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ABSTRACT 

 

Autism Spectrum Disorder (ASD) is a set of neurological impairments which are incurable but 

can be improved with early treatment. We obtained slightly earlier detected ASD datasets 

pertaining to children and highly processed the dataset as needed. Various ML approaches were 

applied to the collected dataset and compared their performance based on accuracy, precision, 

recall, f-measure, log loss, kappa statistics, and MCC. We found that DT provides the best 

performance with 100% accuracy. Then different FSTs methods were applied to the dataset to 

show the importance and identify the significant features responsible for ASD. The study's 

findings indicate that, when properly tuned, machine learning approaches can offer accurate 

forecasts of ASD status. According to the findings, the suggested model has the ability to 

diagnose ASD in its early phases. 

Keywords: ASD, Neurodevelopmental, Classifier, Logistic Regression, Random Forest. 
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CHAPTER 1 

Introduction 

 

1.1 Problem Outline 

Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by 

communication and behavioral impairments [1]. Autism spectrum disorder affects 

around one out of every 54 children, according to the CDC's Autism and 

Developmental Disabilities Monitoring (ADDM) Network (ASD). ASD has been 

reported in people of various races, ethnicities, and socioeconomic backgrounds. 

Boys are four times as likely as girls to have ASD. According to parent reports, from 

2009 to 2017, almost one in every six (17%) children aged 3–17 years were 

diagnosed with a developmental disability. Among these were autism, attention 

deficit/hyperactivity disorder, blindness, and cerebral palsy. In 2000 year, there are 

6.7% children are caused by ASD which is about 1 in 150 children. In 2016 year, 

there are 18.5% children are caused by ASD which is about 1 in 54 children. So, it is 

increased day by day [2]. 

 While ASD is a lifelong condition, the severity of functional impairment caused by 

these problems differs across children with ASD. Before a kid turns one year old, 

parents or physicians can detect early indications of this condition. Symptoms, on the 

other hand, generally become more constant by the time a kid is 2 or 3 years old. In 

other circumstances, the functional impairment caused by ASD may be moderate and 

not noticeable until the kid enters school, at which point their impairments may 

become evident when they are among their companions [3]. 
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Figure 1: visualization of ASD increasing density 

Children with ASD exhibit difficulty with social contact and consultation, have restricted 

interests, and prefer repetitive activities [1]. Not all people with ASD display all of these 

behaviors, but the vast majorities do. Sharing gratitude for items or activities with others 

by pointing out or showing them things is uncommon. Making infrequent or erratic eye 

contact. Not looking at or listening to others.  having trouble with the back and forth of 

communication. Frequently chatting for an extended period of time on a preferred subject 

without realizing that others are not engaged or without giving others an opportunity to 

react. exhibiting odd habits or repeating particular traits echolalia is the practice of 

repeating words and expressions [1]. Getting a long strong interest in specific things, 

such as statistics, details, or facts. Having too restricted interests, such as moving things 

or parts of objects. Being upset by little changes in a routine. Being more or less sensitive 

to sensory input such as light, noise, clothing, or temperature than others. According to 

research, genes can interact with environmental factors to alter development in ways that 

contribute to ASD. Having a sibling with ASD, older parents, specific genetic disorders, 

and persons with illnesses such as Down syndrome, birth weight is quite low are all risk 

factors of ASD [1].  
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Having a long-term, great interest in a certain subject, such as data, details, or facts. 

Excessively limited interests, like as moving things or portions of objects. Distress 

caused by little changes in one's routine. Being more or less sensitive to sensory input 

than other people, such as light, noise, clothing, or temperature. Genes can combine 

with environmental variables to alter development in ways that contribute to ASD, 

according to research. Having an ASD sibling, older parents, particular genetic flaws, 

persons with conditions such as Intellectual impairment, and having a poor body 

weight increase are all risk factors for ASD [1]. 

Because there is no diagnostic method for autism spectrum disorder (ASD), including 

a blood test, detecting the condition might be challenging. When diagnosing a 

youngster, doctors mainly consider their cognitive history and behavior [35]. 

