
Daffodil International University

Institutional Repository

DIU Journal of Science and Technology Volume 12, Issue 1, January 2017

2017-01

Empirical Study of Cyclomatic

Complexity and Interface Complexity of

Evolving Open Source Systems

Olatunji, Michael A.

Daffodil International University

http://hdl.handle.net/20.500.11948/2094

Downloaded from http://dspace.library.daffodilvarsity.edu.bd, Copyright Daffodil International University Library

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

71

EMPIRICAL STUDY OF CYCLOMATIC COMPLEXITY AND

INTERFACE COMPLEXITY OF EVOLVING OPEN SOURCE

SYSTEMS

Michael A. Olatunji, Rufus O. Oladele, Amos O. Bajeh

Department of Computer Science

University of Ilorin, Ilorin, Nigeria

P. M. B. 1515, Ilorin, Nigeria.

E-mail: mikeolaus@gmail.com, roladele@yahoo.com, bajehamos@unilorin.edu.ng

Abstract: This paper aims at investigating the validity

of Lehman's Law of Increasing Complexity. Two

metrics namely cyclomatic complexity and interface

complexity were defined to capture increasing

complexity. The goal was to verify if these metrics can

be used to validate Lehman’s law of increasing

complexity. Empirical analysis was performed using

historical data collected on four evolving Open Source

Systems (OSS). Results show that the considered

Lehman’s law is partially supported by the collected

data and the metrics. In particular, empirical results

reveal that: total cyclomatic complexity and total

interface complexity are increasing from version to

version; average cyclomatic complexity and average

interface complexity either declines or increases within

a very short range; and function interface complexity

hardly decline in evolving OSS. Also, addition of low

complex functions reduces cyclomatic complexity in

evolving OSS but does little in reducing function

interface complexity.

Keywords: Cyclomatic Complexity, Lehman’s Law,

Empirical Validation, Open Source Systems, Software

Metrics, Software Evolution.

1. Introduction

Software evolution is the process by which a

software system is being adapted to its

environment as time passes in order to maintain

relevance owing to change in requirements.

Software evolution has been receiving extensive

research attention since the postulation of the first

three set of Lehman's laws of software evolution

in 1974 as a result of Lehman's study on the IBM

commercial systems. The objective of the study

that led to the formulation of the laws was to

empirically investigate and identify invariant

properties of software systems as they evolve over

time in order to obtain theory for software

evolution. In 1996, Lehman's laws of software

evolution became eight in number, owing to

continuing studies [1]. Lehman [2] classified all

systems under Specified, Problem-solving and

Evolutionary (SPE) scheme. There are three

classes of systems in this scheme. However, the

laws of software evolution were said to be

referring only to Evolutionary type (E-type)

systems. E-type systems are components of the

real world and reflections of human processes;

they solve problems that involve people or real

world. As the world and human requirements

change, software requirements often change which

invariably lead to modifications in evolutionary

software systems. The four evolving OSS used as

datasets in this study are E-type systems. Among

the eight laws of software evolution, as listed

below is the law of increasing complexity which is

the focus of this empirical study:

The law of continuing change states that E-type

systems must be continually adapted else they

become progressively less satisfactory.

The law of increasing complexity states that as an

E-type system evolves, its complexity which

reflects deteriorating structure increases unless

work is done to maintain or reduce it. This Law is

the focus of the empirical study in this paper.

The law of self-regulation states that E-type

system evolution process is self-regulating with

distribution of product and process measures close

to normal.
Date of submission : 13.02.2017 Date of acceptance : 01.07.2017

mailto:bajehamos@unilorin.edu.ng

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 72

The law of conservation of organisational stability

states that the average effective global activity rate

in an evolving E-type system is invariant over

product lifetime (Invariant work rate).

The law of conservation of familiarity states that

as an E-type software system evolves, all

associated with it like developers, sales personnel

and users must maintain mastery of its content and

behaviour to achieve satisfactory evolution.

However, excessive growth diminishes that

mastery. Hence the average incremental growth

remains invariants as the software system evolves.

