledge, has leveraged the vast dataset that was generated by the TCGA-BRCA project yet.

### **1.3 PROBLEM STATEMENT**

The actual pathophysiology of metastasis is still poorly understood. One of the ways to elucidate the changes that tumor cells go through to reach metastasis is to measure the gene expression pattern of the cells and identify the genes that are differentially expressed in each stage. In this study, we conducted a differential gene expression analysis to unearth the genes that are differentially expressed in each stage and to discover their biological and molecular functions.

## **1.4 RESEARCH QUESTIONS**

The research questions of this study is as follows:

- 1. Is there any novel gene that contributes to tumor progression?
- 2. If any, what are the molecular and biological functions of those genes?

## **1.5 RESEARCH OBJECTIVE**

The main objective of this research is to find out novel differentially expressed genes from stage one to four of breast cancer. The secondary objective of this study is to elucidate the biological and molecular functions these genes play.. The main objectives are as follows:

- To collect and preprocess RNA-Seq count data of breast cancer tissues from the TCGA-BRCA project.
- To perform differential gene expression analysis to identify novel genes that are expressed specifically in each stage of cancer.
- To elucidate the biological and molecular functions of the identified differentially expressed genes.

#### **1.6 RESEARCH SCOPE**

The main scope of this research is as follows:

### **1.7 THESIS ORGANIZATION**

A section on differential gene expression in breast cancer progression, breast cancer statistics, stage, the context behind the study, motivation for the research, issue description, research questions, and research purpose are presented in the first chapter. The following are the other elements of our research:

We will examine the literature review in our next chapter, where we will look at some previous research works on the same topic of differential gene expression, their methods, and shortcomings, as well as a comparison between my work and theirs. We shall detail our work's technique in their chapter. We will address data gathering, data pre-processing, and analysis as part of our work technique. In chapter four, the methodology's findings will be detailed. The final chapter is the chapter that brings the document to a close. We will now go to the conclusion section, where we will provide a complete summary of our efforts. We have said about what work we will undertake in the future to improve our work.

## CHAPTER 2 LITERATURE REVIEW

#### **2.1 INTRODUCTION**

A researcher evaluates past work, research, conference papers, books, articles, and so on in a literature review. With this, one may find out what work has previously been done on the issue, summarize the entire topic, and determine what parts of the work are needed. They can work on restrictions and overcome them after evaluating to achieve better outcomes.

#### 2.2 BREAST CANCER PROGRESSION

In situ gene expression patterns of human breast cancer in the premalignant, preinvasive, and invasive phases were studied by Xiao-Jun Ma[15] and colleagues. They gathered all gene information on breast cancer patients from the PNAS website for their investigation. The Massachusetts General Hospital provided all of the sample data. Data was filtered and normalized using the Cy3 and Cy5 channels. They employed hierarchical clustering in GENMATHS to analyze the data, which was based on the correlation coefficient between two genes, and linear discriminant analysis inside GENMATHS. For statistical analysis, the Bioconductor software is also employed. Based on early microarray study, they chose CRIP1, IFI-6–16, PNMT type 3 gene for up regulation and ELF5, NDRG2 type 2 gene for down regulation. In this work, they used a combination of laser capture microdissection, RNA amplification, and microarray technology to create epithelium specific, in situ gene expression profiles of breast cancer in the premalignant, preinvasive, and invasive phases. A group of genes was revealed with quantifiable expression levels that correlated with advanced tumor grade and the transition from DCIS to IDC. The gene RRM2 has been identified as being associated with advanced cancer stage and tumor grade. RRM2 also works with a variety of oncogenes to enhance malignancy and the potential for metastatic spread. RRM2 might thus have a dual function in sustaining fast cell proliferation while simultaneously boosting invasive growth behavior, linking increased tumor grade to the DCIS-IDC transition.

Xiao-Jun Ma[16] and colleagues found that progression from normal breast tissue to ductal carcinoma in situ (DCIS) to invasive ducal carcinoma (IDC) was accompanied by gene expression changes in all cell types within the tumor microenvironment, indicating that these cell types all play a role in tumorigenesis. They compared global gene expression changes in the stromal and epithelial compartments during the course of breast cancer from normal to preinvasive to invasive ductal carcinoma. All of the breast cancer samples were collected from the Massachusetts General Hospital between 1998 and 2001 as fresh-frozen

14 | Page

biopsies. Patients were chosen based on the availability of patient-matched normal and tumor samples, as well as the absence of fibrocystic alteration in the normal breast lobules. They analyzed 14 patient-matched normal epithelium, normal stroma, tumor epithelium, and tumor related stroma tissues using laser capture microdissection and gene expression microarrays. Gene ontology and differential gene expression studies were carried out. During cancer development, tumor-associated stroma experiences substantial gene expression alterations, similar to those found in the malignant epithelium. Extracellular matrix components, matrix metalloproteases, and cell-cycle-related genes are among the highly elevated genes in the tumor-associated stroma. Both the tumor epithelium and the stroma showed decreased expression of cytoplasmic ribosomal proteins and increased expression of mitochondrial ribosomal proteins. Increased expression of numerous matrix metalloproteases followed the change from preinvasive to invasive growth (MMP2, MMP11 and MMP14). Furthermore, in the stroma, a gene expression signature of histological tumor grade exists, with high-grade tumors linked with increased expression of genes implicated in immune response, as seen in malignant epithelium. They concluded by claiming that the tumor microenvironment is involved in carcinogenesis even before tumor cells breach the stroma, and that it may play a key role in the shift from preinvasive to invasive growth. Malignant epithelial cells in high-grade tumors may use immune cells in the tumor stroma to promote aggressive invasive development.

Ana Cristina Vargas and Et Al[17] team published a report on gene expression analysis of tumor epithelial and stromal compartments during breast cancer development. They found gene expression profiling in 87 formalin-fixed paraffin-embedded (FFPE) samples from 17 patients, which included matched IDC, DCIS, and three types of stroma: IDC-S (three millimeters from IDC), DCIS-S (three millimeters from DCIS), and breast cancer associated-normal stroma [ten millimeters from IDC or DCIS]. Quantitative real-time PCR, immunohistochemistry, and immunofluorescence were used to confirm differential gene expression analyses. In comparison to normal stroma from reduction mammoplasties, the expression of numerous genes was down-regulated in cancer patients' stroma. They also carried out experiments on molecules involved in extracellular matrix remodeling, including as COL11A1, COL5A2, and MMP13, which were shown to be differently expressed in DCIS and IDC. In comparison to DCIS, COL11A1 was overexpressed in IDC, and it was expressed by both the epithelial and stromal compartments, but it was concentrated in invading neoplastic epithelial cells. The Human Research Ethics Committees at the Royal Brisbane and Women's Hospital (RBWH), Uniting HealthCare (The Wesley Hospital), and The University of Queensland gave their authority to access fresh frozen and Formalin fixed paraffin embedded samples locally. They utilized 17 individuals with invasive ductal carcinoma or mixed ductal lobular carcinoma. The WG-DASL test was utilized to explore gene expression pattern alterations to address the clinically significant scenario of progression from DCIS to IDC and the role performed by both the epithelial and stromal compartments in this process utilizing limma Bioconductor software packages using R. There were 58 genes that were differently expressed between IDC and DCIS, with 42 and 16 genes being up- and down-regulated in DCIS, respectively, 15 | Page ©Daffodil International University

as compared to IDC. Finally, they hypothesized that these expression alterations may aid in the shift from in situ to invasive malignancy, indicating a pivotal phase in disease progression.

The researchers used a meta-analysis of data on gene expression in metastatic and primary breast cancer tumors to validate putative prognostic and therapeutic indicators. R. That was accomplished with the help of Bell and Et Al [18]. The Genevestigator (Nebion) database was used to pull data on relative gene expression values from 12 studies on primary breast cancer and breast cancer metastasis. They employed Genevestigator software and Ingenuity technologies for the analysis. Genevestigator is a program that finds genes that are up- or down-regulated in response to a collection of perturbations. Gene sets that were differently expressed among distinct breast cancer neoplasms were identified using the conditions tool. Co-expressed gene connections computed from array data are provided by this software similarity search tool. Then, using the Ingenuity tool, the regulators upstream of the gene set were identified, and the relational functional networks were reconstructed.

Their findings reveal that transcriptional expression of the COX2 gene is dramatically downregulated in metastatic tissue relative to normal breast tissue, but not in initial tumors, and might be exploited as a differential marker in metastatic breast cancer diagnosis. When compared to primary breast cancer, RRM2 gene expression is lower in metastases, suggesting that it might be used as a marker to track breast cancer progression. MMP1, VCAM1, FZD3, VEGFC, FOXM1, and MUC1 were also shown to have significantly altered expression in breast neoplasms compared to normal breast tissue, indicating that they might be used as breast cancer onset indicators. COX2 and RRM2 are considered to be major indicators for breast cancer metastasis, they concluded. The interaction of upstream regulators of genes differentially expressed in initial breast tumors and metastasis points to p53, ER1, ERB-B2, TNF, and WNT as the most promising regulators for new complex pharmacological treatment interventions in breast cancer metastatic progression.

The transition of ductal carcinoma in situ to invasive breast cancer is linked to EMT and myoepithelia gene expression patterns, according to Erik S. Knudsen[19] and colleagues. To establish important gene expression patterns in either the epithelium or stromal compartment associated with disease development, laser capture microdissected tissue from pure DCIS and pure IBC was used. Each tissue has its own gene expression profile, and a DCIS/IBC classifier correctly separated DCIS from IBC in numerous data sets. They also discovered that the epithelial compartment, rather than the stroma, had the most significant changes in gene expression. The tumor repository at Thomas Jefferson University provided DCIS and IBC cases. The nuclear grade of DCIS was divided into three categories: low, middle, and high. IBC histological grade was determined using the Nottingham classification. The estrogen receptor, progesterone receptor, and HER2 status of DCIS and IBC were compared. Data was filtered to remove probesets with no gene annotation before analysis, and genes with multiple probesets were handled by averaging

16 | Page

their rows and scaling by the probeset with the biggest standard deviation. Unless otherwise stated, all further analysis was carried out in Matlab. GEO data set GSE33692 has been deposited. To identify trends in the microarray data, genes with variance in the top 25% percentile were employed for both principal component analysis and hierarchical clustering. Principal component analysis was used on all samples, and the second, third, and fourth components were plotted as functions of the first component to see whether there were any natural separations that may be linked to sample tissue features. Using Pearson's correlation distance metric and average linkage, hierarchical clustering was done on both genes and samples. Then, using a two-sample t test with unequal variance, differential gene expression analysis for IBC vs DCIS samples was done inside the epithelial and stromal samples to identify genes related with progression within each of these compartments. Following this filtering phase, statistical analysis of microarrays (SAM), an alternate approach for differential gene expression analysis, was utilized to get a better estimate of the FDR, which was calculated by randomly permuting samples in the dataset. The Gene Expression Omnibus provided series matrix files and annotation for gene expression datasets GSE3893, GSE14548, and GSE26304. Psuedo-expression signatures in each GEO dataset were established by median-centering gene expression profiles, multiplying the median-centered profiles for downregulated genes by -1, and taking the average across all genes for the epithelial and stromal differential gene sets. To find commonalities between expression profiles in our microarray dataset and previously published disease progression/invasion gene sets, we employed the gene set enrichment analysis software tool. In addition, utilizing the database for annotation, visualization, and integrated discovery, functional enrichment analysis of the highest differentially expressed genes in the epithelial compartment was done. These findings suggest that variations in gene expression associated with invasive phenotype are especially important in the development of DCIS to invasive breast cancer.

Breast cancer-derived stromal fibroblasts revealed a specific gene expression pattern that distinguished them from normal breast stroma, according to Christian F. Singer and Et Al[20]. Using a 2,400 gene cDNA array, stromal fibroblasts derived from malignant tissue of ten women with invasive breast cancer and normal breast tissue of ten women with benign breast diseases were exposed to differential complementary DNA Microarray Analysis. RT-PCR was used to confirm individual gene expression patterns. In fibroblasts from malignant breast tumors, the mRNA expression of 135 genes was elevated more than 2 fold in a cDNA array that allows for the analysis of differential gene expression of more than 2,400 genes. The bulk of these genes code for cytokines that promote tumor growth, transcription factors, and cell-matrix proteins. 110 genes had their mRNA expression reduced by less than 0.5 fold. The remaining 2,155 genes were not changed in any way. The validity of the pooled gene expression profile was validated by RT-PCR on individual biopsies from breast cancer and normal breast tissues. Even in the absence of neighboring malignant epithelium, they found elevated expression of tumor promotion-associated

genes, suggesting that tumor stroma has a fibroblastic subpopulation that offers a milieu that promotes tumor development and invasion.

In around 30% of human breast tumors, the proto-oncogene HER2/neu is amplified and overexpressed. This occurrence has been linked to a more aggressive phenotype in several studies. Using cDNA microarrays, Katherine S. Wilson[21] and his colleagues sought to identify genes associated with the aggressive phenotype of HER2/neu-positive breast cancer cells. Three HER2/neu-positive and three HER2/neu-negative breast cancer cell lines were used to extract RNA. For cDNA microarray analysis, ten breast carcinomas were chosen from the ICRF frozen breast cancer repository. Following surgical excision, the tumors were kept at 80°C for 8 to 10 years. All of them were diagnosed as invasive ductal carcinomas, with half of them being HER2/neu-positive. To focus on the HER2/neu pathway, they mostly employed ER positive primary tumors. For frozen section IHC, a second slice of each tumor was employed. Cell culture, tissue, RNA isolation, cDNA Microarray Hybridization, Northern Blot Analysis, and Immunohistochemistry (IHC) were employed in the analysis section. Many of the differently expressed genes have never been linked to human neoplasia before, and some of them might be new tumor suppressor or oncogenes. In cell lines and carcinomas with high HER2/neu protein levels, no genes were up-regulated, and only a few genes were down-regulated. Acidic coiled coil containing protein 1, glycogen phosphorylase BB, complement 1q, and one EST were among them. Finally, they asserted that R2/neu has emerged as a critical breast cancer biomarker since it predicts a more aggressive clinical phenotype and corresponds with a tumor's response to systemic treatment.

Shreshtha Malvia[22] and colleagues identified gene expression patterns in breast tumors from the Indian subcontinent in this work, shedding information on the pathways and genes linked to breast tumorigenesis in Indian women. They obtained 97 patient specimens who had already been histologically verified to be breast cancer patients. The data for this study came from the Indraprastha Apollo Hospital in New Delhi, India, which had been tracking breast cancer for four years. They utilized the limfit tool from the limma package for statistical analysis, and the Bioconductor package R for all forms of analysis. Microarray gene expression profiling, microarray data processing, and statistical analysis are examples. Cluster software was used to perform unsupervised hierarchical clustering on the DEGs. The adjusted probe intensities were centered on the median, Pearson correlation was used to quantify similarity, and centroid linkage clustering was done. The clustering image was also seen using JavaTree View Software. Pathway Express software was used to do gene ontology analysis. The KEGG (Kyoto Encyclopedia of Genes and Genomes) database was used to identify specific pathways for differentially expressed genes. Gene Set enrichment analysis software was also employed to get insight into the top 50 DEGs and create a heatmap. Protein-protein interaction networks were predicted using a search function for Recurring Instances of Neighboring Genes in the network analysis program 'NetworkAnalyst.' COL10A1, COL11A1, MMP1, MMP13, MMP11, GJB2, and CST1 were overexpressed genes during breast cancer, while PLIN1, FABP4, LIPE, AQP7, LEP, ADH1A, ADH1B, and CIDEC were under expressed genes. They also discovered a hub gene that interacts with the PPI network. AURKB, CENPA, TOP2A, BUB1, CCNB2, MMP1, and SPP1 were among them. The metastatic cycle is controlled by hub genes. Finally, they argued that their resources for this study were restricted, and that they could not investigate the entire Indian continent[24].

## 2. 3DIFFERENTIAL GENE EXPRESSION

In this section, I tried to show gene list which is differentially expressed during breast cancer.

| Paper Name                   | Identified Gene                                            |
|------------------------------|------------------------------------------------------------|
| Gene expression profiles of  | IDH2, FLJ10540, KNSL1, ANKT, PRO2000, 2810433K01,          |
| human breast cancer          | RAD51, UBE2C, ANLN, PMSCL1, STK15, CENPA, PSMD12,          |
| progression                  | EST, TOPK, UBE2N, S100A10, TCEB1, EST, <b>RRM2,</b> TOP2A, |
|                              | CML66, FLJ10468, KIAA0165, PLK, TACC3, RTN4, EST,          |
|                              | NEK2, MGC2721, EST, CDKN3, RACGAP1, MGC2577,               |
|                              | RRM2, BUB1, BIRC5, CKS2                                    |
| Gene expression profiling of | S100P, CYB561, SCD, RRM2, CNTNAP2, HIST1H1C, IFI27,        |
| the tumor microenvironment   | HIST1H2BD, CDC2, RAB31, RRM2, HIST1H2BC, MELK,             |
| during breast cancer         | IFI6, IFIT1, NAT1, DHRS2, HIST1H2BC, RAB31, CYP2B6,        |
| progression                  | RAB31, CEACAM6, GPC1, CAPN13, ID4, GPM6B, DMN,             |
|                              | FOXC1, SPARCL1, ROPN1, KRT15, PHLDA1, LOC728264,           |
|                              | CX3CL1, RGS2, GABRP, SOSTDC1, BOC, C2orf40, PHLDA1,        |
|                              | C13orf15, KIT, HOXA9, WIF1, ID4, ELF5, SFRP1, DMD,         |
|                              | SLC6A14                                                    |
| Gene expression profiling of | SOX10, SFRP1, KRT14, ECRG4, CA4, KLK5, ODZ2, KRT5,         |
| tumour epithelial and        | ZBTB16, SCARA5, INMT, KLK7, CNN1, ALDH1A2, KRT17,          |
| stromal compartments         | FMO2, KRT6B, OSR1, COL17A1, OR5P3, RNF39, MYH11,           |
| during breast cancer         | MEOX1, SNCA, ABCA6, FREM1, MGLL, PAMR1, ALOX15B,           |
| progression                  | APOD, ZNF502, CDC14A, SDK2, CPXM2, TTC21B, LOXL4,          |
|                              | ALPL, CAPN11, KLF8, ARSH, ADRB2, SNAPC1, COL5A2,           |
|                              | PLAU, MZT1, ULK3, TTPAL, SGSM3, COL22A1, COL8A1,           |
|                              | MMP13, GLIS3, COL12A1, GPC6, GRM8, COL10A1, GRM4,          |
|                              | COL11A1, IDC-S versus RM-NS, ABCB1, EFCBP1, FAHD1,         |
|                              | TUBB3, CXCR4, FLVCR2, MRAP2, CREB3L1, HIST1H2BM,           |
|                              | USP19, DCIS-S versus RM-NS, ABCB1, EFCBP1, MRAP2,          |
|                              | USP19, FAHD1, BC-NS versus RM-NS, ABCB1, ABCB1,            |
|                              | USP19                                                      |

| Gene<br>expression<br>meta-<br>analysis of<br>potential<br>metastatic<br>breast cancer<br>markers                                            | GPX8, FST, LOX, PXDN, EHD2, HNRNPM, ATP6, DCAF6, ND2, ND3, GTSE1, HJURP, KIF2C, MKI67, TPX2, DLGAP5, DLGAP5, CCNA2, UBE2C, KIF4A, ELF3, AGR2, PIGR, TMC4, RASEF, TMC5, SLC44A4, KRT19, TSPAN1, C9orf152, ST6GALNAC1, LOC100505989, KIAA0101, TOP2A, ZWINT, DTL, CCNB2, DLGAP5, DLGAP5, MELK, BIRC5, ASPM, NUF2.                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Differential gene expression<br>profile in breast cancer-<br>derived stromal fibroblasts                                                     | GM-CSF, PEDF, K-ras oncogene protein, EF-Ts, Ribosomal protein S12, GNAQ, 63 kDa protein kinase related to rat ERK3, Clock, Dihydrodiol dehydrogenase, Protein tyrosine phosphatase (PTPase), Osteoblast-specific factor-2 (OSF-2p1)                                                                                                                                                                                                                                                                                                                    |
| DifferentialGeneExpressionPatternsinHER2/neuPositiveand -NegativeBreastCancerLinesandTissues                                                 | EST, Smooth muscle myosin heavy chain isoform Smemb, EST,<br>Vesicle trafficking protein, EST, EST, KIAA0465, KIAA0461,<br>Spleen tyrosine kinase, EST, EST, EST, EST, EST, Max, EST,<br>Rab13, Stanniocalcin 2, EST                                                                                                                                                                                                                                                                                                                                    |
| Identification of key genes<br>and pathways by<br>bioinformatics analysis with<br>TCGA RNA sequencing<br>data in hepatocellular<br>carcinoma | AURKB, AURKA, FOS, CCNB2, BIRC5, PLK1, CDC20,<br>CCNB1, TOP2A, CDK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Combining Serial Analysis<br>of Gene Expression and<br>Array Technologies to<br>Identify Genes Differentially<br>Expressed in Breast Cancer1 | <ul> <li>Mucin, Claudin-7, B94, HER2/neu, Neurosin, Zn-a-2-GP, Thrombospondin, NGAL/Lipocalin 2, EST, EST,</li> <li>Mucin, HER2/neu, Claudin-7, EST, NGAL/Lipocalin 2, Cytochrome B561, B94, EST, EST, EST,</li> <li>Spr1, GST-pi, EST, Ataxia telangiectasia group D, Integrin a-6, RIG like 7-1, Heparin binding protein, Cyclin D2, MEN1 region epsilon/beta, Plakophilin,</li> <li>Spr1, EST, GST-pi, Ataxia telangiectasia group D, RIG like 7-1, Integrin a-6, Heparin binding protein, Cyclin D2, Serine protease PRSS11, Plakophilin</li> </ul> |

Table2: Identified gene list from literature review

## 2.4 FUNCTIONAL ENRICHMENT ANALYSIS

Functional enrichment analysis is a technique for identifying gene or protein classes that are over-represented in a large collection of genes or proteins that may be linked to disease characteristics. This strategy use statistical approaches to identify gene groupings that are strongly enriched. DNA microarrays or RNA-Seq are still used in GSEA to compare two separate categories, but this time the focus is on a gene set rather than a single gene in a big list. Researchers look to see if the majority of the genes in the collection are found at the extremities of the list: The major variances in expression between the two categories are represented at the top and bottom of the list. If a gene set is over-expressed or underexpressed, it is thought to be associated to phenotypic variations. The following are the general steps of Creative Proteomics' enrichment analysis:

- Calculate a p-value for the number of times the proteins in the set are overrepresented at the top or bottom of the list.
- The p-value is used to determine the statistical significance of a node or route.
- For multiple hypothesis testing, the P-value for each set is standardized, and a false discovery rate is determined.