      Early indications of ASD, based on the National Institute of Mental Health, are 

including [11]: 

a. There seems to be little eye contact. 

b. Not correctly pointing out or showing others what you're enjoying about goods or 

activities. 

c. Adults have a hard time getting their attention, and children have a hard time 

responding to them. 

d. Conversing for a long time without evaluating other people's interest 

e. A voice with a monotone voice. 

f. A habit of recurring certain actions, words, or sentiments. 

g. A strong desire for some things. 

h. Irritated by variations in regularity. 

i. Sleeping difficulties. 

 

    The majority of people diagnosed ASD have other traits. These could include the 

following [35]: 

a. Linguistic skills that are behind schedule. 

b. Movement‟s abilities that are delayed. 
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c. Impaired cognitive and learning abilities. 

d. Seizures are a type of epilepsy. 

e. Irregular sleeping as well as having to eat patterns. 

f. Irritable bowel syndrome (IBS) is a condition that affects the digestive 

g. Mood swings or emotional responses that are out of the ordinary. 

h. Anxiety, tension, or excessive worry is all examples of anxiety. 

i. Fearlessness or a higher level of fear than predicted. 

Since 1994 till 2013, autism has been divided into five distinct groups [36]. 

Asperger‟s syndrome, Childhood Disintegrative Disorder, Autistic Disorder, 

Pervasive Developmental Disorder, Ret Syndrome. 

                                                      

 

Figure 2: Type of ASD 

Summary of five different types of autism in brief: 

A. Asperger’s syndrome 

Asperger's syndrome belongs to the autism spectrum disorder category of 

neurodevelopmental diseases, despite the fact that it is no longer a recognized diagnosis 

(ASD). According to doctors, what was once known as Asperger's syndrome is now 
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classified as a moderate form of autism. You've probably seen that this is known as level 

1 ASD. The primary difference between Asperger's syndrome and autism spectrum 

disorder is that persons with Asperger's are more likely to [37]:  

a. Display milder autistic symptoms. 

b. Possess great linguistic abilities and have no speech impediments. 

B. Childhood Disintegrative Disorder 

Children with childhood disintegrative disorder develop normally until they are three or 

four years old. The youngsters then lose linguistic, physical, social, and other previously 

gained skills over the period of several months. Childhood disintegrative disorder is a 

developmental impairment that is classified as part of the autism spectrum [38]. 

C. Autistic Disorder 

Autism spectrum, this word sits between Asperger's and PDD-NOS. The symptoms are 

the same as previously, but on a much larger scale [39]. 

D. Pervasive Developmental Disorder not otherwise specified 

PDD(NOS) 

PDD is also known as Unusual Autism since it is diagnosed when a child exhibits a 

number of signs of autism but not all of them. PDD (NOS) is most frequently diagnosed 

if a child has speech difficulties and demonstrates specific repetitive actions [4]. 

E. Rett Syndrome 

Rett Syndrome is a rare and dangerous disorder caused by a chromosomal X deficit that 

affects mostly women. Rett Syndrome is characterized by normal periods of development 

followed by a progressive loss of capacities, most notably speech and intentional hand 

motions [4]. 

As children with autism develop into teens and young adults, they may find it difficult to 

build and maintain friendships, participate in discussions with adults, and understand 
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what is expected of them at school or at work. If they exhibit founder disorders including 

cognitive impairment, attention deficit disorder, feelings of despair, or behavior disorder, 

they may be sent to a doctor [2]. Children with ASD should be monitored, screened, 

evaluated, and diagnosed as soon as possible to ensure that they receive the help and 

support they need to reach their full potential [40]. 

The American Academy of Pediatrics (AAP) recommends psychological and 

developmental assessments for all children at certain ages at routine well-child visits [2]: 

A. Nine-month period. 

B. Eighteen-month period. 

C. Thirty months. 

There are three degrees of autism, which help with diagnosis and indicate how much 

support the individuals will require [36]. 

Autism's three levels:  

a. A level one diagnostic is the highest cognitive and requires minimal amount of 

assistance. 

b. Level two is severe and necessitates a significant amount of assistance. 

c. Third level is perhaps the most difficult and will almost certainly necessitate 

extensive assistance. 