Other laws are the law of continuing growth

which states that the functional content of E-type

systems must be continually increased to maintain

satisfaction over lifetime; the law of declining

Quality states that the quality of E-type systems

will appear to be declining unless they are

rigorously maintained and adapted to the

operational environment changes; and the law of

feedback system states that E-type evolution

process constitute multi-level, multi-loop, multi

agent feedback system and must be treated as such

to achieve significant improvement over

reasonable base.

This study investigates the validity of the law of

increasing complexity in the context of open

source system (OSS) which are different from the

seven commercial systems studied by Lehman in

term of development approach. OSS are

developed in communities of programmers that

are geographically distributed. Unlike in

commercial software used by Lehman in which

the development and the evolution phases occur

consecutively, in OOS the development and the

evolution phases occur simultaneously. Several

studies have been conducted to validate the laws

with contradicting results; some refuting some of

the laws while others confirming them. The law of

increasing complexity, the focus of this study, is

one of the laws that have been both refuted and

confirmed [3], [4], [5], [6], [7], [8], [9], [10], [11].

Therefore more studies need to be conducted to

increase confidence in the laws and to understand

the extent of applicability of the laws. This study

is a contribution towards this direction.

Software complexity has immense influence on

software external quality attributes such as

understandability, analysability and

maintainability. The measures for software

complexity which are considered in this study are

McCabe Cyclomatic Complexity (MCC) and

Interface Complexity (IC). MCC is one of the

most popular measure of software attribute and it

is a measure of decision complexity of the

functional units in software system. It quantifies

the number of linearly independent route in the

control flow graph representing the flow of

control of a subprogram [12]. IC is count of the

number of parameters and return points in a

functional unit of a system [13].

The rest of the paper is organized as follows.

Section 2 discusses related works on the

validation of Lehman's Second law of software

evolution. The sample OSS that are used as case

studies are presented alongside the metrics and

measurement tools in section 3. In section 4, the

results are both presented and discussed. Section 5

highlights likely threats to the validity of the

results and how they have been mitigated. The

paper is finally concluded in section 6.

2. Related Work

Some of the works which address Lehman second

law: law of increasing complexity, which is the

focus of this paper are presented in this section as

follows.

Pirzada [8] studied research, academic, and

supported & commercial streams of UNIX

systems; he stated in his PhD thesis that the

supported & commercial stream of UNIX

operating system validate the laws which of

course includes the law of increasing complexity.

The other two streams evolutions are not

compatible with the laws of software evolution.

Similarly Eick et al. [10] showed that there are

source code decays unless effort and resources are

allocated to prevent and maintain systems

throughout the later stages of their deployment.

Roy and Cordy [14] investigated two evolutionary

small-scale open source systems (OSS). They

found out that the systems obey the Lehman law

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

73

of increasing complexity but with minor

exceptions. However, they stated that more

empirical work is needed to conclude that small E-

type systems are always inclined with the law of

increasing complexity.

Israeli and Feitelson [6] analyzed 810 versions of

Linux kernel and found out that there were

evidences of work been done to reduce code

complexity by code improvements and addition of

many low McCabe Cyclomatic Complexity

functions; however, the number of high complex

functions keeps growing significantly and so they

could neither refute or confirm the law of

increasing complexity.

Fern´andez-Ramil et al. [5] studied different effort

models for OSS development, comparing them

with effort models used traditionally in closed-

source software. They concluded that complexity

does not slow down the growth of the analyzed

OSS projects, contrarily to what is stated by the

laws. The authors suggest that open source

software is more effective than closed-source, and

therefore less effort is required to develop projects

of similar sizes.

Vasa [11] studied 40 large OSS using size and

complexity metrics. They found support for the

law of continuing change, law of self-regulation,

law of conservation of familiarity and law of

continuing growth but could not confirm law of

increasing complexity.

In a study of 705 releases of 9 open source

software projects, Neamtiu et al. [7] could not

confirm the law of increasing complexity because

not all the 9 systems exhibit increasing complexity

in the evolution. They also pointed out that

programmers rarely take steps meant to reduce

code complexity but they affirm that increasing

complexity causes deteriorating structure.