# **2.5 CONCLUSION**

There are a variety of ways that may be employed. They used a variety of techniques to identify expressed genes in tumor and non-tumor patients, including the Bioconductor package, microarray analysis, differential gene expression analysis, and so on. In this study, I also attempted to identify genes that are differently expressed in breast cancer from stage I to IV.

## CHAPTER 3 RESEARCH METHODOLOGY

## **3.1 DATA SOURCE**

The Cancer Genome Atlas (TCGA) is a government-funded project whose goal is to produce a comprehensive "atlas" of cancer genomic profiles by cataloging and discovering key cancer-causing genetic changes. Actually this is the assembled project of the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). The TCGA framework is well-organized, with numerous cooperating centers in charge of sample collection and processing, followed by high-throughput sequencing and sophisticated bioinformatics data analytics. To begin, several Tissue Source Sites (TSSs) collect and send the needed biospecimens (blood, tissue) from qualified cancer patients to the Biospecimen Core Resource (BCR). The BCR then catalogs, processes, and verifies the quality and quantity of samples before sending clinical data and metadata to the Data Coordinating Center (DCC) and providing molecular analytes to Genome Characterization Centers (GCCs) and Genome Sequencing Centers (GSCs) for further genomic characterisation and high-throughput sequencing. The DCC is then used to store sequencerelated data. The Genome Characterisation Centers also send trace data, sequences, and alignment maps to the Cancer Genomics Hub (CGHub), which is a secure repository run by the National Cancer Institute. Genome Data Analysis Centers and the research community have access to the genetic data created (GDACs). To encourage greater utilization of TCGA data, the GDACs give novel information-processing, analysis, and visualization tools to the entire scientific community. Furthermore, the data generated by the TCGA Research Network is centralized at the DCC and entered into public free-access databases (TCGA Portal, NCBI's Trace Archive, CGHub), allowing scientists to access cancer datasets on a continuous basis and accelerate cancer biology and related technologies advancements.

To characterize molecular profiles of human breast tumors, researchers used data from genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing, and RPPA. The existence of four main breast cancer classes was confirmed, as expected, by results from various platforms. TBX3, RUNX1, CBFB, AFF2, PIK3R1, PTPN22, PTPRD, NF1, SF3B1, and CCND3 were discovered as novel, significantly altered genes, in addition to nearly all previously implicated genes in breast cancer. The luminal A subtype had the lowest overall mutation rate, while the basal-like and HER2-positive subtypes had the highest. Genomic characterisations were also used to identify potential druggable targets. Because PIK3CA mutations are common in

luminal/ER-positive tumors, inhibitors of the PI3K pathway may be useful. Somatic mutations, such as a high frequency of PIK3CA mutations, a decreased frequency of PTEN and PIK3R1 mutations, and genetic losses of PTEN and INPP4B, are possible therapeutic targets in HER2-positive tumors. Druggable mutations in the HER receptor family are another promising target. Apart from BRCA1 and BRCA2, somatic mutation study for basal-like breast tumors has not revealed a common drug-targeted mutation. However, there were significant molecular similarities between basal-like breast cancers and high-grade serous ovarian tumors, indicating a common aetiology and treatment approaches, which is corroborated by the activity of platinum analogues and taxanes in breast basal-like and serous ovarian tumors.

## **3.2 DATA COLLECTION & DATA PREPROCESSING**

RNA-Seq count data along with the respective clinical data of the TCGA-BRCA project [39] were downloaded from the GDC Data Portal (https://portal.gdc.cancer.gov/) using the R (https://www.r-project.org/) package named 'TCGABiolinks' [40]. The AJCC stage of each sample was encoded in the clinical variable 'ajcc\_pathologic\_stage'. The substages A, B, and C were merged into their parent stages resulting in four final stages of interest: Stage I, Stage II, Stage III, and Stage IV. Samples with missing stage information were discarded. Finally, only the samples of invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) were retained as they are the most prevalent types of breast cancers. The information about the sample subtypes were encoded in the clinical variable 'primary\_diagnosis'. A summary of the key demographic and clinical features is shown in table 1.

| Characte | ristics | Control  | Stage I  | Stage II | Stage III | Stage IV | Over |
|----------|---------|----------|----------|----------|-----------|----------|------|
|          |         |          |          |          |           |          | all  |
| Samples  |         | 96       | 160      | 567      | 221       | 17       | 1061 |
| Age (Ye  | ars)    | 58.01 ±  | 60.18 ±  | 59.09 ±  | 59.70 ±   | 61.71 ±  | 59.3 |
|          |         | 15.03    | 12.83    | 12.75    | 14.24     | 11.36    | 3 ±  |
|          |         |          |          |          |           |          | 13.2 |
|          |         |          |          |          |           |          | 8    |
| Subtyp   | IDC     | 89       | 140      | 457      | 152       | 16       | 854  |
| e        |         | (92.71%) | (87.50%) | (80.60%) | (68.78%)  | (94.12%) | (80. |

23 | Page

|        |        |           |           |           |           |           | 49%  |
|--------|--------|-----------|-----------|-----------|-----------|-----------|------|
|        |        |           |           |           |           |           | )    |
|        | ILC    | 7 (7.29%) | 20        | 110       | 69        | 1 (5.88%) | 207  |
|        |        |           | (12.50%)  | (19.40%)  | (31.22%)  |           | (19. |
|        |        |           |           |           |           |           | 51%  |
|        |        |           |           |           |           |           | )    |
| Prior  | Yes    | 1 (1.04%) | 1 (0.63%) | 5 (0.88%) | 6 (2.71%) | 0 (0.00%) | 13   |
| Treatm |        |           |           |           |           |           | (1.2 |
| ent    |        |           |           |           |           |           | 3%)  |
|        | No     | 95        | 159       | 561       | 215       | 17 (100%) | 1047 |
|        |        | (98.96%)  | (99.37%)  | (98.94%)  | (97.29%)  |           | (98. |
|        |        |           |           |           |           |           | 68%  |
|        |        |           |           |           |           |           | )    |
|        | Not    | 0 (0.00%) | 0 (0.00%) | 1 (0.18%) | 0 (0.00%) | 0 (0.00%) | 1    |
|        | Report |           |           |           |           |           | (0.0 |
|        | ed     |           |           |           |           |           | 9%)  |
| Vital  | Alive  | 60        | 148       | 504       | 184       | 5         | 901  |
| Status |        | (62.50%)  | (92.50%)  | (88.89%)  | (83.26%)  | (29.41%)  | (84. |
|        |        |           |           |           |           |           | 92%  |
|        |        |           |           |           |           |           | )    |
|        | Dead   | 36        | 12        | 63        | 37        | 12        | 160  |
|        |        | (37.50%)  | (7.50%)   | (11.11%)  | (16.74%)  | (70.59%)  | (15. |
|        |        |           |           |           |           |           | 08%  |
|        |        |           |           |           |           |           | )    |

Table 3: Summary of the important demographic and clinical features of the dataset grouped by different sample types. Percentages of the subtypes, prior treatments, and vital status are calculated within sample types.

To make the stage-wise differential analysis more concrete, cases with prior treatments and unreported prior treatments were discarded from the dataset.

| TCGA Stage | TNM Classification | Cases              |
|------------|--------------------|--------------------|
| 24   Page  | ©Daffodil Intern   | ational University |

|                           | 76                                                                                                                                                                                                                          | 160                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T1, N0, M0                | 79                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |
| T0 or T1, N1, M0          | 5                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
|                           | 6                                                                                                                                                                                                                           | 567                                                                                                                                                                                                                                                                                                                                                                       |
| T0, N1, M0                | 323                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
| T1, N1, M0                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| T2, N0, M0                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| T2, N1, M0                | 238                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
| T3, N0, M0                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
|                           | 2                                                                                                                                                                                                                           | 221                                                                                                                                                                                                                                                                                                                                                                       |
| T0, T1, T2, or T3; N2; M0 | 142                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                           |
| T3, N1, M0                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| T4; N0, N1, or N2; M0     | 20                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |
| any T, N3, M0             | 57                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |
| any T, any N, M1          | 17                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                        |
|                           | T1, N0, M0<br>T0 or T1, N1, M0<br>T0, N1, M0<br>T1, N1, M0<br>T2, N0, M0<br>T2, N1, M0<br>T2, N1, M0<br>T3, N0, M0<br>T0, T1, T2, or T3; N2; M0<br>T3, N1, M0<br>T4; N0, N1, or N2; M0<br>any T, N3, M0<br>any T, any N, M1 | 76         T1, N0, M0       79         T0 or T1, N1, M0       5         6       6         T0, N1, M0       323         T1, N1, M0       323         T1, N1, M0       238         T2, N0, M0       238         T3, N0, M0       2         T0, T1, T2, or T3; N2; M0       142         T3, N1, M0       20         any T, N3, M0       57         any T, any N, M1       17 |

Table 4: Stage wise data split

## **3.3 DIFFERENTIAL GENE EXPRESSION ANALYSIS**

Differential expression analysis is the statistical examination of normalised read count data to uncover quantifiable differences in expression levels across experimental groups. Different techniques for differential expression analysis exist, including edgeR and DESeq, which are based on negative binomial (NB) distributions, and baySeq and EBSeq, which are Bayesian approaches based on the NB model. When selecting an analytic technique, it is critical to examine the experimental design. While certain differential expression tools, such as edgeR, limma-voom, DESeq, and maSigPro, can only do pair-wise comparisons, others, such as edgeR, limma-voom, DESeq, and maSigPro, can do multiple comparison. In below are given some information on the method of differential gene expression analysis:

| Method Name | Usage of Method |                                    |
|-------------|-----------------|------------------------------------|
| 25   Page   |                 | ©Daffodil International University |

| DESeq: DESeq is a R tool for<br>analyzing and testing<br>differential expression in count<br>data from high-throughput<br>sequencing experiments like<br>RNA-Seq.                                     | <ul> <li>Use the default values if you want to be conservative. When outliers are introduced, it becomes more conservative.</li> <li>TPR is often low.</li> <li>FDR control is poor with two samples per condition, but acceptable with bigger sample sizes and outliers.</li> <li>Requires a moderate amount of processing time, which rises significantly as the sample size grows.</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| edgeR: A Bioconductor module<br>for analyzing digital gene<br>expression data for differential<br>expression.                                                                                         | <ul> <li>With default settings, rather liberal for small sample numbers. When outliers are introduced, it becomes more liberal.</li> <li>TPR is often high.</li> <li>In many situations, poor FDR control, which is exacerbated by outliers.</li> <li>Requires a moderate amount of processing effort, which is mostly independent of sample size.</li> </ul>                                    |
| NBPSeq (Negative Binomial<br>Models for RNA Sequencing<br>Data): For two-group<br>comparisons and regression<br>conclusions using RNA-<br>Sequencing Data, Negative<br>Binomial (NB) models are used. | <ul> <li>For all sample sizes, be generous. When outliers are introduced, it becomes more liberal.</li> <li>TPR medium</li> <li>Poor FDR control, which is exacerbated by outliers. Often, the genes that are actually non-DE have the smallest p-values.</li> <li>Requires a moderate amount of processing time, which rises significantly as the sample size grows.</li> </ul>                 |
| TSPM: TSPM stands for Total<br>Suspended Particulate Matter                                                                                                                                           | - Overall performance is strongly sample-size dependant.                                                                                                                                                                                                                                                                                                                                         |

| and is the concentration that<br>would be obtained from a high-<br>volume bulk sample on a filter<br>substrate.                                                                                                                                                                                | <ul> <li>For small sample sizes, liberal; outliers have little effect.</li> <li>FDR control is weak for small sample sizes, but improves dramatically as the sample size grows. Outliers have little impact.</li> <li>Many really non-DE genes are among the ones with the fewest p-values when all genes are overdispersed. When the counts for certain genes are Poisson distributed, the problem is solved.</li> <li>Requires a moderate amount of processing effort, which is mostly independent of sample size.</li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voom / vst: is a method of<br>Bioconductor package.                                                                                                                                                                                                                                            | <ul> <li>Excellent kind When outliers are introduced, I error control becomes more cautious.</li> <li>For small sample sizes, low power. For bigger sample sizes, use a medium TPR.</li> <li>Excellent FDR control, with the exception of simulation study B4000 0.</li> <li>The inclusion of outliers has little effect.</li> <li>It is computationally quick.</li> </ul>                                                                                                                                                      |
| baySeq: This software<br>calculates estimated posterior<br>likelihoods of differential<br>expression (or more<br>complicated hypotheses) in<br>high-throughput 'count' data,<br>such as that produced from next-<br>generation sequencing<br>machines, using empirical<br>Bayesian techniques. | <ul> <li>When all DE genes are controlled in the same direction, the consequences are highly varied. When DE genes are controlled in various directions, there is less variety.</li> <li>TPR is low. Outliers have little impact.</li> <li>In the absence of outliers, poor FDR control with two samples/condition, but good for greater sample numbers.</li> <li>In the presence of outliers, FDR control is poor.</li> </ul>                                                                                                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Processing time is sluggish, although parallelization is possible.                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBSeq: R/EBSeq is a R tool for<br>finding genes and isoforms that<br>are differentially expressed<br>(DE) in an RNA-seq experiment<br>under two or more biological<br>circumstances.                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>TPR is unaffected by sample size or the presence of outliers.</li> <li>In most cases, poor FDR control; outliers have little effect.</li> <li>Requires a moderate amount of processing time, which rises significantly as the sample size grows.</li> </ul>                                                                                                     |
| NOISeq : The NOISeq R<br>package provides a complete<br>resource for RNA-seq data<br>analysis, including three<br>sections: (i) count data quality<br>control, (ii) low-count feature<br>filtering, normalization, and<br>batch effect correction, and (iii)<br>DE analysis. The software<br>provides both visualization<br>charts and processing methods<br>within each block to aid in the<br>diagnosis and analysis of count<br>datasets. The program contains a<br>feature that allows you to<br>quickly create a QC report pdf<br>file that includes all of the plots<br>specified in this section. | <ul> <li>It's unclear how to set the qNOISeq threshold<br/>to match a specific FDR threshold.</li> <li>When the dispersion between the conditions<br/>is varied, it performs well in terms of false<br/>discovery curves (see supplementary<br/>material).</li> <li>The amount of time required for computation<br/>is strongly depending on the sample size.</li> </ul> |
| SAMseq: SAMseq is a simple<br>user interface for analyzing the<br>significance of sequencing<br>results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>For small sample sizes, low power. TPR is high when sample sizes are large enough.</li> <li>Does well in simulation study B4000 0 as well.</li> <li>The inclusion of outliers has little effect.</li> <li>The amount of time required for computation is strongly depending on the sample size.</li> </ul>                                                      |

| ShrinkBayes / ShrinkSeq:                                                                     | - FDR control is often weak, but the user can            |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ShrinkBayes is a R program that<br>may be used to analyze count-<br>based sequencing data in | employ a fold change threshold in the inference phase.   |
| complicated research designs.                                                                | - TPR is high.                                           |
|                                                                                              | - Slow computation, however parallelization is possible. |

Table 5: R Library description of bioinformatics

## **3.4 FUNCTIONAL ENRICHMENT ANALYSIS**

Functional enrichment analysis also known as gene set enrichment analysis (GSEA) is a method for identifying gene or protein classes that are over-represented in a large set of genes or proteins that may be linked to disease characteristics. The strategy use statistical techniques to discover gene groupings that are highly enriched or deficient. There are several approaches for analyzing gene sets. Gene set analysis approaches are divided into three categories: over-representation analysis, functional class score, and pathway topology-based methods.

One of the most extensively used classes of gene set analysis methods is overrepresentation analysis (ORA), which is a natural extension of single-gene analysis. ORA is available through a variety of technologies due to its simplicity, well-established underlying statistical model, and ease of application. There are 68 gene set analysis techniques and tools mentioned, with 40 of them being ORA-based. The many components of these technologies, such as the gene set database, data visualization, and user interface, differ. ORA works with a list L of genes, each of which has been predicted to be differentially expressed using a single-gene analysis approach.

Furthermore, ORA only uses differentially expressed genes, which are typically the consequence of using a p-value threshold, and ignores all other quantitative metrics for the genes. A persistent shift in the expression of genes even those with a p-value somewhat higher than the cutoff value might help identify pathway activity. Unlike ORA, the major purpose of FCS approaches is to use all information from an expression matrix to solve the enrichment issue without depending on the physiologically flawed assumptions outlined
before. To distinguish differential enrichment of gene sets, FCS approaches use an expression matrix of gene expression measurements for all genes rather than a list of differentially expressed genes. These approaches are divided into two categories: univariate and multivariate. Using each row of the expression matrix, a gene score is commonly generated for each gene in univariate FCS approaches. The gene set scores for each gene set are then calculated using these gene scores. Finally, the gene set scores are evaluated for significance, and differentially enriched gene sets are provided. Multivariate approaches derive gene set scores directly from the expression matrix, skipping the process of generating gene scores.

Not every gene in a pathway is equally vital to its function. Understanding pathway structure, such as gene product relationships, can aid in estimating a gene's contribution to pathway activity. Topology information has the potential to increase enrichment analysis accuracy. Such information regarding routes is included into topology-based pathway analysis tools. ORA-based, univariate, and multivariate methodologies may all be used to these methods. They also evaluate null hypotheses in the same way that other gene set analysis approaches do.



