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Abstract: An analysis is performed numerically to 

study the unsteady free convection heat and mass 

transfer flow past a semi-infinite vertical flat plate by 

using finite difference method. First, thermal boundary 

layer equations have been derived from the Navier-

Stokes equation and concentration equation by 

boundary layer technique. Second, some non-

dimensional variable has been introduced to make 

these equations dimensionless. Then Finite difference 

method is used to solve these equations. The solution of 

heat and mass transfer flow is studied examining the 

velocity, temperature and concentration distribution. 

The effects on the velocity profiles, temperature profiles 

and concentration profiles for various parameters have 

been separately discussed and shown graphically.        

Keywords: Thermal boundary layer, heat transfer, 

finite difference, velocity profile.  

1. Introduction  

Investigation of thermal boundary layer flow of an 

electrically conducting fluid past a vertical heated 

surface has attracted the interest of many 

researchers because of its important applications 

in many engineering problems such as in plasma 

studies, petroleum industries, power generators, 

cooling of nuclear reactors, the boundary layer 

control in aerodynamics, and crystal growth. The 

boundary layer equation has the capacity to admit 

a large number of invariant closed-form solutions. 

On the other hand, the problem of mixed 

convection due to a heated or cooled vertical flat 

plate provides one of the most basic scenarios for 

heat transfer theory and thus is of considerable 

theoretical and practical interest which has been 

extensively studies by Sparrow et al. [1], Banthiya 

[2], Hussain and Afzal [3], Merkin [4] and 

Watanabe [5]. 

In light of the work of Cess [6], Mansour [7] 
studied the interaction of mixed convection with 
thermal radiation in laminar boundary layer flow 
over a horizontal, continuous moving sheet with 
suction and injection. Bestman [8] made a study 
of a laminar natural convection boundary layer in 
porous medium making a very simple model of a 
binary reaction with Arrhenius activation energy. 
Afterwards a mathematical approach to this 
problem in case of a steady flow was made by 
Alabraba et. al.[9]. They considered the problem 
of free convection interaction with thermal 
radiation in a hydromagnetic boundary layer 
taking into account the chemical reaction. Das et 
al. [10] investigated the effects of mass transfer on 
flow past an impulsively started infinite vertical 
plate with constant heat flux in the presence of 
chemical reaction. 

Finite difference method is used mostly in 
numerical analysis, especially in numerical 
differential equations, main purpose for  the 
numerical solution of ordinary, partial differential 
and thermal boundary layer equations 
respectively. The main idea, replacing the 
derivatives appearing in the differential equation 
by finite differences that approximate them. Finite 
difference methods are used in science and 
engineering disciplines such as thermal 
engineering, fluid mechanics, etc. Sattar and Alam 
[11] employed explicit finite difference method to 
study unsteady free convection and mass transfer 
flow of a viscous,  

Incompressible and electrically conduction fluid 
past a moving infinite vertical porous plate with 
thermal diffusion effect. Alam et al. [12] 
performed finite difference solution of heat and 
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mass transfer flow in vertical porous plate with 
induced magnetic field. 

The solution, made by Finite difference method is 

one of the most interesting choices to the 

researcher. Alam and Sattar [13] investigated heat 

transfer in thermal boundary layers of magneto-

hydrodynamic flow over a flat plate. Alam et al. 

[14] studied combined free and forced convection 

mass transfer flow past a vertical porous plate 

with heat generation and thermal diffusion. 

Recently, Islam et al. [15] investigated unsteady 

solutions of thermal boundary layer equations for 

heat and mass transfer flow by using finite 

difference method, and examined the velocity, 

temperature and concentration distribution 

characteristics. To study the heat transfer 

characteristics in boundary layer flow of a 

Newtonian fluid, Chamkha and Khaled [16] 

investigated the problem of coupled heat and mass 

transfer by hydro-magnetic free convection from 

an inclined plate in the presence of internal heat 

generation or absorption, and similarity solutions 

were presented. Reddy and Reddy [17] performed 

an analysis to study the natural convection flow 

over a permeable inclined surface with variable 

temperature, momentum and concentration. 

Recently, Hasanuzzaman et al. [18] studied the 

similarity solution of unsteady combined free and 

force convective laminar boundary layer flow 

about a vertical porous surface with suction and 

blowing.  