1.2 Motivation 

There are a handful of youngsters with ASD in our immediate vicinity. We can't take 

effective action or care of them until we get confirmation that they have ASD. Because 

the symptoms are less severe in the early stages, it is difficult to detect. When it's a 

serious matter, it typically draws my attention. It is really difficult to reduce ASD at the 

time. Although ASD cannot be cured, it is feasible to moderate and control it if it is 

discovered early on. Clinical diagnosis, on the other hand, is too expensive for the 

majority of Bangladeshis. From this standpoint, my goal is to create a Machine Learning 

model that can identify ASD at an early stage with high accuracy. It will also be cost-

effective for everyone. 
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1.3 Objective 

In today's environment, autism spectrum disorder (ASD) is a dangerous disorder. It is a 

type of neurodevelopmental condition that impairs a person's capacity to engage with 

others. Autism is a long-standing issue in our country, and we've been striving to address 

it for a long time. The suggested technology will be able to confirm whether or not a 

patient has ASD at an early stage. To achieve the optimum efficiency and accuracy, an 

effective machine learning approach will be developed. Patients can use the method to 

identify ASD at a cheaper cost. 

1.4 Contribution 

From the foregoing explanation, it is clear that the model's efficacy in predicting ASD at 

an early stage may be improved. Even yet, by enhancing the present methods, it is 

feasible to achieve more accuracy. In that light, the study's goal is to present a newly 

designed machine learning model that can diagnose ASD in children at an early stage. In 

comparison to the previous offered models in this part, our proposed model delivered 

more accurate and efficient results. 
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CHAPTER 2 

Background Study 

A number of studies have been conducted in the last ten years to develop a model to 

detect ASD using classification and other ML methods for children. Vakadkar et al. 2021 

[5] employed five machine learning models, "Random Forest Classifier, Logistic 

Regression, Nave Bayes, Support Vector Machines, and KNN," to categorize individual 

participants as having ASD or not having ASD based on age, gender, ethnicity, and other 

variables. According to their findings, Logistic Regression delivered the highest accuracy 

for the dataset they used. Thabtah et al. 2020 [4] proposed Rules Machine Learning 

(RML), a novel machine learning approach that gives users a knowledge foundation of 

rules for understanding the basic reasons of categorization and diagnosing ASD 

symptoms. Li et al. 2019 [6] used the ABIDE database to identify 6 personality 

characteristics in 851 people and trained and evaluated Machine Learning models using a 

cross-validation technique. This was utilized to distinguish between ASD patients. T. 

Akter et al [9] proposed a machine learning-based technique for the early detection of 

ASD. They used nine machine learning classifiers on four datasets based on age category, 

such as toddler, child, adult, and adolescent. They proposed four classifiers for four age 

groups. Hyde et al. 2019 [8] conduct a literature study on supervised categorization in 

autism spectrum disorder. The author examined 45 different papers. Naive Bayes, SVM, 

ADtree, and Random Forest were the algorithms used. SVM and ADtree techniques for 

data mining for ASD were the most commonly utilized algorithms. Stevens et al. 2019 

[7] employ Gaussian Mixture Models and Hierarchical Clustering to detect ASD 

behavioral features. The advantage of utilizing machine learning is that behavioral 

subtypes and their connections may be discovered. Moon et al. 2019 [10] intend to 

conduct a systematic review and a meta-analysis to synthesize the data on the 

performance of machine learning algorithms in diagnosing ASD. They used a subgroup 

meta-analysis of structural magnetic resonance imaging (sMRI) that yielded an 83 

percent sensitivity and an 84 percent specificity. Abbas et al. 2018 [11] presented a 

machine learning technique for early autism prediction by integrating a survey and home 

video screening.  
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They used two previously trained algorithms to detect autism. They demonstrate a 

significant improvement in accuracy over conventional screening approaches in terms of 

AUC, sensitivity, and specificity. Duda et al. 2016 [12] utilized forward feature selection 

and under sampling to discriminate between autism and ADHD using a 65-item Social 

Responsiveness Scale. Bone et al. 2016 [13] used a support vector machine for the same 

purpose and achieved 89.2 percent sensitivity and 59 percent specificity (SVM). In their 

study, 1264 people with ASD and 462 people without ASD participated. However, 

because of the wide age range, their study was not approved as a screening approach for 

persons of different ages. The Alternating Decision Tree (AD Tree) was utilized by Wall 

et al. 2012 [14] to reduce screening time and quickly find ASD features. Using data from 