Working process model in this research

## CHAPTER 4 RESULTS AND DISCUSSION

**4.1 Differentially Expressed Gene List:** The differential gene expression analysis yielded 33 significant genes of which 18 were downregulated and the rest of the 15 were upregulated. The list of the significant genes is given in Table.

| S.N | Gene     | baseMe  | log2FoldC | lfcSE   | stat    | pval | padj     | gene_na |
|-----|----------|---------|-----------|---------|---------|------|----------|---------|
|     |          | an      | hange     |         |         | ue   |          | me      |
| 1   | ENSG0000 | 92.1924 | -         | 0.45822 | 23.5028 | 3.17 | 0.03805  | P2RX5   |
|     | 0083454  | 2523    | 0.2132008 | 7586    | 8563    | E-05 | 3269     |         |
|     |          |         | 6         |         |         |      |          |         |
| 2   | ENSG0000 | 175.034 | 0.2653358 | 0.32468 | 47.0693 | 3.36 | 3.90E-06 | PPEF1   |
|     | 0086717  | 7521    | 25        | 6082    | 7734    | E-10 |          |         |
| 3   | ENSG0000 | 19.7657 | -         | 0.35888 | 25.8218 | 1.04 | 0.01721  | TEX11   |
|     | 0120498  | 1189    | 0.0834790 | 1622    | 2239    | E-05 | 7367     |         |
|     |          |         | 56        |         |         |      |          |         |
| 4   | ENSG0000 | 49.9101 | 0.3167734 | 0.59399 | 23.5701 | 3.07 | 0.03805  | PAX1    |
|     | 0125813  | 5104    | 7         | 6094    | 3355    | E-05 | 3269     |         |
| 5   | ENSG0000 | 173.495 | 0.0956219 | 0.26757 | 22.7205 | 4.62 | 0.04893  | F10     |
|     | 0126218  | 3564    | 68        | 6933    | 8533    | E-05 | 1784     |         |
| 6   | ENSG0000 | 118.129 | -         | 0.33161 | 24.7157 | 1.77 | 0.02677  | CFP     |
|     | 0126759  | 0646    | 0.8890525 | 8772    | 4341    | E-05 | 9926     |         |
|     |          |         | 66        |         |         |      |          |         |
| 7   | ENSG0000 | 709.911 | -         | 0.50350 | 42.2490 | 3.55 | 2.38E-05 | GSTM5   |
|     | 0134201  | 6118    | 2.8437264 | 9824    | 8597    | E-09 |          |         |
|     |          |         | 77        |         |         |      |          |         |
| 8   | ENSG0000 | 7.30967 | 0.4653249 | 0.40598 | 29.3012 | 1.94 | 0.00481  | FAM163A |
|     | 0143340  | 3231    | 55        | 9657    | 4471    | E-06 | 009      |         |
| 9   | ENSG0000 | 29.7075 | 0.3713259 | 0.17985 | 41.9498 | 4.11 | 2.38E-05 | TMED6   |
|     | 0157315  | 2435    | 33        | 2629    | 1518    | E-09 |          |         |
| 10  | ENSG0000 | 9.52333 | 1.6262738 | 0.46342 | 26.9845 | 5.93 | 0.01289  | ALAS2   |
|     | 0158578  | 9317    | 45        | 035     | 7823    | E-06 | 6972     |         |
| 11  | ENSG0000 | 10.0604 | -         | 0.53425 | 31.2053 | 7.69 | 0.00223  | FCRL4   |
|     | 0163518  | 4842    | 0.0351682 | 2239    | 8027    | E-07 | 084      |         |
|     |          |         | 37        |         |         |      |          |         |
| 12  | ENSG0000 | 1564.14 | -         | 0.75674 | 26.5445 | 7.33 | 0.01501  | ALB     |
|     | 0163631  | 0907    | 0.2359805 | 1486    | 0525    | E-06 | 0316     |         |
|     |          |         | 65        |         |         |      |          |         |
| 13  | ENSG0000 | 1074.53 | 0.2990574 | 0.29810 | 26.3109 | 8.21 | 0.01586  | IGFBP6  |
|     | 0167779  | 9377    | 23        | 7476    | 5958    | E-06 | 6899     |         |
| 14  | ENSG0000 | 1381.00 | 0.2398762 | 0.26577 | 103.478 | 2.78 | 9.66E-18 | ELOVL6  |
|     | 0170522  | 536     | 15        | 0644    | 5498    | E-22 |          |         |

| 15 | ENSG0000  | 522.904 | -         | 0.41422 | 22.7099  | 4.64         | 0.04893  | CDH2     |
|----|-----------|---------|-----------|---------|----------|--------------|----------|----------|
|    | 0170558   | 6727    | 0.9345988 | 1592    | 0327     | E-05         | 1784     |          |
|    |           |         | 04        |         |          |              |          |          |
| 16 | ENSG0000  | 73.5403 | -         | 0.34097 | 24.3382  | 2.12         | 0.02954  | CD300LB  |
|    | 0178789   | 0437    | 0.9695743 | 0405    | 4489     | E-05         | 4166     |          |
|    |           |         | 89        |         |          |              |          |          |
| 17 | ENSG0000  | 4.14355 | 0.8328500 | 0.63801 | 24,4003  | 2.06         | 0.02954  | ITLN1    |
|    | 0179914   | 5964    | 79        | 7568    | 5647     | E-05         | 4166     |          |
| 18 |           | 123 213 | -         | 0.61251 | 31 7786  | 5.83         | 0.00184  | PENK     |
| 10 | 0181195   | 7752    | 3 2711602 | 9535    | 8161     | F-07         | 2848     |          |
|    | 0101135   | 1132    | 12        | 5555    | 0101     | 207          | 2040     |          |
| 10 | ENISGOOOO | 56 8012 | 2 1551287 | 0 51271 | 2/1 2061 | 2.26         | 0 03000  | II 17REI |
| 15 | 0100262   | 0109    | 2.4331207 | 4716    | 24.2001  | 2.20<br>E 05 | 6529     |          |
| 20 | ENSC0000  | 202 622 | 1 2206505 | 4/10    | 2045     | 1.24         | 0.01062  |          |
| 20 |           | 505.02Z | 1.5500595 | 0.40040 | 25.4559  | 1.24         | 0.01902  | ПDAZ     |
| 21 | 0188530   | 0924    | 12        | 95      | 0401     | E-05         | 2073     |          |
| 21 | ENSGUUUU  | 5.53002 | 0.8016986 | 0.42698 | 37.5953  | 3.44         | 0.00014  | HBGZ     |
|    | 0196565   | 859     | 16        | 3626    | 2538     | E-08         | 9/18     | 5500100  |
| 22 | ENSG0000  | 3/9/.65 | -         | 0.6/123 | 44.6613  | 1.09         | 9.50E-06 | RF00100  |
|    | 0202198   | 151     | 2.8164438 | 6274    | 6119     | E-09         |          |          |
|    |           |         | 78        |         |          |              |          |          |
| 23 | ENSG0000  | 1405.08 | -         | 0.78493 | 64.9247  | 5.21         | 9.05E-10 | MTND1P2  |
|    | 0225972   | 9135    | 6.2460853 | 6482    | 7654     | E-14         |          | 3        |
|    |           |         | 51        |         |          |              |          |          |
| 24 | ENSG0000  | 12.2390 | 0.3536801 | 0.34917 | 22.8544  | 4.33         | 0.04859  | AC011893 |
|    | 0226806   | 1111    | 13        | 1543    | 0307     | E-05         | 9908     | .1       |
| 25 | ENSG0000  | 9.94379 | -         | 0.57777 | 23.3787  | 3.37         | 0.03904  | AF178030 |
|    | 0227170   | 2338    | 0.4120412 | 6037    | 778      | E-05         | 4162     | .1       |
|    |           |         | 77        |         |          |              |          |          |
| 26 | ENSG0000  | 11.3562 | -         | 0.55605 | 24.1459  | 2.33         | 0.03000  | LINC0128 |
|    | 0235304   | 2524    | 1.2832268 | 5098    | 1633     | E-05         | 6538     | 1        |
|    |           |         | 04        |         |          |              |          |          |
| 27 | ENSG0000  | 39.7548 | -         | 0.53235 | 31.8479  | 5.63         | 0.00184  | SCARNA7  |
|    | 0238741   | 4218    | 4.4554546 | 9639    | 7583     | E-07         | 2848     |          |
|    |           |         | 69        |         |          |              |          |          |
| 28 | ENSG0000  | 41.3763 | -         | 0.77607 | 29.8167  | 1.51         | 0.00403  | SCARNA1  |
|    | 0239002   | 5489    | 5.1595813 | 797     | 3696     | E-06         | 6024     | 0        |
|    |           |         | 77        |         |          |              |          |          |
| 29 | ENSG0000  | 1.11254 | -         | 0.85857 | 35.0240  | 1.20         | 0.00046  | LINC0109 |
|    | 0251504   | 9983    | 0.5575586 | 2452    | 3417     | E-07         | 5447     | 9        |
|    |           |         | 08        |         |          |              |          |          |
| 30 | ENSG0000  | 53.5747 | -         | 0.75627 | 38.3518  | 2.38         | 0.00011  | SCARNA5  |
|    | 0252010   | 1963    | 5.4268343 | 4461    | 9568     | E-08         | 8329     |          |
|    |           |         | 1         |         |          |              |          |          |
| 31 | ENSG0000  | 141.513 | -         | 0.98805 | 25.9059  | 9.98         | 0.01721  | LINC0005 |
|    | 0259527   | 1665    | 1.6277660 | 4736    | 0666     | E-06         | 7367     | 2        |
|    |           |         | 95        |         |          |              |          | _        |



Figure 1: Upregulated and downregulated gene visualization



# Sample Type 🖨 NT 🛱 TP

Figure 2: Upregulated and downregulated gene visualization

# **4.2 Functional Enrichment Analysis**

|               |      |       |        | Ol  | Old   |       |        |         |
|---------------|------|-------|--------|-----|-------|-------|--------|---------|
|               |      |       |        | d   | Adjus |       |        |         |
|               |      |       | Adjus  | P-  | ted   |       | Combi  |         |
|               | Over | P-    | ted P- | val | P-    | Odds  | ned    |         |
| Term          | lap  | value | value  | ue  | value | Ratio | Score  | Genes   |
| post-         |      |       |        |     |       |       |        |         |
| translational | 3/34 | 0.003 | 0.067  |     |       | 11.48 | 65.196 | CDH2;PE |
| protein       | 5    | 426   | 879    | 0   | 0     | 538   | 81     | NK;ALB  |

Table1: GO Biological process downregulated

35 | Page

| modification     |            |             |              |   |   |              |         |         |
|------------------|------------|-------------|--------------|---|---|--------------|---------|---------|
| (GO:0043687)     |            |             |              |   |   |              |         |         |
| cellular protein |            |             |              |   |   |              |         |         |
| metabolic        | 0.444      | 0.007       | 0.0.4        |   |   |              | 10 17 1 |         |
| process          | 3/41       | 0.005       | 0.067        |   |   | 9.453        | 48.654  | CDH2;PE |
| (GO:0044267)     | 7          | 817         | 879          | 0 | 0 | 14           | 34      | NK;ALB  |
| type B           |            |             |              |   |   |              |         |         |
| pancreatic cell  | _          |             |              |   |   |              |         |         |
| development      | 7-         | 0.006       | 0.067        | 0 | 0 | 195.8        | 992.87  | ~~~~    |
| (GO:0003323)     | Jan        | 284         | 879          | 0 | 0 | 431          | 93      | CDH2    |
| detection of     | _          | 0.005       | 0.0.5        |   |   | 1050         |         |         |
| muscle stretch   | ·/-        | 0.006       | 0.067        | 0 | 0 | 195.8        | 992.87  | CDUA    |
| (GO:0035995)     | Jan        | 284         | 879          | 0 | 0 | 431          | 93      | CDH2    |
| glandular        |            |             |              |   |   |              |         |         |
| epithelial cell  | _          | 0.001       | 0.0.4        |   |   | 1070         |         |         |
| development      | 7-         | 0.006       | 0.067        | 0 | 0 | 195.8        | 992.87  | ~~~~    |
| (GO:0002068)     | Jan        | 284         | 879          | 0 | 0 | 431          | 93      | CDH2    |
| complement       |            |             |              |   |   |              |         |         |
| activation,      |            |             |              |   |   |              |         |         |
| alternative      | _          | 0.005       | 0.0.5        |   |   | 1050         |         |         |
| pathway          | 7-         | 0.006       | 0.067        | 0 | 0 | 195.8        | 992.87  | CED     |
| (GO:0006957)     | Jan        | 284         | 879          | 0 | 0 | 431          | 93      | CFP     |
| cell-cell        |            |             |              |   |   |              |         |         |
| adhesion         |            |             |              |   |   |              |         |         |
| mediated by      | 0          | 0.007       | 0.067        |   |   | 167.0        | 000 65  |         |
| cadherin         | 8-<br>T    | 0.007       | 0.067        | 0 | 0 | 16/.8        | 828.65  | CDUA    |
| (GO:0044331)     | Jan        | 1/9         | 8/9          | 0 | 0 | 5/1          | 38      | CDH2    |
| type B           |            |             |              |   |   |              |         |         |
| differentiation  | 0          | 0.009       | 0.067        |   |   | 146.0        | 707 70  |         |
| (CO,0002200)     | 9-<br>Ion  | 0.008       | 0.007        | 0 | 0 | 140.8        | /0/./9  | CDU2    |
| (GO:0005509)     | Jan        | 072         | 8/9          | 0 | 0 | 0/0          | 90      | CDH2    |
| positive         |            |             |              |   |   |              |         |         |
| regulation of    |            |             |              |   |   |              |         |         |
| calcium-         |            |             |              |   |   |              |         |         |
| signaling        | 12         | 0.011       | 0.067        |   |   | 07.80        | 125.04  |         |
| (CO:0050850)     | IS-<br>Ion | 0.011       | 0.007        | Ο | 0 | 97.09        | 455.94  | D7D V5  |
| (UU.0030830)     | Jall       | 04          | 0/9          | 0 | 0 | 210          | 00      | Γ2ΚΛ    |
| synaptonemai     |            |             |              |   |   |              |         |         |
| complex          | 15         | 0.013       | 0.067        |   |   | 83.80        | 361.60  |         |
| (CO:0007130)     | IJ-<br>Ion | 0.013       | 0.007<br>870 | Ο | 0 | 03.09        | 11      | TEV11   |
| (UU.000/150)     | Jan        | 42          | 019          | U | 0 | 910          | 11      | ILAII   |
| synaptonemai     |            |             |              |   |   |              |         |         |
| organization     | 15         | 0.012       | 0.067        |   |   | 83.60        | 361.60  |         |
| (GO.0070103)     | IJ-<br>Ian | 0.015<br>/2 | 0.007<br>870 | Δ | 0 | 0J.07<br>016 | 11      | TEX11   |
| (00.00/0193)     | Jaii       | 44          | 019          | U | U | 210          | 11      | ILAH    |

| response to          |            |       |       |   |   |              |        |       |
|----------------------|------------|-------|-------|---|---|--------------|--------|-------|
| muscle stretch       | 15-        | 0.013 | 0.067 |   |   | 83.89        | 361.69 |       |
| (GO:0035994)         | Jan        | 42    | 879   | 0 | 0 | 916          | 11     | CDH2  |
| heme catabolic       |            |       |       |   |   |              |        |       |
| process              | 16-        | 0.014 | 0.067 |   |   | 78.30        | 332.54 |       |
| (GO:0042167)         | Jan        | 308   | 879   | 0 | 0 | 196          | 12     | ALB   |
| porphyrin-           |            |       |       |   |   |              |        |       |
| containing           |            |       |       |   |   |              |        |       |
| compound             |            |       |       |   |   |              |        |       |
| catabolic            | 1.6        | 0.014 | 0.047 |   |   | 70.00        | 000 54 |       |
| process              | 16-<br>I   | 0.014 | 0.067 | 0 | 0 | 78.30        | 332.54 |       |
| (GO:0006787)         | Jan        | 308   | 8/9   | 0 | 0 | 196          | 12     | ALB   |
| gliogenesis          | 1/-<br>I   | 0.015 | 0.06/ | 0 | 0 | /3.40        | 307.32 | CDU2  |
| (GO:0042063)         | Jan        | 196   | 8/9   | 0 | 0 | 441          | 28     | CDH2  |
| stem cell            | 17         | 0.015 | 0.067 |   |   | 72 40        | 207.20 |       |
| (CO:0048864)         | 1/-<br>Ion | 0.015 | 0.007 | 0 | 0 | /3.40        | 307.32 | CDU2  |
| (GO:0048804)         | Jan        | 190   | 879   | 0 | 0 | 441          | 28     | CDH2  |
| lipoprotein          |            |       |       |   |   |              |        |       |
| npoprotein           |            |       |       |   |   |              |        |       |
| remodeling           | 18-        | 0.016 | 0.067 |   |   | 60.08        | 285 31 |       |
| $(GO \cdot 0034375)$ | Io-<br>Ian | 0.010 | 879   | 0 | 0 | 304          | 205.51 | ALB   |
| neural crest cell    | Juli       | 005   | 017   | 0 | 0 | 501          | 11     | TLD   |
| differentiation      | 19-        | 0.016 | 0.067 |   |   | 65.24        | 265.94 |       |
| (GO:0014033)         | Jan        | 97    | 879   | 0 | 0 | 183          | 72     | CDH2  |
| detection of         |            |       |       |   | - |              |        |       |
| mechanical           |            |       |       |   |   |              |        |       |
| stimulus             | 19-        | 0.016 | 0.067 |   |   | 65.24        | 265.94 |       |
| (GO:0050982)         | Jan        | 97    | 879   | 0 | 0 | 183          | 72     | CDH2  |
| mitochondrion        |            |       |       |   |   |              |        |       |
| localization         | 19-        | 0.016 | 0.067 |   |   | 65.24        | 265.94 |       |
| (GO:0051646)         | Jan        | 97    | 879   | 0 | 0 | 183          | 72     | ALB   |
| mesenchymal          |            |       |       |   |   |              |        |       |
| cell                 |            |       |       |   |   |              |        |       |
| development          | 19-        | 0.016 | 0.067 |   |   | 65.24        | 265.94 |       |
| (GO:0014031)         | Jan        | 97    | 879   | 0 | 0 | 183          | 72     | CDH2  |
| heme                 |            |       |       |   |   |              |        |       |
| biosynthetic         |            |       |       |   |   |              |        |       |
| process              | 22-        | 0.019 | 0.068 | 0 | 0 | 55.91        | 219.79 |       |
| (GO:0006783)         | Jan        | 624   | 684   | 0 | 0 | 317          | 46     | ALB   |
| glutathione          |            |       |       |   |   |              |        |       |
| derivative           |            |       |       |   |   |              |        |       |
| biosynthetic         | 22         | 0.010 | 0.079 |   |   | 55.01        | 210.70 |       |
| process              | 22-        | 0.019 | 0.068 | 0 | 0 | 55.91<br>217 | 219.79 | COTME |
| (GO:1901687)         | Jan        | 624   | 684   | 0 | 0 | 51/          | 46     | CSTM2 |

| glutathione     |      |       |                |   |   |       |           |         |
|-----------------|------|-------|----------------|---|---|-------|-----------|---------|
| derivative      |      |       |                |   |   |       |           |         |
| metabolic       |      |       |                |   |   |       |           |         |
| process         | 22-  | 0.019 | 0.068          |   |   | 55.91 | 219.79    |         |
| (GO:1901685)    | Jan  | 624   | 684            | 0 | 0 | 317   | 46        | GSTM5   |
| porphyrin-      |      |       |                |   |   |       |           |         |
| containing      |      |       |                |   |   |       |           |         |
| compound        |      |       |                |   |   |       |           |         |
| biosynthetic    |      |       |                |   |   |       |           |         |
| process         | 24-  | 0.021 | 0.071          |   |   | 51.04 | 196.26    |         |
| (GO:0006779)    | Jan  | 39    | 87             | 0 | 0 | 604   | 36        | ALB     |
| positive        |      |       |                |   |   |       |           |         |
| regulation of   |      |       |                |   |   |       |           |         |
| muscle cell     |      |       |                |   |   |       |           |         |
| differentiation | 27-  | 0.024 | 0.074          |   |   | 45.14 | 168.33    |         |
| (GO:0051149)    | Jan  | 033   | 706            | 0 | 0 | 932   | 13        | CDH2    |
| regulation of   |      |       |                |   |   |       |           |         |
| calcium-        |      |       |                |   |   |       |           |         |
| mediated        |      |       |                |   |   |       |           |         |
| signaling       | 28-  | 0.024 | 0.074          |   |   | 43.47 | 160.52    |         |
| (GO:0050848)    | Jan  | 913   | 706            | 0 | 0 | 495   | 6         | P2RX5   |
| homologous      |      |       |                |   |   |       |           |         |
| chromosome      |      |       |                |   |   |       |           |         |
| pairing at      |      |       |                |   |   |       |           |         |
| meiosis         | 29-  | 0.025 | 0.074          |   |   | 41.92 | 153.33    |         |
| (GO:0007129)    | Jan  | 791   | 706            | 0 | 0 | 017   | 19        | TEX11   |
| glial cell      |      |       | 0 0 <b>-</b> ( |   |   |       | 1 7 9 9 9 |         |
| differentiation | 29-  | 0.025 | 0.074          |   |   | 41.92 | 153.33    |         |
| (GO:0010001)    | Jan  | 791   | 706            | 0 | 0 | 017   | 19        | CDH2    |
| innate immune   |      |       | 0.001          |   |   |       |           |         |
| response        | 2/30 | 0.029 | 0.081          | 0 | 0 | 8.200 | 28.852    | CD300LB |
| (GO:0045087)    | 2    | 65    | 023            | 0 | 0 | 833   | 81        | ;CFP    |
| positive        |      |       |                |   |   |       |           |         |
| regulation of   |      |       |                |   |   |       |           |         |
| calcium ion     |      |       |                |   |   |       |           |         |
| transport into  |      |       |                |   |   |       |           |         |
| cytosol         | Jan- | 0.030 | 0.081          |   |   | 35.55 | 124.48    |         |
| (GO:0010524)    | 34   | 174   | 023            | 0 | 0 | 971   | 62        | P2RX5   |
| regulation of   |      |       |                |   |   |       |           |         |
| muscle cell     |      |       |                |   |   |       |           |         |
| differentiation | Jan- | 0.031 | 0.081          |   |   | 34.51 | 119.83    |         |
| (GO:0051147)    | 35   | 049   | 023            | 0 | 0 | 211   | 3         | CDH2    |
| retina          |      |       |                |   |   |       |           |         |
| homeostasis     | Jan- | 0.031 | 0.081          | _ | _ | 33.52 | 115.47    |         |
| (GO:0001895)    | 36   | 922   | 023            | 0 | 0 | 437   | 32        | ALB     |