Alenezi and Almustafa [9] studied complexity

evolution of five open source projects from

different domains. They concluded that size of the

systems they studied increases linearly in the

course of evolution but the systems average

cyclomatic complexities and maximum

cyclomatic complexities show no significant

increment changes. They argue that the increase in

source line of code show increasing complexity

but stable cyclomatic complexity shows work is

being done to maintain the systems, therefore,

their findings confirm Lehman law of increasing

complexity.

3. Experiment Design

3.1 Sample OSS (Case Studies)

We downloaded the datasets which are used as

case studies for this paper from UCR online

software repository. Neamtiu et al.[7] collected

and placed 9 merged source codes of evolving

OSS written in C language in the UCR online

software repository. We used a collected dataset

placed on internet repository by a group of

evolution researchers because quantification of

law of software evolution must be based on

empirical results, verifiable and repeatable, and

made on a large scale, so that conclusions with

statistical significance can be achieved [15]. If

software evolution is analyzed with data that is not

available to third parties, it cannot be verified,

repeated and replicated. It would be erroneous and

dangerous to build a theory on empirical studies

that do not fulfill those requirements.

The datasets used as case studies for this project

are well evolved open source applications,

namely: Bison systems, Samba systems, SQLite

Systems and Vsftpd systems. The above dataset

are selected because they have long term software

evolution, sizable and actively maintained.

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 74

Table 1 presents the sample OSS used for the empirical analysis.

 Table 1 Sample OSS

OSS Description

Bison:

SLOC

No. of Functions

v1.0 v1.3 v1.5 v2.0 Bison is a general-purpose parser generator,

which can be used to develop a wide range of

language parsers, from those used in simple

desk calculators to complex programming

languages.

10943 22637 41059 45266

128 223 572 662

Samba

SLOC

No. of Functions

v1.5.30 v2.0.0 V3.0.9 V3.3.1 Samba is a tool suite that facilitates Windows-

UNIX/Linux interoperability. It is based on the

common client/serverprotocol of Server

Message Block (SMB) and Common Internet

File System (CIFS)

15564 182901 611722 1615698

212 2068 5595 13157

VSFTPD

SLOC

No. of Functions

v0.0.9 v1.1.2 v2.0.0 v2.1.0 Vsftpd stands for “Very Secure File Transfer

Protocol Daemon” and is the File Transfer

Protocol (FTP) server in major Linux

distributions like Ubuntu, Centos, Unix and the

likes. FTP is a standard network protocol used

for the transfer of computer files between a

client and server on a computer network.

25251 40586 71007 65249

167 300 782 1284

SQLite

SLOC

No. of Functions

v1.0.0 v2.0.7 v3.1.1 v3.6.11 SQLite is an implementation of a self-

contained Structured Query Language (SQL)

database engine. It is a library in C

programming language. It is not a client-server

database management system and it is widely

used for client storage in application softwares.

25251 40586 71007 65249

167 300 782 1284

Table 1 gives information on some selected

versions of the sample OSS. We analysed the

entire versions of the sample OSS available on the

UCR online repository as at the time of carrying

out this study. Bison has 33 versions (v1.0 -

v2.4.3) released over a period of 22 years. 89

versions of samba released over a period of 15

years and grew from 5514 LOC to more than

1,000,000 LOC were analysed. 60 versions of

Vsftpd were analysed. 172 versions of SQLite

were analysed; starting with its first version v1.0

of 17723 LOC to v3.6.11 of 65108 LOC.

3.2 Metrics and Measurement Tools

Three tools are selected namely Resource

Standard Metrics(RSM) and PMCCABE. RSM

measures several metrics for C, C++, C# and Java

source code files. The metrics which are measured

by RSM are total function parameters, total

cyclomatic complexity, file function count, total

function return, average cyclomatic complexity,

average interface complexity; these metrics are

used in this empirical study.