891 people, they employed the Autism Diagnostic Question and Answer Session, revised 

(ADI-R) approach and obtained a high degree of accuracy. The exam, on the other hand, 

was restricted to children aged 5 to 17, and it failed to predict ASD for various age 

groups. 
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CHAPTER 3 

Materials & Methods 

To conduct this study, we used Python (Version 3.8.5) for machine learning, statistical 

and exploratory data analysis. The study was conducted in several steps, which are 

mentioned in figure 3. 

 

Figure 3: Workflow of the Research 

The figure 3 represents all the steps undertaken to conduct the study sequentially. The 

overall workflow and steps are found in this figure. 

3.1 Data Collection 

In this work, we used a ASD dataset to build our expected model. The ASD dataset was 

gathered from Kaggle. This dataset has 21 characteristics. The dataset comprises 292 

patient records, comprising 208 men and 84 females of various ages, with 141 patients 

being positive and 151 patients being negative. There are 103 male patients and 38 
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female patients among the ASD patients. A brief overview of all the features is 

represented in Table 1. 

 

TABLE 3.: FEATURES DESCRIPTIONS 

Feature Type Description 

Age Numeric Age of child 

Gender String Male(M) and Female(F) 

Ethnicity String List of common ethnicities in text format 

Born with jaundice Boolean Child was born with jaundice or not 

Family member with PDD Boolean If any immediate family member has a 

PDD 

Relation String Parent, medical staff, self, caregiver, 

clinician, etc. 

Country of residence String List of countries in text format 

Used the screening app before Boolean If the user has used a screening app 

Screening Method Type Numeric Type of screening methods chosen based 

on age category 

A1_Score: Answer of Q1 Boolean Mention in the Table 2 for details Q1 

A2_Score: Answer of Q2 Boolean Mention in the Table 2 for details Q2 

A3_Score: Answer of Q3 Boolean Mention in the Table 2 for details Q3 

A4_Score: Answer of Q4 Boolean Mention in the Table 2 for details Q4 

A5_Score: Answer of Q5 Boolean Mention in the Table 2 for details Q5 

A6_Score: Answer of Q6 Boolean Mention in the Table 2 for details Q6 

A7_Score: Answer of Q7 Boolean Mention in the Table 2 for details Q7 

A8_Score: Answer of Q8 Boolean Mention in the Table 2 for details Q8 

A9_Score: Answer of Q9 Boolean Mention in the Table 2 for details Q9 

A10_Score: Answer of Q10 Boolean Mention in the Table 2 for details Q10 

Scoring Result Numeric Mention in the Table 2 for details  

ASD Boolean Child with ASD 
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3.2 Methods 

3.2.1 Data processing 

Data preprocessing is required for any machine learning or data mining strategy, because 

the effectiveness of a machine learning methodology is dependent on how effectively the 

dataset is prepared and structured. We detected missing value of the collected dataset and 

dropped them. We employed Interquartile Range (IQR) to detect outliers and extreme 

values. The IQR is a way for measuring a dataset's variability around the median. The 

outlier is a data point that goes outside of the expected range of the data and may be 

identified. presumed to be attributable to recording mistakes or other irrelevant 

occurrences for the purposes of the investigation [15]. To obtain a better analytical or 

statistical outcome, such outliers must be removed using machine learning (ML) or data 

mining approaches [16]. Data is divided into three quartiles for outlier detection: Q3, Q2, 

and Q1. The data boundaries in this case are Q1 and Q3. IQR = Q3 – Q1 was used to 

determine the value of IQR. Then, using the following equations [17], the lower boundary 

Bl and upper boundary Bu were calculated: 

              

              

An outlier is defined as a result that is less than Bl but larger than Bu. To balance the 

unbalanced dataset, the synthetic minority oversampling method (SMOTE) was used. 

3.2.2 Supervised Machine Learning Analysis 

In this work, four (04) supervised learning methods were used and compared to select a 

proper ML classification method to build the desired model. The identified training 

dataset is used first and foremost in supervised machine learning algorithms to train the 

ML model. This approved model is subsequently placed into a non-labeled testing dataset 

in order to test and evaluate the most perfect ML methods for the expected model [25]. 