| positive          |      |       |       |   |   |       |        |       |
|-------------------|------|-------|-------|---|---|-------|--------|-------|
| regulation of     |      |       |       |   |   |       |        |       |
| calcium ion       |      |       |       |   |   |       |        |       |
| transport         | Jan- | 0.032 | 0.081 |   |   | 32.59 | 111.38 |       |
| (GO:0051928)      | 37   | 795   | 023   | 0 | 0 | 15    | 08     | P2RX5 |
| glutathione       |      |       |       |   |   |       |        |       |
| metabolic         |      |       |       |   |   |       |        |       |
| process           | Jan- | 0.038 | 0.091 |   |   | 27.92 | 91.314 |       |
| (GO:0006749)      | 43   | 016   | 239   | 0 | 0 | 717   | 48     | GSTM5 |
| neural crest cell |      |       |       |   |   |       |        |       |
| development       | Jan- | 0.039 | 0.092 |   |   | 26.65 | 85.965 |       |
| (GO:0014032)      | 45   | 751   | 066   | 0 | 0 | 508   | 83     | CDH2  |
| regulation of     |      |       |       |   |   |       |        |       |
| synaptic          |      |       |       |   |   |       |        |       |
| transmission,     |      |       |       |   |   |       |        |       |
| glutamatergic     | Jan- | 0.040 | 0.092 |   |   | 26.06 | 83.489 |       |
| (GO:0051966)      | 46   | 617   | 066   | 0 | 0 | 144   | 48     | CDH2  |
| adherens          |      |       |       |   |   |       |        |       |
| junction          |      |       |       |   |   |       |        |       |
| organization      | Jan- | 0.043 | 0.092 |   |   | 24.42 | 76.747 |       |
| (GO:0034332)      | 49   | 211   | 066   | 0 | 0 | 892   | 22     | CDH2  |
| regulation of     |      |       |       |   |   |       |        |       |
| complement        |      |       |       |   |   |       |        |       |
| activation        | Jan- | 0.044 | 0.092 |   |   | 23.92 | 74.703 |       |
| (GO:0030449)      | 50   | 074   | 066   | 0 | 0 | 917   | 86     | CFP   |
| regulation of     |      |       |       |   |   |       |        |       |
| axonogenesis      | Jan- | 0.044 | 0.092 |   |   | 23.44 | 72.751 |       |
| (GO:0050770)      | 51   | 937   | 066   | 0 | 0 | 941   | 66     | CDH2  |
| sensory           |      |       |       |   |   |       |        |       |
| perception        | Jan- | 0.044 | 0.092 |   |   | 23.44 | 72.751 |       |
| (GO:0007600)      | 51   | 937   | 066   | 0 | 0 | 941   | 66     | PENK  |
| regulation of     |      |       |       |   |   |       |        |       |
| immune            |      |       |       |   |   |       |        |       |
| effector process  | Jan- | 0.046 | 0.092 |   |   | 22.54 | 69.098 |       |
| (GO:0002697)      | 53   | 66    | 83    | 0 | 0 | 525   | 33     | CFP   |
| regulation of     |      |       |       |   |   |       |        |       |
| humoral           |      |       |       |   |   |       |        |       |
| immune            |      |       |       |   |   |       |        |       |
| response          | Jan- | 0.047 | 0.092 |   |   | 22.11 | 67.387 |       |
| (GO:0002920)      | 54   | 52    | 83    | 0 | 0 | 876   | 09     | CFP   |
| blood vessel      |      |       |       |   |   |       |        |       |
| morphogenesis     | Jan- | 0.049 | 0.094 |   |   | 21.31 | 64.173 |       |
| (GO:0048514)      | 56   | 238   | 001   | 0 | 0 | 23    | 07     | CDH2  |
| homophilic cell   | Jan- | 0.052 | 0.098 |   |   | 19.86 | 58.473 |       |
| adhesion via      | 60   | 666   | 311   | 0 | 0 | 341   | 48     | CDH2  |

| plasma<br>membrane |            |       |       |   |   |              |        |          |
|--------------------|------------|-------|-------|---|---|--------------|--------|----------|
| adhesion           |            |       |       |   |   |              |        |          |
| molecules          |            |       |       |   |   |              |        |          |
| (GO:0007156)       |            |       |       |   |   |              |        |          |
| neuropeptide       |            |       |       |   |   |              |        |          |
| signaling          |            |       |       |   |   |              |        |          |
| pathway            | Jan-       | 0.055 | 0.100 |   |   | 18.89        | 54.737 |          |
| (GO:0007218)       | 63         | 23    | 854   | 0 | 0 | 943          | 57     | PENK     |
| cell-cell          |            |       |       |   |   |              |        |          |
| junction           |            |       |       |   |   |              |        |          |
| assembly           | Jan-       | 0.057 | 0.101 |   |   | 18.02        | 51.387 |          |
| (GO:0007043)       | 66         | 786   | 126   | 0 | 0 | 443          | 69     | CDH2     |
| cellular           |            |       |       |   |   |              |        |          |
| response to        | Ian        | 0.057 | 0 101 |   |   | 10.00        | 51 207 |          |
| (CO:0021660)       | Jan-       | 0.057 | 0.101 | 0 | 0 | 18.02        | 51.587 |          |
| (00.0031009)       | 00         | /80   | 120   | 0 | 0 | 443          | 09     | ALD      |
| development        | 2/44       | 0.060 | 0 101 |   |   | 5 487        | 15 417 | P2RX5·C  |
| (GO:0007399)       | 7          | 243   | 366   | 0 | 0 | 921          | 59     | DH2      |
| synapse            | ,          | 210   | 200   | 0 | 0 | /=1          |        |          |
| assembly           | Jan-       | 0.060 | 0.101 |   |   | 17.22        | 48.369 |          |
| (GO:0007416)       | 69         | 337   | 366   | 0 | 0 | 664          | 24     | CDH2     |
| cellular protein   |            |       |       |   |   |              |        |          |
| modification       |            |       |       |   |   |              |        |          |
| process            | 3/10       | 0.061 | 0.101 |   |   | 3.710        | 10.338 | CDH2;PE  |
| (GO:0006464)       | 25         | 644   | 531   | 0 | 0 | 372          | 52     | NK;ALB   |
| cell-cell          |            |       |       |   |   |              |        |          |
| junction           | _          |       |       |   |   |              |        |          |
| organization       | Jan-       | 0.071 | 0.114 | 0 | 0 | 14.45        | 38.164 | CDUA     |
| (GO:0045216)       | 82         | 312   | 354   | 0 | 0 | 243          | 31     | CDH2     |
| peptide            |            |       |       |   |   |              |        |          |
| metabolic          | Ion        | 0.072 | 0.114 |   |   | 14 27        | 27 520 |          |
| (CO)0006518)       | Jan-<br>83 | 0.072 | 0.114 | Ο | 0 | 14.27<br>547 | 08     | GSTM5    |
| negative           | 05         | 152   | 554   | 0 | 0 | 547          | 70     | US I WIS |
| regulation of      |            |       |       |   |   |              |        |          |
| cell death         | Jan-       | 0.081 | 0.126 |   |   | 12.58        | 31,565 |          |
| (GO:0060548)       | 94         | 336   | 523   | 0 | 0 | 001          | 29     | ALB      |
| cell junction      | -          |       | -     | - | - |              | -      |          |
| assembly           | 1/10       | 0.087 | 0.134 |   |   | 11.57        | 28.146 |          |
| (GO:0034329)       | 2          | 962   | 342   | 0 | 0 | 892          | 59     | CDH2     |
| modulation of      |            |       |       |   |   |              |        |          |
| chemical           | 1/10       | 0.093 | 0.140 |   |   | 10.82        | 25.626 |          |
| synaptic           | 9          | 723   | 584   | 0 | 0 | 462          | 37     | CDH2     |

| transmission<br>(GO:0050804) |        |         |              |   |   |       |                         |       |
|------------------------------|--------|---------|--------------|---|---|-------|-------------------------|-------|
| sulfur                       |        |         |              |   |   |       |                         |       |
| compound<br>biosynthetic     |        |         |              |   |   |       |                         |       |
| process                      | 1/11   | 0.096   | 0.142        |   |   | 10.43 | 24.347                  |       |
| (GO:0044272)                 | 3      | 999     | 946          | 0 | 0 | 592   | 59                      | GSTM5 |
| regulation of                |        |         |              |   |   |       |                         |       |
| anatomical                   |        |         |              |   |   |       |                         |       |
| structure                    | 1/12   | 0 105   | 0.150        |   |   | 0 575 | 21 568                  |       |
| (GO:0022603)                 | 3      | 141     | 0.130<br>598 | 0 | 0 | 699   | 21.508<br>84            | CDH2  |
| platelet                     |        |         | 070          | Ŭ |   |       |                         | 02112 |
| degranulation                | 1/12   | 0.106   | 0.150        |   |   | 9.420 | 21.074                  |       |
| (GO:0002576)                 | 5      | 761     | 598          | 0 | 0 | 304   | 77                      | ALB   |
| synapse                      | 1 /1 0 | 0.105   | 0.1.50       |   |   | 0.044 | <b>a</b> a a <b>a</b> ( |       |
| organization                 | 1/12   | 0.107   | 0.150        | 0 | 0 | 9.344 | 20.834                  | CDU2  |
| (GU:0050808)                 | 0      | 57      | 598          | 0 | 0 | 4/1   | 58                      | CDH2  |
| mediated                     |        |         |              |   |   |       |                         |       |
| endocytosis                  | 1/14   | 0.121   | 0.166        |   |   | 8.218 | 17.342                  |       |
| (GO:0006898)                 | 3      | 217     | 921          | 0 | 0 | 724   | 94                      | ALB   |
| positive                     |        |         |              |   |   |       |                         |       |
| regulation of                |        |         |              |   |   |       |                         |       |
| cytosolic                    |        |         |              |   |   |       |                         |       |
| concentration                | 1/1/   | 0.124   | 0 168        |   |   | 7 991 | 16 657                  |       |
| (GO:0007204)                 | 7      | 399     | 541          | 0 | 0 | 942   | 29                      | P2RX5 |
| brain                        |        |         |              |   |   |       |                         |       |
| development                  | 1/15   | 0.126   | 0.169        |   |   | 7.829 | 16.171                  |       |
| (GO:0007420)                 | 0      | 779     | 038          | 0 | 0 | 846   | 08                      | CDH2  |
| organonitrogen               |        |         |              |   |   |       |                         |       |
| compound                     |        |         |              |   |   |       |                         |       |
| process                      | 1/15   | 0 1 3 3 | 0 171        |   |   | 7 427 | 14 979                  |       |
| (GO:1901566)                 | 8      | 0.155   | 999          | 0 | 0 | 876   | 77                      | GSTM5 |
| cellular                     |        |         |              |   |   |       |                         |       |
| response to                  |        |         |              |   |   |       |                         |       |
| starvation                   | 1/15   | 0.133   | 0.171        |   |   | 7.427 | 14.979                  |       |
| (GO:0009267)                 | 8      | 094     | 999          | 0 | 0 | 876   | 77                      | ALB   |
| regulation of                |        |         |              |   |   |       |                         |       |
| nrojection                   |        |         |              |   |   |       |                         |       |
| development                  | 1/16   | 0.138   | 0.176        |   |   | 7.108 | 14.047                  |       |
| (GO:0010975)                 | 5      | 585     | 381          | 0 | 0 | 321   | 96                      | CDH2  |

| cell-cell       |      |       |       |   |          |       |        |         |
|-----------------|------|-------|-------|---|----------|-------|--------|---------|
| adhesion via    |      |       |       |   |          |       |        |         |
| plasma-         |      |       |       |   |          |       |        |         |
| membrane        |      |       |       |   |          |       |        |         |
| adhesion        |      |       |       |   |          |       |        |         |
| molecules       | 1/17 | 0.142 | 0.178 |   |          | 6.896 | 13.437 |         |
| (GO:0098742)    | 0    | 487   | 641   | 0 | 0        | 276   | 42     | CDH2    |
| defense         |      |       |       |   |          |       |        |         |
| response to     |      |       |       |   |          |       |        |         |
| bacterium       | 1/17 | 0.147 | 0.180 |   |          | 6.657 | 12.758 |         |
| (GO:0042742)    | 6    | 147   | 289   | 0 | 0        | 815   | 51     | CFP     |
| regulation of   |      |       |       |   |          |       |        |         |
| immune          |      |       |       |   |          |       |        |         |
| response        | 1/17 | 0.149 | 0.180 |   |          | 6.544 | 12.439 |         |
| (GO:0050776)    | 9    | 469   | 289   | 0 | 0        | 613   | 14     | CD300LB |
| regulated       | _    |       |       | - |          |       |        |         |
| exocvtosis      | 1/18 | 0.150 | 0.180 |   |          | 6.507 | 12.335 |         |
| (GO:0045055)    | 0    | 241   | 289   | 0 | 0        | 723   | 48     | ALB     |
| regulation of   |      |       |       |   |          |       |        |         |
| programmed      |      |       |       |   |          |       |        |         |
| cell death      | 1/19 | 0.160 | 0.190 |   |          | 6.031 |        |         |
| (GO:0043067)    | 4    | 985   | 461   | 0 | 0        | 393   | 11.016 | ALB     |
| anterograde     |      |       |       |   |          |       |        |         |
| trans-synaptic  |      |       |       |   |          |       |        |         |
| signaling       | 1/24 | 0.198 | 0.231 |   |          | 4.778 | 7.7306 |         |
| (GO:0098916)    | 4    | 319   | 372   | 0 | 0        | 262   | 46     | PENK    |
| positive        |      | 017   | 072   | Ū |          | 202   |        |         |
| regulation of   |      |       |       |   |          |       |        |         |
| cell            |      |       |       |   |          |       |        |         |
| differentiation | 1/25 | 0.208 | 0.239 |   |          | 4.514 | 7.0785 |         |
| (GO:0045597)    | 8    | 488   | 117   | 0 | 0        | 763   | 8      | CDH2    |
| cellular        | -    |       |       |   |          |       |        |         |
| component       |      |       |       |   |          |       |        |         |
| assembly        | 1/26 | 0.210 | 0.239 |   |          | 4.461 | 6.9497 |         |
| (GO:0022607)    | 1    | 651   | 117   | 0 | 0        | 991   | 83     | TEX11   |
| central nervous | -    | 001   | ,     | Ū | <u> </u> | //1   |        |         |
| system          |      |       |       |   |          |       |        |         |
| development     | 1/26 | 0.215 | 0.241 |   |          | 4.343 | 6.6627 |         |
| (GO:0007417)    | 8    | 677   | 558   | 0 | 0        | 468   | 69     | CDH2    |
| chemical        | -    |       | 220   | 0 |          |       |        |         |
| synaptic        |      |       |       |   |          |       |        |         |
| transmission    | 1/30 | 0.242 | 0 267 |   |          | 3 794 | 5 3775 |         |
| (GO:0007268)    | 6    | 436   | 955   | 0 | 0        | 986   | 66     | PENK    |
| negative        | 1/38 | 0.292 | 0.319 | 0 | V        | 3.034 | 3,7276 |         |
| regulation of   | 1    | 739   | 352   | 0 | 0        | 365   | 34     | ALB     |
| Summon of       | -    | 107   | 554   | v | 0        | 505   |        |         |

| programmed<br>cell death |        |       |         |   |   |       |                        |       |
|--------------------------|--------|-------|---------|---|---|-------|------------------------|-------|
| (GO:0043069)             |        |       |         |   |   |       |                        |       |
| neutrophil               | 1/40   | 0.254 | 0 272   |   |   | 2 200 | 2 1750                 |       |
| degranulation            | 1/48   | 0.354 | 0.372   | 0 | 0 | 2.389 | 2.4/56                 | CED   |
| (GO:0043312)             | 1      | 918   | 3/1     | 0 | 0 | 951   | /3                     | CFP   |
| negative                 |        |       |         |   |   |       |                        |       |
| regulation of            |        |       |         |   |   |       |                        |       |
| apoptotic                | 1 / 10 | 0.055 | 0 0 7 0 |   |   |       | <b>a</b> 1 <b>a</b> aa |       |
| process                  | 1/48   | 0.357 | 0.372   | 0 | 0 | 2.369 | 2.4388                 |       |
| (GO:0043066)             | 5      | 295   | 371     | 0 | 0 | 713   | 95                     | ALB   |
| neutrophil               |        |       |         |   |   |       |                        |       |
| activation               |        |       |         |   |   |       |                        |       |
| involved in              |        |       |         |   |   |       |                        |       |
| immune                   |        |       |         |   |   |       |                        |       |
| response                 | 1/48   | 0.357 | 0.372   |   |   | 2.369 | 2.4388                 |       |
| (GO:0002283)             | 5      | 295   | 371     | 0 | 0 | 713   | 95                     | CFP   |
| neutrophil               |        |       |         |   |   |       |                        |       |
| mediated                 |        |       |         |   |   |       |                        |       |
| immunity                 | 1/48   | 0.359 | 0.372   |   |   | 2.354 | 2.4118                 |       |
| (GO:0002446)             | 8      | 072   | 371     | 0 | 0 | 753   | 16                     | CFP   |
| positive                 |        |       |         |   |   |       |                        |       |
| regulation of            |        |       |         |   |   |       |                        |       |
| intracellular            |        |       |         |   |   |       |                        |       |
| signal                   |        |       |         |   |   |       |                        |       |
| transduction             | 1/54   | 0.392 | 0.402   |   |   | 2.097 | 1.9618                 |       |
| (GO:1902533)             | 6      | 526   | 1       | 0 | 0 | 895   | 51                     | P2RX5 |
| positive                 |        |       |         |   |   |       |                        |       |
| regulation of            |        |       |         |   |   |       |                        |       |
| cellular process         | 1/62   | 0.435 | 0.440   |   |   | 1.824 | 1.5171                 |       |
| (GO:0048522)             | 5      | 448   | 694     | 0 | 0 | 849   | 44                     | P2RX5 |
| regulation of            |        |       |         |   |   |       |                        |       |
| apoptotic                |        |       |         |   |   |       |                        |       |
| process                  | 1/74   | 0.493 | 0.493   |   |   | 1.527 | 1.0778                 |       |
| (GO:0042981)             | 2      | 786   | 786     | 0 | 0 | 427   | 33                     | ALB   |

Table 7: GO Biological process downregulated



Figure 3: Significantly downregulated biological processes.