In the present study, finite difference scheme is 

used to find out the solution of heat and mass 

transfer flow past a vertical plate, and examine the 

velocity, temperature and concentration 

distribution characteristics. Three kind of profiles 

as velocity, temperature and concentration profiles 

are separately discussed with graphics.  

2. Mathematical model and governing 

equations of the flow 

Consider an unsteady laminar, incompressible, 

viscous fluid streaming through a semi-infinite 

vertical flat plate. Initially, the density and 

temperature of the fluid and the flow velocity 

pattern are assumed to be uniform which is similar 

to that of the fluid outside the boundary layer. The 

flow is chosen along the plate in the x- direction 

and y axis is taken to be normal to it in the 

Cartesian coordinate system. Initially we consider 

that everywhere in the fluid (plate), the 

temperature  T T  level and the concentration 

level  C C
 are same. Also assumed that the 

fluid and the plate are at rest. After that the plate is 

to be moving with a constant velocity 
0U  in its 

own plane and  instantaneously at time t > 0, the  

concentration and the temperature of the plate are 

raised to  wC C  and  wT T respectively, 

which are thereafter maintained constant, 

where
wC , 

wT  are species concentration and 

temperature at the wall of the plate and C
,T

 are 

the concentration and temperature of the species 

far away from the plate respectively. The flow 

configuration & the Cartesian coordinate system 

of the study are shown in Figure 1. 

 

Figure 1: Flow configuration and Cartesian coordinate 

system 

Within the framework of the above stated 

assumptions with reference to the generalized 

equations described before the equation relevant 

to the transient two dimensional problems are 

governed by the following system of coupled non-

linear differential equations.     

Equation of Continuity:                       

 0









y

v

x

u
                                             (1) 

Equation of Momentum:    

   
2

*

2

u u v u
u v v g T T g C C

t x y y
  

   
      

   
  (2) 



DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY,  VOLUME 12,  ISSUE 1, JANUARY 2017 

 
33 

Equation of Energy:                

 
2

2

p

T T T K T
u v Q T T

t x y C y


   
    

   
      (3)  

Equation of Concentration:         

2

2

C C C C
u v D

t x y y

   
  

   
                        (4) 

With the corresponding initial and boundary 

conditions: 

At 0 0, 0, ,t u v T T C C        

everywhere                                                 (5)    

               
0, 0, , 0

0 0, 0, , 0

0, 0, ,

w w

w w

u v T T C C at x

t u v T T C C at y

u v T T C C as y

     


     
     

  (6)                                                                                                                

Where yx,  are the Cartesian coordinate system, 

vu,  are the velocity components along the x and 

y directions respectively.   is the  kinematic 

viscosity, g is the local acceleration due to gravity, 

pC  is the specific heat at the constant pressure   

is the density of  the fluid, K  is the thermal 

conductivity, and D  is the coefficient of mass 

diffusivity. 

3. Mathematical Analysis 

Since the solutions of the governing equations (1)-

(4) under the initial condition (5) and boundary 

conditions (6) will be based on a finite difference 

method, it is required to make the said equations 

dimensionless. In order to obtain similarity 

solution, we introduce the following 

dimensionless variables: 

0xU
X


 , 0yU

Y


 ,
0

,
u

U
U


0

,
v

V
U

  

2

0 ,   
w w

tU T T C C
T and C

T T C C



 

 

 
  

 
 

Using these relations we have the following 

derivatives: 

3 2 2

0 0 0, , ,
U U Uu U u U u U

t x X y Y   

     
  

     
 

2 3 22 2

0 0 0

2 2 2
, , ,

U U Uu U u U v V

y Y y Y y Y  

     
  

     
 

              

   0 0
; ;

w wU T T U T TT T T T

x X y Y 
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 
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   
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 

0 0

22 2

0

2 2 2

; ;w w

w

U UC C C C
C C C C

x X y Y

UC C
C C

y Y

 



 


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 

 

 

Now we substitute the values of the above 

derivatives into the equations (1)-(4) and by 

simplifying we obtain the following nonlinear 

coupled partial differential equations in terms of 

dimensionless variables. 