The corresponding subsection provides a brief summary of these suggested supervised 

machine learning techniques for disease diagnosis. 
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A. K-nearest neighbor (KNN) 

One of the most fundamental and simplest classification techniques [21,22] or statistical 

teaching approaches [23] is K closest neighbors. K is the number of nearest neighbors 

used, which can be explicitly set in the objects constructor or estimated using the upper 

limit offered by the stated value [24]. As a result, related examples are categorized 

similarly [25], and a new instance is classified by assessing its similarity to each of the 

existing cases [26]. When an unknown sample is received, the closest neighbor algorithm 

searches the pattern space for the k training examples that are next to the unknown 

substance. Predictions from numerous neighbors based on their distance may be 

generated from the test instance, and two distinct strategies are offered to convert the 

distance into a weight [23,27]. The approach has a lot of advantages, including being 

analytically manageable and easy to execute [23]. The algorithm performs based on 

different distance functions like: Minkowski Distance, Manhattan Distance, Euclidean 

Distance. In this study, Minkowski Distance function has been used. The Minkowski 

Distance for two points U (u1, u2, ….., un) and V (v1, v2, ……, vn) can be represented by 

the following equation, here q demonstrates the order of the Minkowski Distance. 

        (   )  (∑(|     |)

 

   

 

)

(   )

 

B. Multilayer Perception (MLP) 

A multilayer perceptron is a well-known neural network-based classification technique 

that consists of three or more layers: an input layer, an output layer, and one or more 

hidden layers between the input and output layers [28]. Each layer has a number of 

'neurons' that connect all of the layers. MLP is a global multivariate non-linear mappings 

calculator derived from training data's capacity to learn and generalize [31] via the use of 

backpropagation learning methods [29]. MLP classifiers are built by specifying 

appropriate input variables and network types, relevant data pre-processing and 

partitioning, network infrastructure configuration, success parameter specification, 

training algorithm specification (optimization of relation weights), and finally model 
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evaluation [30]. In this study, the default configuration produced the best findings from 

this predictor. The error of the k
th

 output node in the data point n can be represented by 

the equation below where d and c represent the actual and predicted values respectively. 

  ( )    ( )    ( ) 

C. Random Forest (RF) 

Random Forest is one of the most well-known and effective machine learning techniques. 

Bagging or Bootstrap Aggregation is a form of machine learning algorithm. The 

bootstrap is a powerful statistical approach for estimating a value from a sample of data, 

such as the mean. A large number of data samples are collected, the mean is established, 

and then all of the mean values are averaged to offer a more accurate prediction of the 

real mean value [18]. Bagging uses a similar method, but instead of computing the mean 

of each data sample, decision trees are frequently used. Several training data samples are 

analyzed here, and models are developed for each data sample. When a forecast is 

required for any data, each model generates a prediction, which is then averaged to offer 

a more accurate approximation of the real output value [18]. The algorithm works based 

on following steps: 

Step-1: Select random K data points from the training set. 

Step-2: Build the decision trees associated with the selected data points (Subsets). 

Step-3: Choose the number N for decision trees that you want to build. 

Step-4: Repeat Step 1 & 2. 

Step-5: For new data points, find the predictions of each decision tree, and assign the new 

data points to the category that wins the majority votes. 

D. Decision Tree (DT) 

One of the first and most well-known machine learning techniques is the decision tree 

(DT). A decision tree depicts the decision logics, or the tests and results for classifying 

data items into a tree-like structure. The nodes of a DT tree may contain several levels, 
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with the first or top-most node referred to as the root node. Each internal node denotes a 

test on one or more input variables or features. Based on the test result, the classification 

algorithm branches to the appropriate child node, and the process of testing and 

branching is continued until it reaches the leaf node [19]. The leaf or terminal nodes 

reflect the possible outcomes. DTs have been demonstrated to be simple to read and 

understand, and they are being used in a variety of medical diagnostic processes. When 

traversing the tree to categorize a sample, the results of all tests at each node along the 

route will provide enough information to make a prediction about its class [20]. The 

decision of splitting the data is controlled by entropy and which can be definedby the 

equation below, where pj is the probability of the j
th

 class. 