|                   |      |       |        | 01  | Old   |       |       |       |
|-------------------|------|-------|--------|-----|-------|-------|-------|-------|
|                   |      |       |        | d   | Adiu  |       |       |       |
|                   |      |       | Adius  | P-  | sted  |       | Comb  |       |
|                   | Over | P-    | ted P- | val | P-    | Odds  | ined  |       |
| Term              | lan  | value | value  | 110 | value | Ratio | Score | Genes |
| homoglohin        | lap  | value | value  | ue  | value | Katio | Score | Genes |
| nemoglobin        | _    |       | 0.0.44 |     |       |       | 1000  |       |
| metabolic process | 5-   | 0.003 | 0.061  |     |       | 356.8 | 1993. |       |
| (GO:0020027)      | Jan  | 745   | 199    | 0   | 0     | 036   | 609   | ALAS2 |
| oxygen            |      |       |        |     |       |       |       |       |
| homeostasis       | 6-   | 0.004 | 0.061  |     |       | 285.4 | 1542. |       |
| (GO:0032364)      | Jan  | 492   | 199    | 0   | 0     | 286   | 868   | ALAS2 |
| gas homeostasis   | 7-   | 0.005 | 0.061  |     |       | 237.8 | 1249. |       |
| (GO:0033483)      | Jan  | 239   | 199    | 0   | 0     | 452   | 078   | ALAS2 |
| fatty acid        |      |       |        |     |       |       |       |       |
| elongation,       |      |       |        |     |       |       |       |       |
| monounsaturated   |      |       |        |     |       |       |       |       |
| fatty acid        | 7-   | 0.005 | 0.061  |     |       | 237.8 | 1249. | ELOVL |
| (GO:0034625)      | Jan  | 239   | 199    | 0   | 0     | 452   | 078   | 6     |

| Table 2  | · GO | Biological | process | unregulated |
|----------|------|------------|---------|-------------|
| I able 2 | . 00 | Diological | process | upregulateu |

| fatty acid           |      |       |       |   |   |       |       |        |
|----------------------|------|-------|-------|---|---|-------|-------|--------|
| elongation,          |      |       |       |   |   |       |       |        |
| polyunsaturated      |      |       |       |   |   |       |       |        |
| fatty acid           | 7-   | 0.005 | 0.061 |   |   | 237.8 | 1249. | ELOVL  |
| (GO:0034626)         | Jan  | 239   | 199   | 0 | 0 | 452   | 078   | 6      |
| fatty acid           |      |       |       |   |   |       |       |        |
| elongation,          |      |       |       |   |   |       |       |        |
| saturated fatty acid | 7-   | 0.005 | 0.061 |   |   | 237.8 | 1249. | ELOVL  |
| (GO:0019367)         | Jan  | 239   | 199   | 0 | 0 | 452   | 078   | 6      |
| fatty acid           |      |       |       |   |   |       |       |        |
| elongation,          |      |       |       |   |   |       |       |        |
| unsaturated fatty    | 7-   | 0.005 | 0.061 |   |   | 237.8 | 1249. | ELOVL  |
| acid (GO:0019368)    | Jan  | 239   | 199   | 0 | 0 | 452   | 078   | 6      |
| organonitrogen       |      |       |       |   |   |       |       |        |
| compound             |      |       |       |   |   |       |       |        |
| biosynthetic         |      |       |       |   |   |       |       | ALAS2; |
| process              | 2/15 | 0.006 | 0.061 |   |   | 19.55 | 99.76 | ELOVL  |
| (GO:1901566)         | 8    | 087   | 199   | 0 | 0 | 523   | 428   | 6      |
| negative regulation  |      |       |       |   |   |       |       |        |
| of protein           |      |       |       |   |   |       |       |        |
| activation cascade   | 9-   | 0.006 | 0.061 |   |   | 178.3 | 892.0 |        |
| (GO:2000258)         | Jan  | 731   | 199   | 0 | 0 | 661   | 131   | F10    |
| erythrocyte          |      |       |       |   |   |       |       |        |
| development          | 11-  | 0.008 | 0.061 |   |   | 142.6 | 685.0 |        |
| (GO:0048821)         | Jan  | 221   | 199   | 0 | 0 | 786   | 073   | ALAS2  |
| endoplasmic          |      |       |       |   |   |       |       |        |
| reticulum to Golgi   |      |       |       |   |   |       |       |        |
| vesicle-mediated     |      |       |       |   |   |       |       |        |
| transport            | 2/18 | 0.008 | 0.061 |   |   | 16.64 | 79.85 | F10;TM |
| (GO:0006888)         | 5    | 255   | 199   | 0 | 0 | 733   | 533   | ED6    |
| very long-chain      |      |       |       |   |   |       |       |        |
| fatty acid           |      |       |       |   |   |       |       |        |
| biosynthetic         |      |       |       |   |   |       |       |        |
| process              | 13-  | 0.009 | 0.061 |   |   | 118.8 | 551.0 | ELOVL  |
| (GO:0042761)         | Jan  | 709   | 199   | 0 | 0 | 869   | 048   | 6      |
| fatty acid           |      |       |       |   |   |       |       |        |
| elongation           | 13-  | 0.009 | 0.061 |   |   | 118.8 | 551.0 | ELOVL  |
| (GO:0030497)         | Jan  | 709   | 199   | 0 | 0 | 869   | 048   | 6      |
| protein              |      |       |       |   |   |       |       |        |
| trimerization        | 15-  | 0.011 | 0.061 |   |   | 101.8 | 457.7 |        |
| (GO:0070206)         | Jan  | 195   | 199   | 0 | 0 | 929   | 328   | ITLN1  |
| protein              |      |       |       |   |   |       |       |        |
| homotrimerization    | 15-  | 0.011 | 0.061 |   |   | 101.8 | 457.7 |        |
| (GO:0070207)         | Jan  | 195   | 199   | 0 | 0 | 929   | 328   | ITLN1  |

| acyl-CoA<br>biosynthetic<br>process180.0130.0661883.89361.6ELOVLGO:0035338)Jan42045009169116regulation of<br>insulin-like growth<br>factor receptorsignaling pathway<br>(GO:0043567)Jan160.06679.23337.3(GO:0043567)Jan160.06675.06315.7(GO:0061515)Jan901045000153ALAS2hydrogen peroxide<br>catabolic process21-0.0150.06667.90279.2(GO:006783)Jan37904500377745HBG2process22-0.0160.06661.99249.5(GO:006779)Jan8560450037952ALAS2porcess24-0.0170.06661.99249.5ELOVL(GO:006779)Jan85604500379526iong-chain fatty-<br>acyl-CoAregulation of<br>rhodopsin mediatedregulation of<br>rhodopsin mediated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | long-chain fatty-   |     |       |       |   |   |       |       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-------|-------|---|---|-------|-------|--------|
| biosynthetic<br>process         18-<br>3an         0.013<br>42         0.066<br>0         83.89<br>0         361.6<br>911         ELOVL<br>6           regulation of<br>insulin-like growth<br>factor receptor<br>signaling pathway         19-<br>19-         0.014<br>0.014         0.066<br>0.066         79.23<br>0         337.3<br>238         IGFBP6           myeloid cell<br>development         20-<br>1an         0.014<br>16         0.066<br>0.066         75.06<br>71.30         315.7<br>296.4           (GO:0061515)         Jan         901         0.45         0         0         153         ALAS2           hydrogen peroxide<br>catabolic process         21-<br>0.015         0.066         71.30         296.4         296.4           (GO:004734)         Jan         379         045         0         0         476         073         ALAS2           porphyrin-<br>containing<br>compound         Z-<br>1an         No         Z-<br>1an         Z-<br>337         No         249.5         ELOVL           (GO:0006778)         Jan         379         045         0         0         379         249.5         ELOVL           (GO:0006779)         Jan         856         045         0         0         379         249.5         ELOVL           (GO:0006779)         Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acyl-CoA            |     |       |       |   |   |       |       |        |
| process18- $0.013$ $0.066$ $max$ $83.89$ $361.6$ ELOVL(G0:0035338)Jan42 $045$ $0$ $0$ $916$ $911$ $6$ regulation ofinsulin-like growth $      -$ isgnaling pathway19- $0.014$ $0.066$ $ 79.23$ $337.3$ $ -$ (G0:043567)Jan16 $045$ $0$ $0$ 413238IGFBP6myeloid cell $       -$ (G0:043567)Jan901 $045$ $0$ $0$ $015$ $3$ $ALAS2$ hydrogen peroxide $      -$ (G0:0061515)Jan $64$ $045$ $0$ $0$ $357$ $745$ HBG2heme biosynthetic $       -$ process $22 0.016$ $0.066$ $ 71.30$ $296.4$ $-$ (G0:0006783)Jan $379$ $045$ $0$ $0$ $377$ $ALAS2$ porphyrin- $      -$ containing $      -$ cordoof779Jan $856$ $045$ $0$ $0$ $379$ $52$ $ALAS2$ long-chain fatty- $     -$ <td< td=""><td>biosynthetic</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | biosynthetic        |     |       |       |   |   |       |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | process             | 18- | 0.013 | 0.066 |   |   | 83.89 | 361.6 | ELOVL  |
| regulation of<br>insulin-like growth<br>factor receptor       Image: constraint of the system       | (GO:0035338)        | Jan | 42    | 045   | 0 | 0 | 916   | 911   | 6      |
| insulin-like growth<br>factor receptor         Image: signaling pathway                                                                                                                                                                                                                                                                                                                                                                                                                                             | regulation of       |     |       |       |   |   |       |       |        |
| factor receptor<br>signaling pathway<br>(GO:0043567)19-<br>Jan0.0140.066<br>04579.23337.3<br>337.3(GO:0043567)Jan1604500413228IGFBP6myeloid cell<br>development20-0.0140.06675.06315.734LAS2(GO:0061515)Jan901045000153ALAS2hydrogen peroxide<br>catabolic process21-0.0150.06671.30296.41000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | insulin-like growth |     |       |       |   |   |       |       |        |
| signaling pathway<br>(GO:0043567)         19.         0.014         0.066         79.23         337.3           myeloid cell         0         0         413         238         IGFBP6           myeloid cell         0         0.014         0.066         75.06         315.7           development         20         0.014         0.066         75.06         315.7           (GO:0061515)         Jan         901         045         0         0         337.3           hydrogen peroxide<br>catabolic process         21-         0.015         0.066         71.30         296.4           (GO:0006783)         Jan         379         045         0         0         377         ALAS2           porphyrin-<br>containing<br>compound         722         0.016         0.066         67.90         279.2           (GO:0006783)         Jan         379         045         0         0         476         073         ALAS2           porphyrin-<br>containing<br>compound         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | factor receptor     |     |       |       |   |   |       |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | signaling pathway   | 19- | 0.014 | 0.066 |   |   | 79.23 | 337.3 |        |
| myeloid cell<br>development20-<br>$0.014$ 0.04<br>$0.066$ 075.06<br>$0$ 315.7<br>$0$ (GO:0061515)Jan901045000153ALAS2hydrogen peroxide<br>catabolic process21-<br>$0.015$ 0.06671.30<br>$0.066$ 296.41000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (GO:0043567)        | Jan | 16    | 045   | 0 | 0 | 413   | 238   | IGFBP6 |
| development20-0.0140.066 $\cdot$ 75.06315.7(GO:0061515)Jan901045000153ALAS2hydrogen peroxide<br>catabolic process21-0.0150.06671.30296.4(GO:0042744)Jan6404500357745HBG2heme biosynthetic<br>process22-0.0160.06667.90279.2(GO:0006783)Jan37904500476073containing<br>compoundprocess24-0.0170.066-61.99249.5(GO:0006779)Jan8560450037952long-chain fatty-<br>acyl-CoAmetabolic process24-0.0170.06661.99249.5ELOVL(GO:0025336)Jan85604500379526regulation of<br>rhodopsin mediated<br>signaling pathway25-0.0180.06659.40236.7250.7(GO:0022400)Jan538045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.06750.91195.33(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosynthetic<br>process29-0.0210.06749.15186.9ELOVL(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | myeloid cell        |     |       |       |   |   |       |       |        |
| (GO:0061515)         Jan         901         045         0         0         015         3         ALAS2           hydrogen peroxide<br>catabolic process         21-         0.015         0.066         71.30         296.4           (GO:0042744)         Jan         64         045         0         0         357         745         HBG2           heme biosynthetic<br>process         22-         0.016         0.066         67.90         279.2         (GO:0006783)         Jan         379         045         0         0         476         073         ALAS2           porphyrin-<br>containing<br>compound         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <td>development</td> <td>20-</td> <td>0.014</td> <td>0.066</td> <td></td> <td></td> <td>75.06</td> <td>315.7</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | development         | 20- | 0.014 | 0.066 |   |   | 75.06 | 315.7 |        |
| hydrogen peroxide<br>catabolic process21- $0.015$ $0.066$ $0$ $71.30$ $296.4$ (GO:0042744)Jan $64$ $045$ $0$ $0$ $357$ $745$ HBG2heme biosynthetic<br>process $22 0.016$ $0.066$ $67.90$ $279.2$ $(GO:006783)$ Jan $379$ $045$ $0$ $0$ $476$ $073$ ALAS2porphyrin-<br>containing<br>compound $1$ $379$ $045$ $0$ $0$ $476$ $073$ ALAS2porphyrin-<br>containing<br>compound $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ grocess $24+$ $0.017$ $0.066$ $61.99$ $249.5$ $1$ $1$ (GO:0006779)Jan $856$ $045$ $0$ $0$ $379$ $52$ $ALAS2$ long-chain fatty-<br>acyl-CoA $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ regulation of<br>rhodopsin mediated<br>signaling pathway $25 0.018$ $0.066$ $59.40$ $236.7$ $225.0$ (GO:0046326)Jan $533$ $045$ $0$ $0$ $774$ $377$ PPEF1positive regulation<br>of glucose import $26 0.019$ $0.066$ $57.02$ $225.0$ $1$ (GO:0046326)Jan $538$ $643$ $0$ $0$ $071$ $923$ HBG2long-chain fatty<br>acid biosynthetic<br>process $30 0.022$ $0.067$ $49.15$ $186.9$ ELOVL(GO:0042759)Jan<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (GO:0061515)        | Jan | 901   | 045   | 0 | 0 | 015   | 3     | ALAS2  |
| catabolic process<br>(GO:0042744)21- $0.015$ $0.066$ $0$ $71.30$ $296.4$ heme biosynthetic<br>process22- $0.016$ $0.066$ $0$ $357$ $745$ HBG2heme biosynthetic<br>process22- $0.016$ $0.066$ $67.90$ $279.2$ $745$ $745$ gorphyrin-<br>containing<br>compound1an $379$ $045$ $0$ $0$ $476$ $073$ $ALAS2$ porphyrin-<br>containing $140$ $140$ $140$ $140$ $140$ biosynthetic<br>process $140$ $140$ $140$ $140$ $140$ $140$ biosynthetic<br>process $140$ $140$ $140$ $140$ $140$ $140$ biosynthetic<br>(GO:0035336)Jan $856$ $045$ $0$ $0$ $379$ $52$ $6$ regulation of<br>rhodopsin mediated<br>signaling pathway $25 0.017$ $0.066$ $59.40$ $236.7$ $150$ (GO:0046326)Jan $33$ $045$ $0$ $0$ $857$ $4$ $1TLN1$ hydrogen peroxide<br>metabolic process $29 0.021$ $0.067$ $50.91$ $195.3$ $150$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hydrogen peroxide   |     |       |       |   |   |       |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | catabolic process   | 21- | 0.015 | 0.066 |   |   | 71.30 | 296.4 |        |
| heme biosynthetic<br>process $22-$<br>$(GO:0006783)$ $0.066$<br>Jan $0.066$<br>$0$ $67.90$<br>$0$ $279.2$<br>$073$ ALAS2porphyrin-<br>containing<br>compound $1$<br>biosynthetic $1$<br>process $1$<br>$24+$ $1$<br>$0.017$ $1$<br>$0.066$ $61.99$<br>$0$ $249.5$<br>$249.5$ (GO:0006779)Jan $856$<br>$045$ $0$<br>$0$ $0$<br>$379$ $249.5$<br>$52$ $ALAS2$ long-chain fatty-<br>acyl-CoA $24-$<br>$0.017$ $0.066$<br>$0.066$ $61.99$<br>$0$ $249.5$<br>$52$ $ALAS2$ long-chain fatty-<br>acyl-CoA $24-$<br>$0.017$ $0.066$<br>$0.066$ $61.99$<br>$0$ $249.5$<br>$52$ $ELOVL$<br>$6$ (GO:0035336)Jan $856$<br>$045$ $0$<br>$0$ $0$<br>$379$ $52$<br>$52$ $6$ regulation of<br>rhodopsin mediated<br>signaling pathway<br>$25-$<br>$0.018$ $0.066$<br>$0$ $59.40$<br>$236.7$ $236.7$<br>$74$ positive regulation<br>of glucose import<br>(GO:0046326) $26-$<br>$0.019$ $0.066$<br>$0$ $57.02$<br>$225.0$ $225.0$<br>$0$ (GO:0042743)Jan $538$<br>$643$ $0$<br>$0$ $0$<br>$071$ $923$<br>$195.3$<br>$1862$ long-chain fatty<br>acid biosynthetic<br>process $30-$<br>$0.022$ $0.067$<br>$0.067$ $49.15$<br>$49.15$ $186.9$<br>$86.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (GO:0042744)        | Jan | 64    | 045   | 0 | 0 | 357   | 745   | HBG2   |
| process22-<br>(GO:0006783)0.016<br>Jan0.066<br>37967.90<br>0279.2<br>073ALAS2porphyrin-<br>containing<br>compound0476073ALAS2porphyrin-<br>containing<br>compoundbiosynthetic<br>process<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | heme biosynthetic   |     |       |       |   |   |       |       |        |
| (GO:0006783)Jan37904500476073ALAS2porphyrin-<br>containing<br>compound $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | process             | 22- | 0.016 | 0.066 |   |   | 67.90 | 279.2 |        |
| porphyrin-<br>containing         instant for the second s | (GO:0006783)        | Jan | 379   | 045   | 0 | 0 | 476   | 073   | ALAS2  |
| containing<br>compoundIIIIIIIbiosynthetic<br>process24- $0.017$ $0.066$ 61.99249.5I(GO:0006779)Jan8560450037952ALAS2long-chain fatty-<br>acyl-CoAIIIIIIImetabolic process24- $0.017$ $0.066$ 61.99249.5ELOVL(GO:0035336)Jan85604500379526regulation of<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | porphyrin-          |     |       |       |   |   |       |       |        |
| compound         index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | containing          |     |       |       |   |   |       |       |        |
| biosynthetic<br>process24-<br>$24-$ 0.0170.066<br>$0.066$ 161.99249.5(GO:0006779)Jan8560450037952ALAS2long-chain fatty-<br>acyl-CoAmetabolic process24-0.0170.066-61.99249.5ELOVL(GO:0035336)Jan85604500379526regulation of<br>rhodopsin mediatedsignaling pathway25-0.0180.066-59.40236.7-(GO:0022400)Jan59304500774377PPEF1positive regulation<br>of glucose import26-0.0190.066-57.02225.0-(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.067folg:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosynthetic<br>process30-0.0220.067-49.15186.9ELOVL(GO:0042759)Jan27364300271966fatty-acyl-CoA30-0.0220.067-49.15186.9ELOVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | compound            |     |       |       |   |   |       |       |        |
| process $24 0.017$ $0.066$ $(61.99)$ $249.5$ (GO:0006779)Jan $856$ $045$ $0$ $0$ $379$ $52$ ALAS2long-chain fatty-<br>acyl-CoA $       -$ metabolic process $24 0.017$ $0.066$ $ 61.99$ $249.5$ ELOVL(GO:0035336)Jan $856$ $045$ $0$ $0$ $379$ $52$ $6$ regulation of<br>rhodopsin mediated $      -$ (GO:0022400)Jan $593$ $045$ $0$ $0$ $774$ $377$ PPEF1positive regulation<br>of glucose import $26 0.019$ $0.066$ $57.02$ $225.0$ $-$ (GO:0046326)Jan $33$ $045$ $0$ $0$ $857$ $4$ ITLN1hydrogen peroxide<br>metabolic process $29 0.021$ $0.067$ $ 50.91$ $195.3$ (GO:0042743)Jan $538$ $643$ $0$ $0$ $071$ $923$ HBG2long-chain fatty<br>acid biosynthetic<br>process $30 0.022$ $0.067$ $ 49.15$ $186.9$ ELOVL(GO:0042759)Jan $273$ $643$ $0$ $0$ $271$ $96$ $6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | biosynthetic        |     |       |       |   |   |       |       |        |
| (GO:0006779)Jan8560450037952ALAS2long-chain fatty-<br>acyl-CoAmetabolic process24-0.0170.066-61.99249.5ELOVL(GO:0035336)Jan85604500379526regulation of<br>rhodopsin mediatedsignaling pathway25-0.0180.066-59.40236.7-(GO:0022400)Jan59304500774377PPEF1positive regulation<br>of glucose import26-0.0190.066-57.02225.0-(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.06750.91195.3-(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosynthetic<br>process30-0.0220.06749.15186.9ELOVL(GO:0042759)Jan27364300271966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | process             | 24- | 0.017 | 0.066 |   |   | 61.99 | 249.5 |        |
| long-chain fatty-<br>acyl-CoA         Image: constraint of the second s | (GO:0006779)        | Jan | 856   | 045   | 0 | 0 | 379   | 52    | ALAS2  |
| acyl-CoA         Image: Mark Mark Mark Mark Mark Mark Mark Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | long-chain fatty-   |     |       |       |   |   |       |       |        |
| metabolic process<br>(GO:0035336) $24 0.017$ $0.066$ $61.99$ $249.5$ ELOVL(GO:0035336)Jan $856$ $045$ $0$ $0$ $379$ $52$ $6$ regulation of<br>rhodopsin mediatedsignaling pathway $25 0.018$ $0.066$ 59.40 $236.7$ -(GO:0022400)Jan $593$ $045$ $0$ $0$ $774$ $377$ PPEF1positive regulation<br>of glucose import $26 0.019$ $0.066$ $57.02$ $225.0$ -(GO:0046326)Jan $33$ $045$ $0$ $0$ $857$ $4$ ITLN1hydrogen peroxide<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acyl-CoA            |     |       |       |   |   |       |       |        |
| (GO:0035336)Jan85604500379526regulation of<br>rhodopsin mediatedsignaling pathway25-0.0180.066-59.40236.7 </td <td>metabolic process</td> <td>24-</td> <td>0.017</td> <td>0.066</td> <td></td> <td></td> <td>61.99</td> <td>249.5</td> <td>ELOVL</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | metabolic process   | 24- | 0.017 | 0.066 |   |   | 61.99 | 249.5 | ELOVL  |
| regulation of<br>rhodopsin mediated<br>signaling pathway         25-         0.018         0.066         59.40         236.7           (GO:0022400)         Jan         593         045         0         0         774         377         PPEF1           positive regulation<br>of glucose import         26-         0.019         0.066         57.02         225.0         1111           hydrogen peroxide<br>metabolic process         29-         0.021         0.067         50.91         195.3           (GO:0042743)         Jan         538         643         0         0         071         923         HBG2           long-chain fatty<br>acid biosynthetic         .         .         .         .         .         .         .         .         .           fdG:0042759)         Jan         273         643         0         0         271         96         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (GO:0035336)        | Jan | 856   | 045   | 0 | 0 | 379   | 52    | 6      |
| rhodopsin mediated<br>signaling pathway25-0.0180.066Image: constraint of the systemImage: constraint of the system(GO:0022400)Jan59304500774377PPEF1positive regulation<br>of glucose import26-0.0190.066Image: constraint of the system57.02225.0Image: constraint of the system(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.067Image: constraint of the system50.91195.3(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosyntheticImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemImage: constraint of the system(GO:0042759)Jan27364300271966fatty-acyl-CoA30-0.0220.067Image: constraint of the systemImage: constraint of the systemImage: constraint of the systemfatty-acyl-CoA30-0.0220.067Image: constraint of the systemImage: constraint of the systemImage: constraint of the systemfatty-acyl-CoA30-0.0220.067Image: constraint of the systemImage: constraint of the systemImage: constraint of the systemfatty-acyl-CoA30-0.0220.067Image: constraint of the systemImage: constraint of the systemImage: constraint of the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | regulation of       |     |       |       |   |   |       |       |        |
| signaling pathway<br>(GO:0022400)25-0.0180.06659.40236.7PPEF1positive regulation<br>of glucose import26-0.0190.0660774377PPEF1(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.067650.91195.3(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rhodopsin mediated  |     |       |       |   |   |       |       |        |
| (GO:0022400)Jan59304500774377PPEF1positive regulation<br>of glucose import26-0.0190.066-57.02225.0-(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.067-50.91195.3(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosyntheticprocess30-0.0220.067-49.15186.9ELOVL(GO:0042759)Jan27364300271966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | signaling pathway   | 25- | 0.018 | 0.066 |   |   | 59.40 | 236.7 |        |
| positive regulation<br>of glucose import26-<br>0.0190.066<br>0.06657.02225.0(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.06750.91195.3195.3(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosynthetic<br>process30-0.0220.06749.15186.9ELOVL(GO:0042759)Jan27364300271966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (GO:0022400)        | Jan | 593   | 045   | 0 | 0 | 774   | 377   | PPEF1  |
| of glucose import<br>(GO:0046326)26-0.0190.06657.02225.0(GO:0046326)Jan33045008574ITLN1hydrogen peroxide<br>metabolic process29-0.0210.06750.91195.3-(GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosynthetic<br>process30-0.0220.06749.15186.9ELOVL(GO:0042759)Jan27364300271966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | positive regulation |     |       |       |   |   |       |       |        |
| (GO:0046326)Jan33045008574ITLN1hydrogen peroxide </td <td>of glucose import</td> <td>26-</td> <td>0.019</td> <td>0.066</td> <td></td> <td></td> <td>57.02</td> <td>225.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of glucose import   | 26- | 0.019 | 0.066 |   |   | 57.02 | 225.0 |        |
| hydrogen peroxide<br>metabolic process       29-<br>Jan       0.021       0.067       50.91       195.3         (GO:0042743)       Jan       538       643       0       0       071       923       HBG2         long-chain fatty<br>acid biosynthetic<br>process       30-       0.022       0.067       49.15       186.9       ELOVL         (GO:0042759)       Jan       273       643       0       0       271       96       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (GO:0046326)        | Jan | 33    | 045   | 0 | 0 | 857   | 4     | ITLN1  |
| metabolic process       29-       0.021       0.067       50.91       195.3         (GO:0042743)       Jan       538       643       0       0       071       923       HBG2         long-chain fatty<br>acid biosynthetic<br>process       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hydrogen peroxide   |     |       |       |   |   |       |       |        |
| (GO:0042743)Jan53864300071923HBG2long-chain fatty<br>acid biosynthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | metabolic process   | 29- | 0.021 | 0.067 |   |   | 50.91 | 195.3 |        |
| long-chain fatty<br>acid biosynthetic<br>process         30-         0.022         0.067         49.15         186.9         ELOVL           (GO:0042759)         Jan         273         643         0         0         271         96         6           fatty-acyl-CoA         30-         0.022         0.067         49.15         186.9         ELOVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (GO:0042743)        | Jan | 538   | 643   | 0 | 0 | 071   | 923   | HBG2   |
| acid biosynthetic       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | long-chain fatty    |     |       |       |   |   |       |       |        |
| process30-0.0220.06749.15186.9ELOVL(GO:0042759)Jan27364300271966fatty-acyl-CoA30-0.0220.06749.15186.9ELOVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acid biosynthetic   |     |       |       |   |   |       |       |        |
| (GO:0042759)Jan27364300271966fatty-acyl-CoA30-0.0220.06749.15186.9ELOVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | process             | 30- | 0.022 | 0.067 |   |   | 49.15 | 186.9 | ELOVL  |
| fatty-acyl-CoA 30- 0.022 0.067 49.15 186.9 ELOVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (GO:0042759)        | Jan | 273   | 643   | 0 | 0 | 271   | 96    | 6      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fatty-acyl-CoA      | 30- | 0.022 | 0.067 |   |   | 49.15 | 186.9 | ELOVL  |
| biosynthetic Jan 273 643 0 0 271 96 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | biosynthetic        | Jan | 273   | 643   | 0 | 0 | 271   | 96    | 6      |