We used PMCCABE which is a command line

tool in Linux environment. It calculates McCabe-

style Cyclomatic Complexity for C/C++ source

code, statements in function, lines of code in

function, blank lines and the likes. PMCCABE

uses per-function metrics; we ran PMCCABE

with Unix scripts in the Debian command line .

We use metric values from PMCCABE tool for

tracing individual functions and their metrics

values for analysis purpose because PMCCABE

gives a list of all function with their associated

various metrics values. The metrics values of the

two tools are correlated and this gives us

confidence that the metrics values are correct;

however we still did visual inspection.

http://searchnetworking.techtarget.com/definition/client-server
http://searchnetworking.techtarget.com/definition/client-server
http://searchcio-midmarket.techtarget.com/definition/SMB
https://en.wikipedia.org/wiki/Network_protocol
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Computer_network

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

75

To characterize Increasing complexity property,

we used the following metrics:

i. Total Function Cyclomatic Complexity (TF-

MCC): this is the summation of the MCC of all

the functions in a software

ii. Average Function Cyclomatic Complexity(AF-

MCC): this is the average of TF-MCC i.e.

][functionsofnumbertotal

MCCTF

iii. Total Function Interface Complexity(TF-IC):

is the summation of all the Interface Complexity

(IC) of all the functions in a software system

where the IC of a function is the total number of

function parameters and function return

statements.

iv. Average Function Interface Complexity (AF-

IC): this is the average of TF-IC i.e.

][functionsofnumbertotal

ICTF

The tools(RSM and PMCCABE) require source

code files to parse from a specified source

directory and they generated metrics results to

specified output folder.

Increasing complexity : as E-type software

system evolves its complexity which indicates its

deteriorating structure increases unless work is

done to maintain or reduce it. When software is

evolving, the first concern is the needed

functionality. Thus the changes are typically done

as a patch, disregarding the integrity of the

original design which causes increasing

complexity. The implication is that in order to

keep the software operational, it is not enough to

invest in changing it; one also needs to invest in

reducing the complexity repeatedly to acceptable

levels. The software systems used as datasets for

this project are well evolved software systems, so

they are good candidate softwares to quantify

increasing complexity. Research findings

[16],[17] show that cyclomatic complexity should

not be more than the value of 10 per function; else

such function is too complex and should be

considered for refactoring.

4. Results and Discussion

4.1 Results

Having measured the sample OSS using the

measurement tools, the following graphs depict

the relationship between the selected metrics

under consideration. Figure 1 depicts the

behaviour of the Bison OSS. Figure 1 (a)

shows how the TF-MCC and TF-IC grows over

the various versions of Bison. Figure 1 (b) depicts

the AF-MCC and AF-IC growths over the

versions.

 Figure 1(a): total interface complexity and total cyclomatic complexity of functions against the

versions of Bison (v1.0 to v2.4.3)

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 76

Figure 1(b): Graph of average interface complexity and average cyclomatic complexity of functions

against the versions of Bison (v1.0 to v2.4.3)

Figure 1: The complexities and average complexities graph of Bison OSS

Similarly, the graphs for the Samba OSS are

shown in Figure 2: Figure 2(a) shows the TF-

MCC and TF-IC of the Samba OSS over its

versions. Figure 2(b) presents the average MCC

and average IC of the OSS.

Figure 2(a): Graph of total interface complexity and total cyclomatic complexity of functions against

the versions of samba (v1.5.14 to v3.3.1)

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

77

Figure 2(b): Graph of average interface complexity of functions and average cyclomatic complexity of

functions against versions of samba (v1.5.14 to v3.3.1)

Figure 2: The complexities and average complexities graph of Samba OSS

The complexities and their averages for the

Vsftpd OSS is presented in Figure 3: figure 3(a)

shows the TF-MCC and TF-IC while Figure

3(b) shows the AF-MCC and AF-IC of Vsftpd.

Figures 3(c) and 3(d) further gives a depiction of

the complexities and averages for the

development branch of Vsftpd, specifically v1.1

development branch releases. Figures 3(e) and

3(f) also shows the complexity and average

complexity measurement over the versions of a

stable branch, specifically v2.0 releases. v2.1

was included to show the behaviour when

transiting from a stable branch to a development

branch.