 ( )  ∑         

 

   

 

Different versions of Decision Tree are available as for instance: ID3, C4.5, CART, etc. 
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3.2.3 Performance Evaluation Criteria 

TABLE 2: THE EXPLANATION OF ALL THE PERFORMANCE EVALUATION METRICS. 

Evaluation 

Criteria 

Explanation Formula 

Accuracy Accuracy is defined as the proportion of 

properly categorized cases. [19,20]. 
      

     

           
 

Precision When we need to be really sure in our 

forecast, precision is an acceptable 

evaluation parameter finding. The ratio 

of True Positives to all Positives is 

defined as precision. [19,20]. 

          
  

     
 

Recall The recall measures how successfully 

our model detects True Positives. 
       

  

     
 

F-Measure  The F1 Score is calculated as the 

weighted average of Precision and 

Recall. [19,20]. 

  
                   

               
 

Log Loss Log-loss is a useful performance 

indicator where the model output 

represents the likelihood of a binary 

result. The log-loss measure considers 

estimate trust while choosing how to 

penalize incorrect categorization. [20]. 

 (   )(   )  (    ( )  ( 

  )    (   )) 

 

All of the performance evaluation criteria are listed in Table 2 together with their 

functional mathematical equation. Table 2 also includes a definition and a description of 

the definitions and their objectives. These were the key criteria utilized in this study to 

assess all of the classification algorithms and choose the best performing algorithm for 

early detection of ASD. 
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3.2.4 FST Methods 

TABLE 3: THE EXPLANATION OF ALL THE PERFORMANCE EVALUATION METRICS. 

CFST Abbreviation Explanation Formula 

Correlation 

based 

Feature 

Subset 

Selection 

CFSSE It assesses the value of a subset of 

characteristics by taking into 

account each feature's unique 

predictive capacity as well as the 

degree of redundancy between 

them.[32] 

  

 
    

   (   )  
 

 

Gain Ratio 

based 

Attribute 

Evaluation 

GRAE It validates the value of a feature 

by calculating the gain ratio in 

relation to the class.[33] 

  (   )

 ( ( ) ( | ))

  ( ) 

Info Gain 

based 

Attribute 

Evaluation 

IGAE It analyzes the value of a feature 

by calculating the information 

gain in relation to the class.[33] 

  (   )  

 ( ( ) ( | )) 

ReliefF 

based 

Attribute 

Evaluation 

RFAE It determines the value of an 

attribute by repeatedly sampling 

an instance and comparing the 

value of the provided attribute to 

the value of the nearest instance of 

the same and other classes.[34] 

  

  (      |          )

  (      |          ) 

  

Table 3 shows all of the feature selection techniques (FST) utilized in this study to rank 

and highlight the value of all of the aspects used to diagnose ASD in children at an early 

stage. In this study, four different types of FST approaches were used. Table 3 includes a 

list of all of them, as well as their functional and mathematical equations, definitions, and 

descriptions.                       
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CHAPTER 4 

Results & Discussion 

 

4.1 Statistical & Exploratory Data Analysis  

This statistical study identifies the number of positive and negative patients for each 

binary feature, as well as the number of normal and ASD positive patients for each 

group. For numerical characteristics, the mean and standard deviation (STD) are 

determined. In addition, the p value for each feature is determined in relation to the 

target feature. Table 4 shows the statistical outcome of all the characteristics in 

relation to the goal feature. 

TABLE 4: STASTICAL & EXPLORATORY DATA ANALYSIS 

 

Categorical Feature 

Features Category All Patients 

N=248(%) 

Patient‟s condition P Value 

Positive Negative 

Gender  <0.001 

 Male 208 (71.23%) 105(50.48%) 103(49.52%)  

Female 84 (28.77%) 46(54.76%) 38(45.24%) 

Born with 

Jaundice 

 <0.001 

 Yes 292(100.00%) 151(50.71%) 141(48.29%)  

No 0(0) 0(0) 0(0) 

A1  <0.001 

 Yes 185 (63.36%) 68(36.76%) 117 

(63.24%) 

 