| process<br>(GO:0046949) |      |       |       |   |   |       |       |       |
|-------------------------|------|-------|-------|---|---|-------|-------|-------|
| positive regulation     |      |       |       |   |   |       |       |       |
| of glucose              |      |       |       |   |   |       |       |       |
| transmembrane           |      |       |       |   |   |       |       |       |
| transport               | Jan- | 0.023 | 0.069 |   |   | 45.97 | 171.9 |       |
| (GO:0010828)            | 32   | 741   | 204   | 0 | 0 | 696   | 79    | ITLN1 |
| verv long-chain         | _    | -     |       |   |   |       |       |       |
| fatty acid              |      |       |       |   |   |       |       |       |
| metabolic process       | Jan- | 0.024 | 0.069 |   |   | 44.53 | 165.2 | ELOVL |
| (GO:0000038)            | 33   | 474   | 204   | 0 | 0 | 795   | 413   | 6     |
| regulation of           |      | -     | -     |   | - |       |       | -     |
| glucose import          | Jan- | 0.027 | 0.074 |   |   | 39.58 | 142.3 |       |
| (GO:0046324)            | 37   | 403   | 901   | 0 | 0 | 135   | 785   | ITLN1 |
| negative regulation     |      |       |       |   | - |       |       |       |
| of blood                |      |       |       |   |   |       |       |       |
| coagulation             | Jan- | 0.029 | 0.078 |   |   | 36.53 | 128.5 |       |
| (GO:0030195)            | 40   | 594   | 28    | 0 | 0 | 114   | 967   | F10   |
| erythrocyte             |      |       |       |   |   |       |       |       |
| differentiation         | Jan- | 0.033 | 0.087 |   |   | 31.65 | 107.0 |       |
| (GO:0030218)            | 46   | 962   | 026   | 0 | 0 | 079   | 596   | ALAS2 |
| myeloid cell            |      |       |       |   |   |       |       |       |
| differentiation         | Jan- | 0.038 | 0.095 |   |   | 27.91 | 91.07 |       |
| (GO:0030099)            | 52   | 311   | 197   | 0 | 0 | 877   | 146   | ALAS2 |
| cellular iron ion       |      |       |       |   |   |       |       |       |
| homeostasis             | Jan- | 0.042 | 0.099 |   |   | 24.97 | 78.78 |       |
| (GO:0006879)            | 58   | 642   | 905   | 0 | 0 | 243   | 57    | ALAS2 |
| membrane lipid          |      |       |       |   |   |       |       |       |
| biosynthetic            |      |       |       |   |   |       |       |       |
| process                 | Jan- | 0.042 | 0.099 |   |   | 24.97 | 78.78 | ELOVL |
| (GO:0046467)            | 58   | 642   | 905   | 0 | 0 | 243   | 57    | 6     |
| iron ion                |      |       |       |   |   |       |       |       |
| homeostasis             | Jan- | 0.044 | 0.102 |   |   | 23.72 | 73.66 |       |
| (GO:0055072)            | 61   | 801   | 047   | 0 | 0 | 024   | 371   | ALAS2 |
| fatty acid              |      |       |       |   |   |       |       |       |
| biosynthetic            |      |       |       |   |   |       |       |       |
| process                 | Jan- | 0.051 | 0.115 |   |   | 20.32 | 60.09 | ELOVL |
| (GO:0006633)            | 71   | 964   | 164   | 0 | 0 | 143   | 446   | 6     |
| sphingolipid            |      |       |       |   |   |       |       |       |
| biosynthetic            |      |       |       |   |   |       |       |       |
| process                 | Jan- | 0.054 | 0.116 |   |   | 19.48 | 56.83 | ELOVL |
| (GO:0030148)            | 74   | 104   | 75    | 0 | 0 | 337   | 016   | 6     |
| regulation of G         |      |       |       |   |   |       |       |       |
| protein-coupled         | Jan- | 0.059 | 0.124 |   |   | 17.55 | 49.44 |       |
| receptor signaling      | 82   | 786   | 013   | 0 | 0 | 203   | 378   | PPEF1 |

| pathway<br>(GO:0008277)             |      |       |       |   |   |       |       |       |
|-------------------------------------|------|-------|-------|---|---|-------|-------|-------|
| long-chain fatty                    |      |       |       |   |   |       |       |       |
| acid metabolic                      |      |       |       |   |   |       |       |       |
| process                             | Jan- | 0.060 | 0.124 |   |   | 17.33 | 48.63 | ELOVL |
| (GO:0001676)                        | 83   | 494   | 013   | 0 | 0 | 711   | 423   | 6     |
| regulation of lipid                 |      |       |       |   |   |       |       |       |
| metabolic process                   | Jan- | 0.066 | 0.133 |   |   | 15.61 | 42.24 | ELOVL |
| (GO:0019216)                        | 92   | 844   | 689   | 0 | 0 | 538   | 57    | 6     |
| cellular transition                 |      |       |       |   |   |       |       |       |
| metal ion                           |      |       |       |   |   |       |       |       |
| homeostasis                         | Jan- | 0.069 | 0.134 |   |   | 14.95 | 39.84 |       |
| (GO:0046916)                        | 96   | 654   | 165   | 0 | 0 | 489   | 31    | ALAS2 |
| positive regulation                 |      |       |       |   |   |       |       |       |
| of cold-induced                     |      |       |       |   |   |       |       |       |
| thermogenesis                       | Jan- | 0.070 | 0.134 |   |   | 14.79 | 39.27 | ELOVL |
| (GO:0120162)                        | 97   | 355   | 165   | 0 | 0 | 836   | 787   | 6     |
| positive regulation<br>of metabolic |      |       |       |   |   |       |       |       |
| process                             | 1/11 | 0.081 | 0.151 |   |   | 12.67 | 31.77 | ELOVL |
| (GO:0009893)                        | 3    | 506   | 897   | 0 | 0 | 411   | 499   | 6     |
| sphingolipid                        |      |       |       |   |   |       |       | -     |
| metabolic process                   | 1/11 | 0.083 | 0.152 |   |   | 12.34 | 30.63 | ELOVL |
| (GO:0006665)                        | 6    | 583   | 306   | 0 | 0 | 161   | 087   | 6     |
| protein                             |      |       |       |   |   |       |       |       |
| homooligomerizati                   | 1/12 | 0.087 | 0.155 |   |   | 11.82 | 28.86 |       |
| on (GO:0051260)                     | 1    | 035   | 149   | 0 | 0 | 44    | 869   | ITLN1 |
| Golgi organization                  | 1/13 | 0.093 | 0.155 |   |   | 10.99 | 26.08 |       |
| (GO:0007030)                        | 0    | 217   | 996   | 0 | 0 | 446   | 792   | TMED6 |
| regulation of                       |      |       |       |   |   |       |       |       |
| response to                         |      |       |       |   |   |       |       |       |
| external stimulus                   | 1/13 | 0.093 | 0.155 |   |   | 10.99 | 26.08 |       |
| (GO:0032101)                        | 0    | 217   | 996   | 0 | 0 | 446   | 792   | PPEF1 |
| regulation of                       |      |       |       |   |   |       |       |       |
| primary metabolic                   |      |       |       |   |   |       |       |       |
| process                             | 1/13 | 0.093 | 0.155 |   |   | 10.99 | 26.08 | ELOVL |
| (GO:0080090)                        | 0    | 217   | 996   | 0 | 0 | 446   | 792   | 6     |
| protein                             |      |       |       |   |   |       |       |       |
| dephosphorylation                   | 1/13 | 0.099 | 0.162 |   |   | 10.27 | 23.71 |       |
| (GO:0006470)                        | 9    | 361   | 951   | 0 | 0 | 277   | 983   | PPEF1 |
| dephosphorylation                   | 1/15 | 0.108 | 0.174 |   |   | 9.320 | 20.67 |       |
| (GO:0016311)                        | 3    | 84    | 998   | 0 | 0 | 019   | 065   | PPEF1 |
| skeletal system                     |      |       |       |   |   |       |       |       |
| development                         | 1/15 | 0.112 | 0.176 |   |   | 9.020 | 19.73 |       |
| (GO:0001501)                        | 8    | 203   | 71    | 0 | 0 | 928   | 28    | PAX1  |

| positive regulation     |       |       |   |   |       |       |        |
|-------------------------|-------|-------|---|---|-------|-------|--------|
| of protein kinase B     |       |       |   |   |       |       |        |
| signaling 1/16          | 0.114 | 0.176 |   |   | 8.850 | 19.20 |        |
| (GO:0051897) 1          | 215   | 71    | 0 | 0 | 446   | 258   | F10    |
| negative regulation     |       |       |   |   |       |       |        |
| of canonical Wnt        |       |       |   |   |       |       |        |
| signaling pathway 1/16  | 0.116 | 0.177 |   |   | 8.632 | 18.53 |        |
| (GO:0090090) 5          | 891   | 501   | 0 | 0 | 84    | 051   | IGFBP6 |
| negative regulation     |       |       |   |   |       |       |        |
| of Wnt signaling        |       |       |   |   |       |       |        |
| pathway 1/19            | 0.134 | 0.199 |   |   | 7.441 | 14.95 |        |
| (GO:0030178) 1          | 102   | 935   | 0 | 0 | 729   | 156   | IGFBP6 |
| regulation of signal    |       |       |   |   |       |       |        |
| transduction 1/19       | 0.138 | 0.200 |   |   | 7.174 | 14.17 |        |
| (GO:0009966) 8          | 682   | 447   | 0 | 0 | 764   | 424   | IGFBP6 |
| endomembrane            |       |       |   |   |       |       |        |
| system                  |       |       |   |   |       |       |        |
| organization 1/19       | 0.139 | 0.200 |   |   | 7.138 | 14.06 |        |
| (GO:0010256) 9          | 335   | 447   | 0 | 0 | 167   | 843   | TMED6  |
| regulation of           |       |       |   |   |       |       |        |
| protein kinase B        |       |       |   |   |       |       |        |
| signaling 1/20          | 0.144 | 0.204 |   |   | 6.858 | 13.26 |        |
| (GO:0051896) 7          | 538   | 347   | 0 | 0 | 183   | 519   | F10    |
| positive regulation     |       |       |   |   |       |       |        |
| of protein              |       |       |   |   |       |       |        |
| modification            |       |       |   |   |       |       |        |
| process 1/21            | 0.149 | 0.206 |   |   | 6.630 | 12.62 |        |
| (GO:0031401) 4          | 066   | 442   | 0 | 0 | 449   | 015   | ITLN1  |
| transcription,          |       |       |   |   |       |       |        |
| DNA-templated 1/22      | 0.153 | 0.206 |   |   | 6.417 | 12.02 |        |
| (GO:0006351) 1          | 573   | 442   | 0 | 0 | 208   | 317   | PAX1   |
| positive regulation     |       |       |   |   |       |       |        |
| of cell motility 1/22   | 0.153 | 0.206 |   |   | 6.417 | 12.02 |        |
| (GO:2000147) 1          | 573   | 442   | 0 | 0 | 208   | 317   | F10    |
| regulation of           |       |       |   |   |       |       |        |
| canonical Wnt           |       |       |   |   |       |       |        |
| signaling pathway 1/25  | 0.173 | 0.226 |   |   | 5.593 | 9.784 |        |
| (GO:0060828) 3          | 89    | 333   | 0 | 0 | 254   | 464   | IGFBP6 |
| positive regulation     |       |       |   |   | _     |       |        |
| of phosphorylation 1/25 | 0.173 | 0.226 |   |   | 5.593 | 9.784 |        |
| (GO:0042327) 3          | 89    | 333   | 0 | 0 | 254   | 464   | ITLN1  |
| regulation of           |       |       |   | ~ |       |       |        |
| protein                 |       |       |   |   |       |       |        |
| phosphorylation 1/26    | 0.182 | 0.231 |   |   | 5.315 | 9.055 |        |
| (GO:0001932) 6          | 013   | 968   | 0 | 0 | 364   | 663   | ITLN1  |