Figure 3(a): Graph of total cyclomatic complexity and total interface complexity of functions against

the versions of vsftpd (v0.0.9 to v2.1.0)

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 78

Figure 3(b): Graph of average cyclomatic complexity and average interface complexity of functions

against the versions of vsftpd (v0.0.9 to v2.1.0)

Figure 3(c): Graph of total interface complexity and total cyclomatic complexity of functions against the

development versions of vsftpd (version 1.1 releases)

Figure 3(d): Graph of average interface complexity and average cyclomatic complexity of functions

against the development versions of vsftpd(version 1.1 releases)

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

79

Figure 3(e): Graph of total interface complexity and total cyclomatic complexity of functions against the

releases of vsftpd version 2.0 stable branch

Figure 3(f): Graph of average interface complexity and average cyclomatic complexity of functions

against the releases of vsftpd version 2.0 stable branch

Figure 3: The complexities and average complexities graph of Vsftpd OSS

The complexities and their averages for the

SQLite OSS is presented in Figure 4: Figure 4(a)

shows the TF-MCC and TF-IC while Figure 4(b)

shows the AF-MCC and AF-IC of SQLite.

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 80

Figure 4(a): Graph of total cyclomatic complexity and total interface complexity of functions against the

versions of SQLite

Figure 4(b): Graph of average cyclomatic complexity and average interface complexity of functions

against versions of SQLite

Figure 4: The complexities and average complexities graph of SQLite OSS

4.2 Discussion

There is sharp rise in the trend of total interface

complexity of Bison, as seen in Figure 1a which

means more functions are been added to Bison

software system in the course of its evolution.

However, the added functions did not really make

the system to be too complex as the normalised

complexity (the average interface complexity per

function) trend in Figure 1b increased within short

range. Bison total cyclomatic complexity grew

dramatically (Figure 1a) which means that as

Bison evolves the function cyclomatic complexity

is definitely increasing greatly but work is done to

bring the complexity down. The work done is the

addiction of relatively small cyclomatic

complexity functions; this is why the average

cyclomatic complexity declined in the trend of the

normalised graph. In the work of [6]on validating

Law of Increasing Complexity using Linux Kernel

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

81

as case study, they found evidence for the works

done to reduce cyclomatic complexity by

combination of code improvements and addiction

of many low-cyclomatic complexity functions.

Similarly, Neamtiu et al. [7] found that the

absolute values for cyclomatic complexity and

common coupling increase because program size

increases, but normalized coupling metric declines

while average cyclomatic complexity metrics

trends decline or slightly increase. There is

evidence of addiction of low complexity functions

as the nine OSS used as case studies continue to

evolve, Neamtiu et al. [7] suggested that

complexity reducing releases are a by-product of

large-scale architectural changes or re-

engineering. The functions interfaces are not re-

factored to provoke vast reduction in the interface

complexity like it is in cyclomatic complexity.

The complexity trends for both interface and

cyclomatic complexities of Samba software as

seen in Figure 11a to 11d grew drastically i.e.

Samba interface complexity ranges from 670 to

106918 over the 89 versions while Samba

cyclomatic complexity grew from 729 to 195308;

but the average interface complexity of the system

grew within a short range i.e. 5.5 to 8.12 while the

average cyclomatic complexity still grew within a

wider range i.e. 6.6 to 14.8. There is proliferation

of functions in the evolution of Samba but not of

relatively low complexity, this is why the average

complexity trends did not decline but grew at a

short range or slightly. The functions are not well

re-factored to reduce the interface complexity.

However the increasing complexity did not

deteriorate the system structure to the point of

killing the evolution of samba systems. Here the

rise in complexity support law of increasing

complexity but the fact that it does not affect the

successful evolution of Samba software system

also refutes the law of increasing complexity from

implication point of view. This is one of the

reasons why the Law of Increasing complexity

can not be validated in some software evolution

studies [3], [5], [11], [6], [7].