No 107 (36.64%) 83(77.57%) 24(22.43%) 

A2     0.215 

 Yes 156(53.42%) 64(41.03%) 92(58.97%)  
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No 136 (46.58%) 87(63.97%) 49(36.03%) 

A3     5.282 

 Yes 217(74.32%) 87(40.09%) 130(59.91%)  

No 75 (25.68%) 64(85.33%) 11(14.67%) 

A4     0.098 

 Yes 161(55.14%) 42(26.09%) 119(73.91%)  

No 131 (44.86%) 109(83.21%) 22(16.79%) 

A5     5.282 

 Yes 217(74.32%) 88(40.55%) 129(59.45%)  

No 75 (25.68%) 63(84.00%) 12(16.00%) 

A6  1.058 

 Yes 208(71.23%) 80(38.46%) 128(61.54%)  

No 84 (28.77%) 71(84.52%) 13(15.48%) 

A7     0.003 

 Yes 177(60.62%) 72(40.68%) 105(59.32%)  

No 115(39.38%) 79(68.70%) 36(31.30%) 

A8     0.741 

 Yes  145(49.66%) 43(29.66%) 102(70.34%)  

No 147 (50.34%) 108(73.47%) 39(26.53%) 

A9     0.804 

 Yes 144(49.32%)  39(27.08%) 105(72.92%)  

No 148 (50.68%) 112(75.68%) 36(24.32%) 

A10     1.118 

 Yes  212(72.60%) 81(38.21%) 131(61.79%)  

No 80 (27.40%) 70(87.50%) 10(12.50%) 

Family 

member with 

PDD 

    <0.001 

 Yes 292(100.00%) 151(51.71%) 141(48.29%)  

No 0(0) 0(0) 0(0) 
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Used the 

screening app 

before 

    <0.001 

 Yes 292(100.00%) 151(51.71%) 141(48.29%)  

No 0(0) 0(0) 0(0) 

Numerical Feature 

Features All Patients Patient‟s Condition P Value 

Positive Negative 

Mean (STD) Mean (STD) Mean (STD) 

Age 6.354167  

(2.365456) 

6.539568 

(2.494243) 

6.181208 

(2.233207) 

0 
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Figure 4: Heatmap to show the hypothesis test based on p value. 

The hypothesis testing result is depicted in Figure 4 among all the attributes. The 

attributes jaundice, autism, and used app before have only positive values in this dataset; 

there is no negative value. As a result, these characteristics have no p value and their cell 

is empty. The characteristics with a p value less than 0.001 were statistically significant. 

Significant characteristics can also be defined as a p value less than 0.05. 
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4.2 Performance Analysis  

TABLE 5: PERFORMANCE MEASUREMENT OF DIFFERENT ML APPROACHES 

Algorithms Accuracy Precision Recall F-measure Log-Loss Kappa 

Statistics 

MCC 

KNN 0.92 0.92 0.92 0.92 2.76 0.84 0.84 

RF 0.90 0.90 0.90 0.90 3.22 0.81 0.81 

MLP 0.92 0.92 0.92 0.92 2.76 0.84 0.84 

DT 0.95 0.95 0.95 0.95 1.84 0.89 0.89 

Table 5 demonstrates the performance result of all the applied classifiers. The 

performance result indicates that RF provides the least performance with 90% accuracy, 

where DT provides the best result with 95% accuracy. In terms of all the parameters, DT 

provides the best performance, which indicates that DT is potential classifier for the 

detection of ASD among children in early stage. 

 

Figure 5: Visualization of Accuracy 

Figure 5 illustrates the graphical visualization of accuracy comparison. The accuracy of 

all the applied classifiers is compared in the figure 4 and found that Random Forest 

generated the best accuracy. 
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Figure 6: Visualization of Performance analysis 

Figure 6 visualizes the other considered performance evaluation metrics to get a clear 

idea about the comparison of all the applied classifier‟s performance. The figure also 

supports that Random Forest is the best performing classifier compare to all other applied 

classification algorithms. 
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Figure 7: Area under Receiving Operating Characteristics (ROC) Curve. & Area under Precision – Recall 

(PRC) Curve (A) ROC Curve, (B) PRC Curve 
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Figure 7 depicts the result of area under the ROC (AUROC) curve at figure 7 (A) and are 

under the precision-recall (PRC) curve at figure 7(B). AUROC curve and PRC curve 

shows the efficiency of a model based on the area covered by the learning figure. Based 

on the figure 7, DT is the least performer classifier since it has covered 0.926 and 0.942 

in AUROC and AUPRC respectively. However, the most efficient classifier is MLP and 

RF since they have covered 100% area in both of AUROC and AUPRC curve. 