| positive regulation   |      |       |       |   |   |       |       |        |
|-----------------------|------|-------|-------|---|---|-------|-------|--------|
| of cell migration     | 1/26 | 0.183 | 0.231 |   |   | 5.255 | 8.899 |        |
| (GO:0030335)          | 9    | 877   | 968   | 0 | 0 | 064   | 39    | F10    |
| cellular              |      |       |       |   |   |       |       |        |
| macromolecule         |      |       |       |   |   |       |       |        |
| biosynthetic          |      |       |       |   |   |       |       |        |
| process               | 1/31 | 0.211 | 0.262 |   |   | 4.489 | 6.977 |        |
| (GO:0034645)          | 4    | 365   | 605   | 0 | 0 | 274   | 093   | ALAS2  |
| transcription by      |      |       |       |   |   |       |       |        |
| RNA polymerase II     | 1/32 | 0.214 | 0.263 |   |   | 4.403 | 6.769 |        |
| (GO:0006366)          | 0    | 964   | 09    | 0 | 0 | 493   | 424   | PAX1   |
| cellular protein      |      |       |       |   |   |       |       |        |
| localization          | 1/32 | 0.220 | 0.265 |   |   | 4.280 | 6.475 |        |
| (GO:0034613)          | 9    | 334   | 697   | 0 | 0 | 706   | 046   | TMED6  |
| intracellular protein |      |       |       |   |   |       |       |        |
| transport             | 1/33 | 0.224 | 0.266 |   |   | 4.189 | 6.259 |        |
| (GO:0006886)          | 6    | 487   | 781   | 0 | 0 | 765   | 256   | TMED6  |
| positive regulation   |      |       |       |   |   |       |       |        |
| of multicellular      |      |       |       |   |   |       |       |        |
| organismal process    | 1/34 | 0.229 | 0.269 |   |   | 4.078 | 5.997 | ELOVL  |
| (GO:0051240)          | 5    | 796   | 189   | 0 | 0 | 281   | 377   | 6      |
| protein transport     | 1/36 | 0.243 | 0.278 |   |   | 3.807 | 5.374 |        |
| (GO:0015031)          | 9    | 788   | 963   | 0 | 0 | 648   | 334   | TMED6  |
| positive regulation   |      |       |       |   |   |       |       |        |
| of protein            |      |       |       |   |   |       |       |        |
| phosphorylation       | 1/37 | 0.244 | 0.278 |   |   | 3.786 | 5.326 |        |
| (GO:0001934)          | 1    | 943   | 963   | 0 | 0 | 68    | 837   | ITLN1  |
| negative regulation   |      |       |       |   |   |       |       |        |
| of cell population    |      |       |       |   |   |       |       |        |
| proliferation         | 1/37 | 0.249 | 0.280 |   |   | 3.705 | 5.142 |        |
| (GO:0008285)          | 9    | 547   | 313   | 0 | 0 | 026   | 973   | IGFBP6 |
| regulation of cell    |      |       |       |   |   |       |       |        |
| migration             | 1/40 | 0.266 | 0.294 |   |   | 3.435 | 4.549 |        |
| (GO:0030334)          | 8    | 02    | 268   | 0 | 0 | 942   | 824   | F10    |
| cellular protein      |      |       |       |   |   |       |       |        |
| metabolic process     | 1/41 | 0.271 | 0.294 |   |   | 3.360 | 4.386 |        |
| (GO:0044267)          | 7    | 063   | 268   | 0 | 0 | 062   | 241   | IGFBP6 |
| organelle             |      |       |       |   |   |       |       |        |
| organization          | 1/42 | 0.272 | 0.294 |   |   | 3.335 | 4.333 |        |
| (GO:0006996)          | 0    | 737   | 268   | 0 | 0 | 493   | 635   | TMED6  |
| positive regulation   |      |       |       |   |   |       |       |        |
| of intracellular      |      |       |       |   |   |       |       |        |
| signal transduction   | 1/54 | 0.339 | 0.361 |   |   | 2.547 | 2.749 |        |
| (GO:1902533)          | 6    | 884   | 955   | 0 | 0 | 837   | 499   | F10    |

| negative regulation |      |       |       |   |   |       |       |        |
|---------------------|------|-------|-------|---|---|-------|-------|--------|
| of cellular process | 1/56 | 0.349 | 0.367 |   |   | 2.455 | 2.577 |        |
| (GO:0048523)        | 6    | 995   | 943   | 0 | 0 | 12    | 477   | IGFBP6 |
| regulation of cell  |      |       |       |   |   |       |       |        |
| population          |      |       |       |   |   |       |       |        |
| proliferation       | 1/76 | 0.442 | 0.459 |   |   | 1.799 | 1.466 |        |
| (GO:0042127)        | 4    | 581   | 388   | 0 | 0 | 476   | 808   | IGFBP6 |
| cellular protein    |      |       |       |   |   |       |       |        |
| modification        |      |       |       |   |   |       |       |        |
| process             | 1/10 | 0.545 | 0.559 |   |   | 1.322 | 0.800 |        |
| (GO:0006464)        | 25   | 897   | 545   | 0 | 0 | 614   | 611   | PPEF1  |
| regulation of       |      |       |       |   |   |       |       |        |
| transcription by    |      |       |       |   |   |       |       |        |
| RNA polymerase II   | Jan- | 0.826 | 0.832 |   |   | 0.575 | 0.109 |        |
| (GO:0006357)        | 06   | 869   | 335   | 0 | 0 | 964   | 496   | PAX1   |
| regulation of       |      |       |       |   |   |       |       |        |
| transcription,      |      |       |       |   |   |       |       |        |
| DNA-templated       | Jan- | 0.832 | 0.832 |   |   | 0.564 | 0.103 |        |
| (GO:0006355)        | 44   | 335   | 335   | 0 | 0 | 996   | 688   | PAX1   |

Table 8: GO Biological process upregulated





Figure 4: Significantly upregulated biological processes.

|                       |      |       |        | Ol  |        |       |        |     |
|-----------------------|------|-------|--------|-----|--------|-------|--------|-----|
|                       |      |       |        | d   | Old    |       |        |     |
|                       |      |       | Adjus  | P-  | Adjus  |       | Combi  |     |
|                       | Over | P-    | ted P- | val | ted P- | Odds  | ned    | Gen |
| Term                  | lap  | value | value  | ue  | value  | Ratio | Score  | es  |
| opioid receptor       |      |       |        |     |        |       |        |     |
| binding               | 5-   | 0.004 | 0.043  |     |        | 293.7 | 1588.0 | PEN |
| (GO:0031628)          | Jan  | 492   | 071    | 0   | 0      | 941   | 72     | K   |
| extracellularly ATP-  |      |       |        |     |        |       |        |     |
| gated cation channel  |      |       |        |     |        |       |        |     |
| activity              | 7-   | 0.006 | 0.043  |     |        | 195.8 | 992.87 | P2R |
| (GO:0004931)          | Jan  | 284   | 071    | 0   | 0      | 431   | 93     | X5  |
| nucleotide receptor   |      |       |        |     |        |       |        |     |
| activity              | 7-   | 0.006 | 0.043  |     |        | 195.8 | 992.87 | P2R |
| (GO:0016502)          | Jan  | 284   | 071    | 0   | 0      | 431   | 93     | X5  |
| ATP-gated ion         |      |       |        |     |        |       |        |     |
| channel activity      | 8-   | 0.007 | 0.043  |     |        | 167.8 | 828.65 | P2R |
| (GO:0035381)          | Jan  | 179   | 071    | 0   | 0      | 571   | 38     | X5  |
| purinergic nucleotide |      |       |        |     |        |       |        |     |
| receptor activity     | 15-  | 0.013 | 0.064  |     |        | 83.89 | 361.69 | P2R |
| (GO:0001614)          | Jan  | 42    | 088    | 0   | 0      | 916   | 11     | X5  |
| pyridoxal phosphate   |      |       |        |     |        |       |        |     |
| binding               | 21-  | 0.018 | 0.064  |     |        | 58.71 | 233.50 | AL  |
| (GO:0030170)          | Jan  | 74    | 088    | 0   | 0      | 176   | 22     | В   |
| excitatory            |      |       |        |     |        |       |        |     |
| extracellular ligand- |      |       |        |     |        |       |        |     |
| gated ion channel     |      |       |        |     |        |       |        |     |
| activity              | 21-  | 0.018 | 0.064  |     |        | 58.71 | 233.50 | P2R |
| (GO:0005231)          | Jan  | 74    | 088    | 0   | 0      | 176   | 22     | X5  |
| neuropeptide          |      |       |        |     |        |       |        |     |
| hormone activity      | 26-  | 0.023 | 0.064  |     |        | 46.95 | 176.82 | PEN |
| (GO:0005184)          | Jan  | 153   | 088    | 0   | 0      | 765   | 56     | K   |
| glutathione           |      |       |        |     |        |       |        |     |
| transferase activity  | 27-  | 0.024 | 0.064  |     |        | 45.14 | 168.33 | GST |
| (GO:0004364)          | Jan  | 033   | 088    | 0   | 0      | 932   | 13     | M5  |
| copper ion binding    | Jan- | 0.039 | 0.088  |     |        | 26.65 | 85.965 | AL  |
| (GO:0005507)          | 45   | 751   | 619    | 0   | 0      | 508   | 83     | В   |
| channel activity      | Jan- | 0.040 | 0.088  |     |        | 26.06 | 83.489 | P2R |
| (GO:0015267)          | 46   | 617   | 619    | 0   | 0      | 144   | 48     | X5  |
| hormone activity      | Jan- | 0.067 | 0.125  |     |        | 15.20 | 40.889 | PEN |
| (GO:0005179)          | 78   | 948   | 126    | 0   | 0      | 626   | 78     | K   |

 Table 3: Go molecular function downregulated

| ligand-gated cation   |      |       |       |   |   |       |        |     |
|-----------------------|------|-------|-------|---|---|-------|--------|-----|
| channel activity      | Jan- | 0.069 | 0.125 |   |   | 14.81 | 39.487 | P2R |
| (GO:0099094)          | 80   | 632   | 126   | 0 | 0 | 981   | 88     | X5  |
| ion channel activity  | Jan- | 0.072 | 0.125 |   |   | 14.10 | 36.912 | P2R |
| (GO:0005216)          | 84   | 99    | 126   | 0 | 0 | 276   | 99     | X5  |
| G protein-coupled     |      |       |       |   |   |       |        |     |
| receptor binding      | 1/14 | 0.121 | 0.193 |   |   | 8.218 | 17.342 | PEN |
| (GO:0001664)          | 3    | 217   | 947   | 0 | 0 | 724   | 94     | Κ   |
| ATP binding           | 1/27 | 0.222 | 0.325 |   |   | 4.184 | 6.2829 | P2R |
| (GO:0005524)          | 8    | 804   | 209   | 0 | 0 | 54    | 35     | X5  |
| adenyl ribonucleotide |      |       |       |   |   |       |        |     |
| binding               | 1/30 | 0.242 | 0.325 |   |   | 3.794 | 5.3775 | P2R |
| (GO:0032559)          | 6    | 436   | 209   | 0 | 0 | 986   | 66     | X5  |
| cadherin binding      | 1/32 | 0.253 | 0.325 |   |   | 3.602 | 4.9453 | CD  |
| (GO:0045296)          | 2    | 443   | 209   | 0 | 0 | 895   | 98     | H2  |
| zinc ion binding      | 1/33 | 0.262 | 0.325 |   |   | 3.449 | 4.6083 | AL  |
| (GO:0008270)          | 6    | 95    | 209   | 0 | 0 | 868   | 08     | В   |
| calcium ion binding   | 1/34 | 0.271 | 0.325 |   |   | 3.328 | 4.3457 | CD  |
| (GO:0005509)          | 8    | 007   | 209   | 0 | 0 | 53    | 59     | H2  |
| transition metal ion  |      |       |       |   |   |       |        |     |
| binding               | 1/44 | 0.333 | 0.373 |   |   | 2.588 | 2.8451 | AL  |
| (GO:0046914)          | 5    | 154   | 424   | 0 | 0 | 5     | 51     | В   |
| purine ribonucleoside |      |       |       |   |   |       |        |     |
| triphosphate binding  | 1/46 | 0.342 | 0.373 |   |   | 2.501 | 2.6822 | P2R |
| (GO:0035639)          | 0    | 305   | 424   | 0 | 0 | 986   | 59     | X5  |
| metal ion binding     | 1/51 | 0.376 | 0.392 |   |   | 2.219 | 2.1705 | CD  |
| (GO:0046872)          | 7    | 011   | 359   | 0 | 0 | 106   | 92     | H2  |
| DNA binding           | 1/81 | 0.525 | 0.525 |   |   | 1.392 | 0.8958 | AL  |
| (GO:0003677)          | 1    | 471   | 471   | 0 | 0 | 302   | 9      | В   |

Table 9: Go molecular function downregulated



Figure 5: Significantly downregulated molecular functions.

|                       |      |       |        | Ol  | Old   |       |       |      |
|-----------------------|------|-------|--------|-----|-------|-------|-------|------|
|                       |      |       |        | d   | Adju  |       |       |      |
|                       |      |       | Adjus  | P-  | sted  |       | Combi |      |
|                       | Over | P-    | ted P- | val | P-    | Odds  | ned   | Gen  |
| Term                  | lap  | value | value  | ue  | value | Ratio | Score | es   |
| hemoglobin alpha      |      |       |        |     |       |       |       |      |
| binding               | 5-   | 0.003 | 0.031  |     |       | 356.8 | 1993. | HB   |
| (GO:0031721)          | Jan  | 745   | 401    | 0   | 0     | 036   | 609   | G2   |
| insulin-like growth   |      |       |        |     |       |       |       |      |
| factor II binding     | 7-   | 0.005 | 0.031  |     |       | 237.8 | 1249. | IGF  |
| (GO:0031995)          | Jan  | 239   | 401    | 0   | 0     | 452   | 078   | BP6  |
| fatty acid elongase   | 7-   | 0.005 | 0.031  |     |       | 237.8 | 1249. | ELO  |
| activity (GO:0009922) | Jan  | 239   | 401    | 0   | 0     | 452   | 078   | VL6  |
| interleukin-17        |      |       |        |     |       |       |       |      |
| receptor activity     | 8-   | 0.005 | 0.031  |     |       | 203.8 | 1043. | IL17 |
| (GO:0030368)          | Jan  | 985   | 401    | 0   | 0     | 571   | 434   | REL  |
| fatty acid synthase   | 10-  | 0.007 | 0.031  |     |       | 158.5 | 776.2 | ELO  |
| activity (GO:0004312) | Jan  | 476   | 401    | 0   | 0     | 397   | 124   | VL6  |

| insulin-like growth    |      |       |       |   |   |       |       |      |
|------------------------|------|-------|-------|---|---|-------|-------|------|
| factor I binding       | 13-  | 0.009 | 0.033 |   |   | 118.8 | 551.0 | IGF  |
| (GO:0031994)           | Jan  | 709   | 585   | 0 | 0 | 869   | 048   | BP6  |
| insulin-like growth    |      |       |       |   |   |       |       |      |
| factor binding         | 15-  | 0.011 | 0.033 |   |   | 101.8 | 457.7 | IGF  |
| (GO:0005520)           | Jan  | 195   | 585   | 0 | 0 | 929   | 328   | BP6  |
| protein                |      |       |       |   |   |       |       |      |
| serine/threonine       |      |       |       |   |   |       |       |      |
| phosphatase activity   | Jan- | 0.045 | 0.119 |   |   | 23.33 | 72.08 | PPE  |
| (GO:0004722)           | 62   | 52    | 489   | 0 | 0 | 021   | 123   | F1   |
| cytokine receptor      | Jan- | 0.064 | 0.138 |   |   | 16.33 | 44.90 | IL17 |
| activity (GO:0004896)  | 88   | 027   | 895   | 0 | 0 | 662   | 04    | REL  |
| heme binding           | Jan- | 0.066 | 0.138 |   |   | 15.78 | 42.88 | HB   |
| (GO:0020037)           | 91   | 141   | 895   | 0 | 0 | 968   | 433   | G2   |
| serine-type            |      |       |       |   |   |       |       |      |
| endopeptidase activity | 1/10 | 0.075 | 0.144 |   |   | 13.65 | 35.19 |      |
| (GO:0004252)           | 5    | 946   | 988   | 0 | 0 | 453   | 772   | F10  |
| serine-type peptidase  | 1/12 | 0.089 | 0.157 |   |   | 11.44 | 27.57 |      |
| activity (GO:0008236)  | 5    | 787   | 128   | 0 | 0 | 067   | 559   | F10  |
| endopeptidase activity | 1/31 | 0.211 | 0.342 |   |   | 4.474 | 6.941 |      |
| (GO:0004175)           | 5    | 966   | 406   | 0 | 0 | 75    | 816   | F10  |
| calcium ion binding    | 1/34 | 0.231 | 0.347 |   |   | 4.042 | 5.913 | ITL  |
| (GO:0005509)           | 8    | 558   | 337   | 0 | 0 | 404   | 739   | N1   |
| metal ion binding      | 1/51 | 0.324 | 0.454 |   |   | 2.695 | 3.029 | ITL  |
| (GO:0046872)           | 7    | 963   | 949   | 0 | 0 | 044   | 345   | N1   |
| double-stranded DNA    |      |       |       |   |   |       |       |      |
| binding                | 1/65 | 0.391 | 0.489 |   |   | 2.124 | 1.993 | PAX  |
| (GO:0003690)           | 1    | 372   | 46    | 0 | 0 | 725   | 195   | 1    |
| sequence-specific      |      |       |       |   |   |       |       |      |
| DNA binding            | 1/70 | 0.417 | 0.489 |   |   | 1.950 | 1.704 | PAX  |
| (GO:0043565)           | 7    | 275   | 46    | 0 | 0 | 526   | 777   | 1    |
| sequence-specific      |      |       |       |   |   |       |       |      |
| double-stranded DNA    |      |       |       |   |   |       |       |      |
| binding                | 1/71 | 0.419 | 0.489 |   |   | 1.936 | 1.681 | PAX  |
| (GO:1990837)           | 2    | 537   | 46    | 0 | 0 | 307   | 881   | 1    |
| RNA polymerase II      |      |       |       |   |   |       |       |      |
| cis-regulatory region  |      |       |       |   |   |       |       |      |
| sequence-specific      |      |       | 0.44  |   |   |       | 0.401 |      |
| DNA binding            | 1/11 | 0.588 | 0.617 | 0 | 0 | 1.172 | 0.621 | PAX  |
| (GO:0000978)           | 49   | 445   | 867   | 0 | 0 | 038   | 499   | 1    |
| cis-regulatory region  |      |       |       |   |   |       |       |      |
| sequence-specific      | 1/11 | 0.500 | 0 (17 |   |   | 1 170 | 0 (21 | DAV  |
| DINA binding           | 1/11 | 0.588 | 0.617 | 0 | 0 | 1.172 | 0.621 |      |
| (GO:000987)            | 49   | 445   | 867   | 0 | 0 | 038   | 499   | 1    |



Figure 6: Significantly upregulated molecular functions.

|             |       |        |        | Old | Old    |        |        |        |
|-------------|-------|--------|--------|-----|--------|--------|--------|--------|
|             |       |        | Adjust | P-  | Adjus  |        | Combi  |        |
|             | Overl | P-     | ed P-  | val | ted P- | Odds   | ned    |        |
| Term        | ap    | value  | value  | ue  | value  | Ratio  | Score  | Genes  |
| Neuroactive |       |        |        |     |        |        |        |        |
| ligand-     |       |        |        |     |        |        |        |        |
| receptor    |       | 0.0370 | 0.1744 |     |        | 7.2429 | 23.869 | P2RX5; |
| interaction | 2/341 | 46     | 74     | 0   | 0      | 94     | 89     | PENK   |
| Glutathione | Jan-  | 0.0500 | 0.1744 |     |        | 20.930 | 62.662 |        |
| metabolism  | 57    | 96     | 74     | 0   | 0      | 67     | 34     | GSTM5  |
| Thyroid     |       |        |        |     |        |        |        |        |
| hormone     | Jan-  | 0.0654 | 0.1744 |     |        | 15.825 | 43.154 |        |
| synthesis   | 75    | 18     | 74     | 0   | 0      | 12     | 55     | ALB    |
| Metabolism  | Jan-  | 0.0662 | 0.1744 |     |        | 15.613 | 42.376 |        |
| of          | 76    | 62     | 74     | 0   | 0      | 33     | 8      | GSTM5  |

Table 5: KEGG 2021 Downregulated

| xenobiotics    |       |        |        |   |   |        |        |       |
|----------------|-------|--------|--------|---|---|--------|--------|-------|
| by             |       |        |        |   |   |        |        |       |
| cytochrome     |       |        |        |   |   |        |        |       |
| P450           |       |        |        |   |   |        |        |       |
| Arrhythmoge    |       |        |        |   |   |        |        |       |
| nic right      |       |        |        |   |   |        |        |       |
| ventricular    |       |        |        |   |   |        |        |       |
| cardiomyopat   | Jan-  | 0.0671 | 0.1744 |   |   | 15.407 | 41.622 |       |
| hy             | 77    | 05     | 74     | 0 | 0 | 12     | 2      | CDH2  |
| Drug           |       | 0.0929 | 0.2012 |   |   | 10.926 | 25.963 |       |
| metabolism     | 1/108 | 02     | 87     | 0 | 0 | 33     | 28     | GSTM5 |
| Fluid shear    |       |        |        |   |   |        |        |       |
| stress and     |       |        |        |   |   |        |        |       |
| atherosclerosi |       | 0.1180 | 0.2034 |   |   | 8.4586 | 18.075 |       |
| S              | 1/139 | 24     | 39     | 0 | 0 | 53     | 05     | GSTM5 |
| Cell adhesion  |       | 0.1251 | 0.2034 |   |   | 7.9371 | 16.492 |       |
| molecules      | 1/148 | 93     | 39     | 0 | 0 | 75     | 65     | CDH2  |
| Hepatocellula  |       | 0.1409 | 0.2035 |   |   | 6.9795 | 13.676 |       |
| r carcinoma    | 1/168 | 28     | 63     | 0 | 0 | 7      | 49     | GSTM5 |
| Chemical       |       |        |        |   |   |        |        |       |
| carcinogenesi  |       | 0.1946 | 0.2309 |   |   | 4.8798 | 7.9859 |       |
| S              | 1/239 | 57     | 17     | 0 | 0 | 81     | 93     | GSTM5 |
| Calcium        |       |        |        |   |   |        |        |       |
| signaling      |       | 0.1953 | 0.2309 |   |   | 4.8592 | 7.9338 |       |
| pathway        | 1/240 | 91     | 17     | 0 | 0 | 17     | 98     | P2RX5 |
| Herpes         |       |        |        |   |   |        |        |       |
| simplex virus  |       | 0.3649 | 0.3840 |   |   | 2.3061 | 2.3245 |       |
| 1 infection    | 1/498 | 61     | 36     | 0 | 0 | 9      | 58     | CFP   |
| Pathways in    |       | 0.3840 | 0.3840 |   |   | 2.1589 | 2.0661 |       |
| cancer         | 1/531 | 36     | 36     | 0 | 0 | 35     | 42     | GSTM5 |