Top 10 cyclomatic complexity functions were

collected in versions of Samba software systems,

it is seen that within the pace of 10 releases, about

7 out of the 10 most complex functions still

remained the highest and they were seen

increasing in complexity but at the same time

more low complex functions were been introduced

to the software systems. However, after 10

releases, entirely new functions were seen to be

the most complex. The former set of highest

complex functions were re-factored and given new

names and also more functions were introduced to

the system which are of higher complexity than

the former top complex functions

For the vsftpd software systems, it is seen in

Figures 3a and 3b that the total cyclomatic

complexity of the softwares from v0.0.9 to v2.1.0

increased within a very large range, from 926 to

2318 while the average cyclomatic complexity of

functions increased within a very close range

from 2.8 to 4.0 as seen in Figure 3b. The trend of

interface complexity was like the cyclomatic

complexity because the total interface complexity

grew steadily but grew within a close range in

average interface complexity trend.

As noted in Figure 3(c) both the total cyclomatic

complexity and total interface complexities grew

within the major development trend of vsftpd

version1.1 while the trends in Figure 3(d) almost

levelled off in the average cyclomatic and average

interface complexities. Also, Figure 3(e) shows

that both the interface and cyclomatic complexity

in the stable branch (vsftpd 2.0) seem almost

levelled off, unlike in development branch that the

complexities increased. A sharp increase in the

complexity is observed when the stable branch

transits into the development branch. This implies

that lots of function were added to the software

which increased the complexity but in the average

cyclomatic complexity trend, the trend decline

which means that the added functions are of low

complexity values. The low complexity functions

that were added could not control or reduce the

interface complexity because it is seen rising in

the average interface complexity trend.

The cyclomatic complexity and the interface

complexity sharply increase in the evolution of

SQLite systems which depict that more functions

were been added to the software and thus caused

increasing complexity. The average cyclomatic

complexity and average interface complexity

declined. That means the software is not really

increasing in complexity as is evolving, the

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 82

cyclomatic complexity has been controlled by

addition of lot of low complexity functions to the

software system. Also, the interfaces of the added

small functions are well re-factored or designed

because the interface complexity also declined

which rarely occurs when cyclomatic complexity

increases.

To ascertain the works done in reducing

cyclomatic complexity by addition of many

functions with relatively low complexity, a closer

look is taken into the metrics report generated by

PMCCABE for SQLite using a statistical

application function (CountIf) to determine the

number of functions with cyclomatic complexity

within the range of 1 to 5, and then find the

percentage of them, it gave us 55.29% while the

same process was done for about the last version

of sqlite, namely sqlite v3.6.10. We got 66.5% in

this case, thus confirming that more low

cyclomatic complexity were added to sqlite

software systems in the course of evolution and

thus cause the decline in the average cyclomatic

complexity of the software.

The interface complexity of software systems in

evolution increases as the cyclomatic complexity

increases but cyclomatic complexity is being more

controlled than interface complexity with addition

of lot of less complex functions as the software

system evolves. Out of the four software systems

that were studied, only in Sqlite software that

interface complexity decreases as the software

system evolves. In other software systems,

interface complexity increased within short range.

In two software systems, average cyclomatic

complexity declined, it increased within short

range in one software system and increased super

linearly in Samba softwares evolution. Proactive

measure is what can help in controlling interface

complexity because multiple exit points which

constitute to interface complexity are easy to

program but they increase maintenance

costs/effort [18]. Functions with greater than 6

input parameters can be very difficult to use on a

routine basis and are problematic to parameter

ordering. Functions with greater than one return

point break the single entry/single exit design

constraint which should be the standard unless in

cases where it is impossible. Functions of this type

are difficult to debug when a runtime error occurs

[13].

Generally from the results presented in Fig.1(a)

to Fig. 4(b), the total complexity of the sample

OSS increases as the software systems evolve

over time while the average complexity either

increases at a slower rate or decreases. This is

glaring in the shape/pattern of the trends in

evolution graphs.