TABLE 6: RESULTS OF FST APPROACH 

Feature Name IGAE GRAE CFSSE RFAE 

Age 0 0 0.0753 0.00871 

Jaundice 0.000453 0.000535 0.025 -0.00308 

Gender 0.001086 0.001255 0.0388 0.00274 

Use app before 0.001632 0.007048 0.0472 -0.00205 

Autism 0.001724 0.002642 0.0488 -0.00822 

Relation 0.011968 0.014917 0.0614 0.00671 

Ethnicity 0.036504 0.014577 0.0556 0.01757 

A1_score 0.116637 0.123048 0.3935 0.19007 

A2_score 0.038218 0.038348 0.229 0.07637 

A3_score 0.122714 0.149296 0.3955 0.11062 

A4_score 0.249648 0.251567 0.5685 0.28185 

A5_score 0.112333 0.136666 0.3799 0.15582 

A6_score 0.135612 0.156652 0.4173 0.12295 

A7_score 0.055143 0.057011 0.2739 0.07945 

A8_score 0.143457 0.143462 0.4384 0.18459 

A9_score 0.177918 0.177942 0.4862 0.16575 

A10_score 0.153613 0.181338 0.4399 0.18596 

Country of res 0.235509 0.054281 0.0752 0.02705 

Result 0.999154 1 0.8359 0.2024 
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The table 6 describes the analysis result of FST methods. Four FST methods such as 

CFSSE, IGAE, GRAE, and RFAE are applied and their result is represented in the table.  

This table enables us to identify the most important risk factor associated with ASD. 

To summarize, we gathered an ASD dataset from Kaggle for building our expected 

model, Then the collected dataset was highly processed as needed. Then we performed 

exploratory data analysis for better understanding the source data. Then we employed 

five ML techniques such as KNN, MLP, DT, and RF, and assessed their results based on 

accuracy, sensitivity, specificity, kappa statistics, precision, recall, F-Measure, log loss, 

and MCC. We discovered that all of the applied algorithms performed well, where DT 

generated the greatest performance with 95% accuracy. It indicates that it is the most 

accurate at predicting ASD in the early stages. In addition to that, we applied FST 

methods to show the feature importance employing four techniques such as CFSSE, 

IGAE, GRAE, and RFAE and the result is represented in table 6. The results of FST 

methods help us to identify the most important factors associated with ASD. It should be 

noted, however, that the quantity of data on ASD provided by this dataset was inadequate 

to address these problems adequately, and that more data analytic approaches are 

necessary to construct an useful prediction model. Nonetheless, we expect that in the 

future, we will be capable of understanding the limitations of this approach and that more 

data analysis will allow for very precise forecasts of ASD and associated illnesses 

utilizing ML methodologies. 
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CHAPTER 5 

Conclusions & Future Scope 

ASD is a type of disease related to metal growth and development, which leads to 

potentially fatal complications. Because of the possibility for precise illness prediction 

rate, ML approaches might be utilized to anticipate their incidence. We employed an 

ASD dataset to investigate the applicability of ML techniques to ASD identification, and 

discovered that DT functioned exceedingly well with 95% correctness. In addition to that 

we applied FST methods to identify most important risk factor, which are associated with 

ASD. The research attempted to uncover the best ML approaches among a range of 

widely-accepted and simple-to-implement methods, and discovered that, at least for this 

dataset, they performed effectively. This is an early stage of employing ML techniques, 

but it implies that it might be a valuable addition to clinical outcomes. 

In the future, we intend to focus on additional research on early detection of autism 

spectrum disorders using machine learning approaches, either by developing a new 

algorithm or tweaking an existing algorithm, in order to achieve high levels of accuracy 

when applied to such an important subject. 
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