Table 11: KEGG 2021 Downregulated

# Table 6: KEGG 2021 upregulated

|                   |       |        |        | Old | Old    |        |        |      |
|-------------------|-------|--------|--------|-----|--------|--------|--------|------|
|                   |       |        | Adjust | P-  | Adjus  |        | Combi  |      |
|                   | Overl | P-     | ed P-  | val | ted P- | Odds   | ned    | Gene |
| Term              | ap    | value  | value  | ue  | value  | Ratio  | Score  | S    |
| Biosynthesis of   |       |        |        |     |        |        |        |      |
| unsaturated fatty | 27-   | 0.0200 | 0.0430 |     |        | 54.832 | 214.32 | ELO  |
| acids             | Jan   | 67     | 07     | 0   | 0      | 42     | 35     | VL6  |
| Fatty acid        | 27-   | 0.0200 | 0.0430 |     |        | 54.832 | 214.32 | ELO  |
| elongation        | Jan   | 67     | 07     | 0   | 0      | 42     | 35     | VL6  |

| African                         | Jan- | 0.0274 | 0.0430 |   |   | 39.581 | 142.37 | HBA |  |  |
|---------------------------------|------|--------|--------|---|---|--------|--------|-----|--|--|
| trypanosomiasis                 | 37   | 03     | 07     | 0 | 0 | 35     | 85     | 2   |  |  |
| Glycine, serine                 |      |        |        |   |   |        |        |     |  |  |
| and threonine                   | Jan- | 0.0295 | 0.0430 |   |   | 36.531 | 128.59 | ALA |  |  |
| metabolism                      | 40   | 94     | 07     | 0 | 0 | 14     | 67     | S2  |  |  |
| Porphyrin and                   |      |        |        |   |   |        |        |     |  |  |
| chlorophyll                     | Jan- | 0.0317 | 0.0430 |   |   | 33.916 | 116.97 | ALA |  |  |
| metabolism                      | 43   | 8      | 07     | 0 | 0 | 67     | 59     | S2  |  |  |
|                                 | Jan- | 0.0368 | 0.0430 |   |   | 29.061 | 95.917 | HBA |  |  |
| Malaria                         | 50   | 63     | 07     | 0 | 0 | 22     | 72     | 2   |  |  |
| Complement and                  |      |        |        |   |   |        |        |     |  |  |
| coagulation                     | Jan- | 0.0619 | 0.0619 |   |   | 16.922 | 47.080 |     |  |  |
| cascades                        | 85   | 09     | 09     | 0 | 0 | 62     | 33     | F10 |  |  |
| Table 12: KECC 2021 upregulated |      |        |        |   |   |        |        |     |  |  |

Table 12: KEGG 2021 upregulated



Figure 7: Significantly upregulated KEGG human pathways.

### **4.3 DISCUSSION**

After complete the analyzation phase, I have found 15 upregulated gene and 18 downregulated gene. AL158154.2, F10, ELOVL6, PPEF1, IGFBP6, PAX1, AC011893.1, TMED6, AC090877.2, FAM163A, HBG2, ITLN1, HBA2, ALAS2, IL17REL are upregulated while MTND1P23, SCARNA5, SCARNA10, SCARNA7, PENK, GSTM5, RF00100, LINC00052, LINC01281, CD300LB, CDH2, CFP, LINC01099, AF178030.1, ALB, P2RX5, TEX11, FCRL4 are downregulated.

In breast cancer, Elovl6 is a poor prognostic predictor. In addition, Elovl6 has been linked to insulin resistance, obesity, and lipogenesis. Furthermore, the protein has been linked to nonalcoholic steatohepatitis-associated liver carcinogenesis and is increased in human hepatocellular carcinoma. Positive Elov16 expression was linked to lymph node involvement and a shorter recurrence-free survival period. Elovl6 expression, on the other hand, had no relation to the size of the initial tumor, lymph node metastases, stage, grade, estrogen receptor, progesterone receptor, HER2, or age. As a result, positive Elovl6 expression is a poor predictive indicator in patients with breast cancer who have previously had surgery, and it may one day be used as a therapeutic method, especially in the context of obesity-related illness[23]. The PPEF1 gene, which encodes a protein serine/threonine protein phosphatase, was discovered on chromosome Xp22, which has been linked to excessive cell proliferation, growth, and signaling. Furthermore, overexpression of PPEF1 boosted the tumorigenic growth of A549 cells, indicating that PPEF1 might operate as an oncogene in the formation of lung cancer by inhibiting cancer cell death. PPEF1 has also been identified as a possible target for lymphoma diagnosis and treatment, according to current studies[24]. In NCI-H1299 cells, IGFBP-6 gene is an effector of SEMA3B's tumor suppressor function. IGFBP-6 expression is suppressed by -catenin, according to research. IGFBP-6 expression was lower in normal lung tissue and linked favorably with SEMA3B expression[25]. The PAX1 gene, which has a paired domain (PD) and an octapeptide domain, is found on chromosome 20p11 (OP). It is essential for the growth and development of the bone, spine, thymus, and parathyroid gland. When comparing cervical cancer tissues to normal cervical tissues, the PAX1 gene is considerably hypermethylated (PAX1m), and the methylation level correlates favorably with tumor grade[26]. Gene 59 | Page ©Daffodil International University

TMED6 is a potential target which found by only eQTL analysis. Its promote to colon cancer[27]. FAM163A, also known as neuroblastoma-derived secretory protein (NDSP) or C10RF76, is a 167-amino-acid protein with a potential signal peptide that is found on chromosome 1q25.2. FAM163A was shown to be overexpressed at a greater level in neuroblastoma than in other human malignancies in previous investigations. Apart from neuroblastoma, the expression of FAM163A has been studied in a number of lung cancer cell lines, with only weak expression [28]. The ITLN1 gene is a secretory protein that has been linked to a better prognosis in individuals with advanced ovarian cancer, according to a recent study. Further research shows that ITLN1 reduces MMP1 expression and induces a metabolic change in metastatic ovarian cancer cells, suppressing lactotransferrin's influence on ovarian cancer cell invasion and proliferation. Furthermore, tumor growth rates in ovarian cancer-bearing mice treated with ITLN1 are significantly reduced[29]. In PCa metastatic samples, HBA2 is abundantly expressed. The rise in HBA2 might be linked to a higher burden of labile heme in the tumor niche, which could come from erythrocytes, dying cancer cells, or healthy cells[30]. According to the Human Protein Atlas, ALAS2 is expressed in 16 percent of lung cancer tissues. As a result, the amount of ALAS2 transcript in lung cells was also assessed. In HCC4017 cells, the amount of ALAS2 transcript was roughly five-fold higher[31].

In vitro and in vivo, the effects of lentivirus-mediated knockdown or overexpression of SCARNA10 on liver fibrosis were investigated. Furthermore, the impacts and mechanisms of SCARNA10 down-regulation or over-expression on the expression of TGF pathway genes were investigated. SCARNA10 transcript levels were higher in the serum and liver of individuals with advanced hepatic fibrosis. SCARNA10 acted as an unique positive 60 | Page ©Daffodil International University

regulator of TGF signaling in hepatic fibrogenesis by blocking PRC2 binding to the promoters of genes involved in the ECM and TGF pathways, allowing these genes to be transcribed[32]. GSTM genes are detoxifying enzymes that are involved in the deactivation of carcinogenic reactive metabolites, implying that these enzymes may play a role in carcinogenesis. A survival study of patients with gastric cancer who had varying amounts of GSTM expression is given. Patients with gastric cancer who had high GSTM5 expression had a significantly worse prognosis[33]. In several malignancies, such as breast cancer, gastric cancer, liver cancer, and lung cancer, the biological activity of long intergenic nonproteincoding RNA 52 (LINC00052) indicates that this gene can behave as either an oncogene or a tumor suppressor. When comparing colorectal cancer tissues to their surrounding tissues, LINC00052 was shown to be downregulated. In addition, both in vivo and in vitro, LINC00052 inhibited the spread of colorectal cancer cells[34]. Cadherin 2 (CDH2) is a member of the cadherin superfamily that encodes the N-cadherin protein, a traditional cadherin that maintains cell integrity and is involved in various cell signaling pathways. The expression of CDH2 has been found to be highly linked to glioma. Patients with reduced CDH2 expression had a better prognosis and were more likely to respond to temozolomide treatment. It's used to grade and treat glioma as a prognostic and predictive molecular biomarker[35]. Complement factor properdin (CFP), which encodes plasma glycoprotein, is a key regulator of the innate immune system's complement cascade. Low CFP expression was associated with poorer overall survival (OS), first progression (FP), and post progression survival (PPS), and was detrimental to the prognosis of STAD and LUAD, particularly in stages 3, T3, N2, and N3 of STAD (P0.05). Furthermore, in STAD and LUAD, CFP expression exhibited substantial positive relationships with the 61 | Page ©Daffodil International University

numbers of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (DCs). In STAD and LUAD, CFP can be used as a predictive biomarker to determine prognosis and immune infiltration[36]. Tex11, an X-linked meiosis-specific gene, promotes chromosomal synapsis and meiotic recombination. Infertile males with non-obstructive azoospermia have a mutation in TEX11, and a mouse with a similar mutation has problems with meiosis[37]. FCRL4 is an immunoglobulin receptor superfamily member and one of numerous Fc receptor-like glycoproteins grouped on chromosome 1's long arm. Four extracellular C2-type immunoglobulin domains, a transmembrane domain, and a cytoplasmic domain with three immune-receptor tyrosine-based inhibitory motifs make up the encoded protein. This protein may play a part in the epithelia's memory B-cell function. Non-Hodgkin lymphoma and multiple myeloma have been linked to chromosomal abnormalities encoding this gene[38].

### CHAPTER 5 CONCLUTION

The research goal was accomplished satisfactorily. With a recent work, we discovered that tumor and non-tumor patients in breast cancer had differently expressed genes. And in this investigation, we discovered unique genes that are expressed at every stage of breast cancer. We will strive to cover the protein-protein interaction (PPI) network using this dataset in future research and find hub genes that will affect the cancer pathway.

### Reference

[1] "Breast cancer in women - NHS." 2019, Accessed: Jan. 08, 2022. [Online]. Available: https://www.nhs.uk/conditions/breast-cancer/.

[2] A. Felman, "Breast cancer: Symptoms, causes, stages, types, and more," What to know about breast cancer, 2021. https://www.medicalnewstoday.com/articles/37136 (accessed Jan. 08, 2022).

[3] "Central database, mass awareness to address breast cancer in Bangladesh." https://www.aa.com.tr/en/asia-pacific/central-database-mass-awareness-to-addressbreast-cancer-in-bangladesh/2401288 (accessed Jan. 05, 2022).

[4] "What Is Cancer? - National Cancer Institute." https://www.cancer.gov/aboutcancer/understanding/what-is-cancer (accessed Jan. 05, 2022).

[5] D. of C. P. and C. Centers for Disease Control and Prevention, "What Is Breast Cancer? | CDC," Sept. 14, pp. 1–19, 2020, Accessed: Jan. 05, 2022. [Online]. Available: https://www.cdc.gov/cancer/breast/basic\_info/what-is-breast-cancer.htm.

[6] B. A. Mandal, "Breast Cancer Pathophysiology," Breast Cancer Pathophysiol.,

pp. 1–3, 2019, Accessed: Jan. 05, 2022. [Online]. Available: https://www.newsmedical.net/health/Breast-Cancer-Pathophysiology.aspx.

[7] T. N. Seyfried and L. C. Huysentruyt, "On the origin of cancer metastasis," Crit. Rev. Oncog., vol. 18, no. 1–2, pp. 43–73, 2013, doi: 10.1615/CritRevOncog.v18.i1-2.40.

[8] National Cancer Institution at the National Institutes of Health, "The Genetics of Cancer - National Cancer Institute," 2015. https://www.cancer.gov/about-cancer/causesprevention/genetics (accessed Jan. 05, 2022).

[9] D. Hanahan and R. A. Weinberg, "Hallmarks of cancer: The next generation," Cell, vol. 144, no. 5. Cell, pp. 646–674, Mar. 04, 2011, doi: 10.1016/j.cell.2011.02.013.

[10] National Cancer Institute, "Cancer Staging - National Cancer Institute," NCI Cancer Staging. 2015, Accessed: Jan. 05, 2022. [Online]. Available: https://www.cancer.gov/about-cancer/diagnosis-staging/staging.

[11] M. S. Rao et al., "Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies," Front. Genet., vol. 10, no. JAN, p. 636, 2019, doi: 10.3389/fgene.2018.00636.

[12] Z. Fang, J. Martin, and Z. Wang, "Statistical methods for identifying differentially expressed genes in RNA-Seq experiments," Cell and Bioscience, vol. 2, no. 1. BioMed Central, pp. 1–8, Jul. 31, 2012, doi: 10.1186/2045-3701-2-26.

[13] R. Bell, R. Barraclough, and O. Vasieva, "Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers," Curr. Mol. Med., vol. 17, no. 3, Aug. 2017, doi: 10.2174/1566524017666170807144946. [14] "Differential gene expression | definition of differential gene expression by Medical dictionary."https://medical-

dictionary.thefreedictionary.com/differential+gene+expression (accessed Jan. 05, 2022).

[15] M. Nacht et al., "Combining Serial Analysis of Gene Expression and Array Technologies to Identify Genes Differentially Expressed in Breast Cancer 1," 1999. [Online]. Available: http://www.lbl.gov/LBL-Programs/mrgs/review.html.

[16] X. J. Ma, S. Dahiya, E. Richardson, M. Erlander, and D. C. Sgroi, "Gene expression profiling of the tumor microenvironment during breast cancer progression," Breast Cancer Res., vol. 11, no. 1, Feb. 2009, doi: 10.1186/bcr2222.

[17] A. C. Vargas et al., "Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression," Breast Cancer Res. Treat., vol. 135, no. 1, pp. 153–165, 2012, doi: 10.1007/s10549-012-2123-4.

[18] R. Bell, R. Barraclough, and O. Vasieva, "Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers," Curr. Mol. Med., vol. 17, no. 3, Aug. 2017, doi: 10.2174/1566524017666170807144946.

[19] E. S. Knudsen, A. Ertel, E. Davicioni, J. Kline, G. F. Schwartz, and A. K. Witkiewicz, "Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia," Breast Cancer Res. Treat., vol. 133, no. 3, pp. 1009–1024, Jun. 2012, doi: 10.1007/s10549-011-1894-3.

[20] C. F. Singer et al., "Differential gene expression profile in breast cancer-derived stromal fibroblasts," Breast Cancer Res. Treat., vol. 110, no. 2, pp. 273–281, Jul. 2008,
doi: 10.1007/s10549-007-9725-2.

[21] K. S. Wilson, H. Roberts, R. Leek, A. L. Harris, and J. Geradts, "Differential gene expression patterns in HER2/neu-positive and -negative breast cancer cell lines and tissues," Am. J. Pathol., vol. 161, no. 4, pp. 1171–1185, 2002, doi: 10.1016/S0002-9440(10)64394-5.

[22] S. Malvia et al., "Study of Gene Expression Profiles of Breast Cancers in Indian

Women, "Sci. Rep., vol. 9, no. 1, pp. 1–15, Jul. 2019, doi: 10.1038/s41598-019-46261-1.

[23] Feng, Y. H., Chen, W. Y., Kuo, Y. H., Tung, C. L., Tsao, C. J., Shiau, A. L., & Wu, C. L. (2016). Elovl6 is a poor prognostic predictor in breast cancer. Oncology letters, 12(1), 207–212. https://doi.org/10.3892/ol.2016.4587

[24] Ye, T., Wan, X., Li, J., Feng, J., Guo, J., Li, G., & Liu, J. (2020). The Clinical Significance of PPEF1 as a Promising Biomarker and Its Potential Mechanism in Breast Cancer. OncoTargets and therapy, 13, 199–214. https://doi.org/10.2147/OTT.S229432

[25] Koyama, N., Zhang, J., Huqun, Miyazawa, H., Tanaka, T., Su, X., & Hagiwara, K. (2008). Identification of IGFBP-6 as an effector of the tumor suppressor activity of SEMA3B. Oncogene, 27(51), 6581–6589. https://doi.org/10.1038/onc.2008.263

[26] Li, X., Zhou, X., Zeng, M., Zhou, Y., Zhang, Y., Liou, Y. L., & Zhu, H. (2021). Methylation of PAX1 gene promoter in the prediction of concurrent chemo-radiotherapy efficacy in cervical cancer. Journal of Cancer, 12(17), 5136–5143. https://doi.org/10.7150/jca.57460

[27] Yao, L., Tak, Y. G., Berman, B. P., & Farnham, P. J. (2014). Functional annotation of colon cancer risk SNPs. Nature communications, 5(1), 1-13.

[28] Liu, N., Zhou, H., Zhang, X., Cai, L., Li, J., Zhao, J., ... & Miao, Y. (2019). FAM163A, a positive regulator of ERK signaling pathway, interacts with 14-3-3 $\beta$  and promotes cell proliferation in squamous cell lung carcinoma. OncoTargets and therapy, 12, 6393.

[29] Au-Yeung, C. L., Yeung, T. L., Achreja, A., Zhao, H., Yip, K. P., Kwan, S. Y., ... & Mok, S. C. (2020). ITLN1 modulates invasive potential and metabolic reprogramming of ovarian cancer cells in omental microenvironment. Nature communications, 11(1), 1-16.

[30] Canesin, G., Di Ruscio, A., Li, M., Ummarino, S., Hedblom, A., Choudhury, R., ... & Wegiel, B. (2020). Scavenging of labile heme by hemopexin is a key checkpoint in cancer growth and metastases. Cell reports, 32(12), 108181.

[31] Hooda, J., Cadinu, D., Alam, M. M., Shah, A., Cao, T. M., Sullivan, L. A., ... & Zhang, L. (2013). Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells. PloS one, 8(5), e63402.

[32] Zhang, K., Han, Y., Hu, Z., Zhang, Z., Shao, S., Yao, Q., ... & Hong, W. (2019). SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Theranostics, 9(12), 3622.

[33] Chen, Y., Li, B., Wang, J., Liu, J., Wang, Z., Mao, Y., ... & Chen, J. (2020). Identification and verification of the prognostic value of the glutathione S-transferase Mu genes in gastric cancer. Oncology letters, 20(4), 1-1.

[34] Yu, G., Xiong, D., Liu, Z., Li, Y., Chen, K., & Tang, H. (2019). Long noncoding RNA LINC00052 inhibits colorectal cancer metastasis by sponging microRNA-574-5p to modulate CALCOCO1 expression. Journal of cellular biochemistry, 120(10), 17258-17272.

[35] Chen, Q., Cai, J., & Jiang, C. (2018). CDH2 expression is of prognostic significance in glioma and predicts the efficacy of temozolomide therapy in patients with glioblastoma. Oncology letters, 15(5), 7415-7422.

[36] Cui, G., Le Geng, L. Z., Lin, Z., Liu, X., Miao, Z., Jiang, J., ... & Wei, F. (2021). CFP is a prognostic biomarker and correlated with immune infiltrates in Gastric Cancer and Lung Cancer. Journal of Cancer, 12(11), 3378.

[37] Yang, F., Silber, S., Leu, N. A., Oates, R. D., Marszalek, J. D., Skaletsky, H., ... & Wang, P. J. (2015). TEX 11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO molecular medicine, 7(9), 1198-1210.

[38] http://www.cancerindex.org/geneweb/IRTA1.htm Accessed: 2022-01-12
67 | Page ©Daffodil International University

[39] Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. Comprehensive molecular portraits of human breast tumours. Nat 2012 4907418 [Internet]. 2012 Sep 23 [cited 2022 Jan 3];490(7418):61–70. Available from: https://www.nature.com/articles/nature11412

[40] Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res [Internet]. 2016 May 5 [cited 2022 Jan 3];44(8):e71. Available from: https://academic.oup.com/nar/article/44/8/e71/2465925

## **Account Clearance:**



## **Plagiarism Report**



Library Clearance