5. Threats to Validity

The following are the possible threats to the

validity of this study. Firstly, construct validity

which is about the accuracy of the metrics used in

capturing the system behaviour or characteristics

is addressed by using two measurement tools:

RSM and PMCCABE. The results of the

measurements from the two tools were compared

to ensure that cyclomatic complexity and interface

complexity metrics are the same from the tools.

Content validity is also reduced because the

datasets used as case studies are official releases;

they are not individual commit which may not

make it into official release.

Internal validity connotes the causal relationship

between the dependent and independent variables.

It ensures that the changes in the dependent

variable can be attributed to changes in the

independent variable. This study investigated the

trend in the complexity (the dependent variable)

of OSS over several versions (the independent

variable) of the OSS. Thus, it is obvious that the

change in complexity has causal relationship with

the versions of the sample OSS used in this study;

this is depicted by Figures 1 – 4 in the result

section.

External validity is the extent to which the results

of this study can be generalised. The investigation

conducted here uses systems developed in C.

Thus, the results may not hold for other systems

developed using Object-Oriented (OO)

methodology since the sample OSS are absolutely

procedural and it is believed that Object-

Orientation reduces complexity. More studies to

investigate the Lehman’s laws in the context of

OO systems need to be carried out to test the

validity of the findings of this study. Nevertheless,

going by the findings reported by [4] that software

systems are self-similar, the findings of this

investigation will most probably hold in other

software context.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 12, ISSUE 1, JANUARY 2017

83

6. Conclusion

The validity of Lehman’s second law of software

evolution for OSS developed using the procedural

C programming language is investigated. The

followings are the findings of the study.

Total cyclomatic complexity of systems increases

within a very large range in the course of

evolution, while the average cyclomatic

complexity of functions is increasing within a

very close range or declines as the case is in

vsftpd systems. The trend of interface complexity

is similar to the cyclomatic complexity because

the total interface complexity grew steadily but

grew within a close range in average interface

complexity trends. The total cyclomatic

complexity and total interface complexity often

grow sharply within the major development trends

while the trends either almost levelled off in the

average cyclomatic and average interface

complexities. The interface and cyclomatic

complexity within stable branch in most cases

seem almost levelled off or grow linearly, while in

development branch the growth is more or super

linear. Increase in the number of functions in

system is proportional to increase in the

magnitude of total cyclomatic complexity and

total interface complexity in such system.

Also when the trend of stable release is crossing to

a development major release, there is usually a

sharp increase in the two complexity metrics,

which means lot of functions are added to the

system which increased the complexity but in the

average cyclomatic complexity trend, the trend

decline which means the added functions are of

low complexity values. The low complexity

functions that were added could not control or

reduce the interface complexity because its trend

is seen rising in most cases.

The interface complexity of systems in evolution

increases as the cyclomatic complexity increases

but cyclomatic complexity is being more

controlled than interface complexity with addition

of lot of less complex functions as the system

evolves, out of the four systems that were studied

so far just in sqlite that interface complexity was

able to be brought down to declining state in

evolution; in others it increased within short

range; but in two systems average cyclomatic

complexity declined, it increased within short

range in one system and continuing to increase

super linearly in samba systems. Proactive

measure is what can help in controlling interface

complexity because multiple exit points which

constitute to interface complexity are easy to

program but they increase maintenance

costs/effort. Functions with greater than 6 input

parameters can be very difficult to use on a

routine basis and are problematic to parameter

ordering. Functions with greater than one return

point break the single entry/single exit design

constraint which should be the standard unless in

cases where it is impossible. Functions of this type

are difficult to debug when a runtime error occurs.

When an E-type system is increasingly changed,

the overall complexity increases i.e. by summing

up the complexities of functions in the software.

However by normalized metric like per function,

it is noted that the complexity may not really be

increasing which is the case in bison, vsftpd,

samba and sqlite systems. Therefore, the law of

increasing complexity cannot be confirmed by this

study. However the law is not completely refuted

given that it stated that complexity increases

except work is done to check it. It is most likely

that the developers of the sample OSS put in effort

to keep complexity in check as the systems

evolve. Thus, there is no substantial increase in

the average complexities of each of the systems

studied.

Finally, to ensure the external validity of the

findings of this study on Lehman’s second law,

more studies using Object Oriented software

sample will be carried out. Also, the number of

sample software and the number of complexity

metrics will be increased. Metrics such as

Response For Class (RFC), Weighted Method for

Class (WMC) and coupling are worth considering

in future works.

References

[1] M.M. Lehman, ''Laws of software evolution

revisited'', In European Workshop on Software

Process Technology, Springer Berlin Heidelberg.
pp.108-124, 1996

[2] M.M. Lehman, "Programs, life cycles, and laws of

software evolution", Proceedings of the IEEE, vol. 68,
no. 9, pp. 1060-1076, 1980.

Empirical Study of Cyclomatic Complexity and Interface Complexity of Evolving Open Source Systems 84

[3] M.W. Godfrey and Q. Tu, ''Evolution in open source

software: A case study'', In Software Maintenance,

2000.Proceedings of IEEE International Conference

on Software Maintenance,2000, pp. 131-142

[4] I. Herraiz, ''A Statistical Examination of the Evolution

and Properties of Libre Software, PhD thesis'',

Universidad Rey Juan Carlos, 2008, Retrieved from
http://purl.org/net/who/iht/phd.

[5] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and

A. Capiluppi, ''Empirical studies of open source

evolution'', In Software evolution ,Springer Berlin
Heidelberg,2008, (pp. 263-288)

[6] A. Israeli and D.G. Feitelson, ''The Linux kernel as a

case study in software evolution'', Journal of Systems
and Software, Vol.83, No.3, 2010, pp.485-501.

[7] I. Neamtiu, G. Xie, and J.Chen, ''Towards a better

understanding of software evolution: an empirical

study on open source software'', Journal of Software:

Evolution and Process, Vol. 25,No.3,2013, pp.193-
218.

[8] S. Pirzada, ''A statistical examination of the evolution

of the UNIX system (Doctoral dissertation)'',

University of London, UK, 1988.

[9] M. Alenezi and K. Almustafa, ''Empirical analysis of

the complexity evolution in open-source software

systems'', International Journal of Hybrid Information
Technology, Vol. 8, No.2, 2015, pp. 257-266.

[10] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and

A. Mockus, ''Does code decay? assessing the evidence

from change management data'', IEEE Transactions

on Software Engineering, Vol. 27, No.1, 2001, pp. 1-
12.

[11] R. Vasa, Growth and change dynamics in open source

software systems, Ph.D. Dissertation, Swinburne

University of Technology, Melbourne,

Australia,2010.

[12] M. K. Debbarma, S. Debbarma, N. Debbarma, K.

Chakma, and A. Jamatia, “A Review and Analysis of

Software Complexity Metrics in Structural Testing,”

Internal Journal of Computer and Communication

Engineering, vol. 2, no. 2, pp. 129–133, 2013.

[13] M Squared Technology LLC, Metrics

Definitions,2009, Retrieved August 7, 2016 from

http://www.msquaredtechnologies.com/m2rsm/docs/rs
m.metrics-narration.htm

[14] C.K. Roy and J.R. Cordy, ''Evaluating the evolution of

small scale open source software systems'', Special

Issue: Advances in Computer Science and
Engineering, 2006,pp.123.

[15] D.I. Sjøberg, T. Dybå, B.C. Anda, and J.E. Hannay,

''Building theories in software engineering'', In Guide

to advanced empirical software engineering, Springer

London, 2008, pp. 312-336

[16] A.H. Watson, D.R. Wallace, and T.J. McCabe,

(1996), ''Structured testing: A testing methodology

using the cyclomatic complexity metric'', US

Department of Commerce, Technology

Administration, National Institute of Standards and

Technology, Vol. 500, No. 235, 1996.

[17] A. Khannur, Software Testing: Techniques and
Applications, Pearson Education India, 2011.

[18] G.W. Lecky-Thompson, Corporate Software Project

Management (Charles River Media Computer
Engineering), Charles River Media, Inc., 2005.