 
0

U V

X Y

 
 

 
                                                 (7)              

2

2 r m

U U U U
U V G T G C

X Y Y

   
    

   
     (8)                                                          

2

2

1T T T T
U V T

X Y Pr Y




   
   

   
              (9)                                                              

2

2

1

c

C C C C
U V

X Y S Y

   
  

   
                     (10)                      

where, 
 

3

0

wg T T
Gr

U

  
 is the Grashof number, 

 *

3

0

wg C C
Gm

U

  
  is the modified Grashof 

number, pC
Pr

K


 is the Prandlt number, 

cS
D


 is the Schmidt number and 

2

0

Q

U


   is the 

heat source parameter. The initial and boundary 

conditions are:  

At    0 0, 0, 0, 0U V T C     
 

 
everywhere                                                  (11)  
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0, 0, 0, 0 0

0 0, 0, 1, 1 0

0, 0, 0, 0

U V T C at X

U V T C at Y

U V T C as Y



     


     


    

(12)

                                                      

4. Numerical Computations

 In this section, we attempt to solve the governing 

second order nonlinear coupled dimensionless 

partial differential equations with the associated 

initial and boundary conditions.  Finite difference 

method has been used to solve the equations (7) - 

(10) subject to the initial conditions given by (11) 

and boundary conditions given by (12).  

The region of the flow is divided into grid of lines 

to get the difference equation. The lines are 

parallel to X andY axes ( X -axes is taken along 

the plate andY - axes is normal to the plate). We 

consider the plate of height  200max X  and 

regard  20max Y  as corresponding to Y . 

Again, we consider the plate of 

height  100max X  and regard  20max Y  for 

Pr = 0.71 as corresponding to Y . For Pr = 

1.0 and Pr = 7.0 we have 400, 400m n   in 

X and Y axis grid spaces. Finally we will 

consider 200m   and 200n   in X andY axis 

grid spaces for Pr = 0.71 which is shown in Fig. 2. 

 

Figure 2: X and Y axis space grid 

It is assumed that YX  , are the constant mesh 

sizes along the X andY directions respectively, 

and are taken 

as 0.5 (0 200)X x    and

0.05 (0 20)Y y    . However, in the case 

of 0.71Pr  , X  
and Y  

are taken as 

0.5 (0 100)X x    and 

0.1 (0 20)Y y    with the smaller time step 

0.001  . Now using the   finite difference 

formula as below 

 

, , , 1,

, ,

,
i j i j i j i j

i j i j

U U U UU U

X X 


      

    
      

(13) 
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Y Y Y Y
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'
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'
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Y Y

 

 





     
    

      

    
   

      

, 1, , 1 ,

, ,

; ,
i j i j i j i j

i j i j

C C C CC C

X X Y Y

      
    

      

 

2
, 1 , , 1

22

,

2
;

i j i j i j

i j

U U UU

Y Y

   
 

  
  

 

2
, 1 , , 1

22

,

2
,

i j i j i j

i j

T T TT

Y Y

   
 

  

 

 
 

2
, 1 , , 1

22

,

2i j i j i j

i j

C C CC

Y Y

   
 

  

                  (14) 

Substituting the above relations into the 

corresponding differential equations we obtain an 

appropriate set of finite difference equations as 

follows,

 
1, ,

, , 1

i j i j

i j i j

U U
V V Y

X






  


                        (15)   

 

, 1 , , 1'

, , ,2

, 1, , 1 ,

, , ,

2
[

]    (16)

i j i j i j
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i j i j i j i j

i j i j i j

U U U
U GrT GmC
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U U U U
U V U

X Y


 

 

 
  



 
   

 

                              

   

 
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, ,

, 1 , , 1

,2

2

i j i j i j i j i j i j

i j i j

i j i j i j

i j

T T T T T T
U V

X Y

T T T1
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Pr Y





 

 

  
 

  

 
 
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The initial and boundary conditions with the finite 

difference scheme are  

0 0 0 0

, , , ,0, 0, 0, 0i j i j i j i jU V T C           (19)

                     

0. 0, 0, 0,

,0 ,0 ,0 ,0

, , , ,

0, 0, 0, 0

0, 0, 1, 1

0, 0, 0, 0

n n n n

j j j j

n n n n

i i i i

n n n n

i L i L i L i L

U V T C

U V T C

U V T C

   


    


    

       (20) 

Here the subscripts i  and j  designate the grid 

points with x- and y-coordinates respectively, and 

the superscript n  represents a value of 

time,   n , where 0,1,2,3........n  . During 

any one time step, the coefficients ,i jU  and jiV ,  

appearing in equations (13)-(14) are created as 

constants.  

Then at the end of any time-step  , the 

temperature T , the concentration
'

C , the new 

velocity U , the new induced field V  at all interior 

nodal points may be obtained by successive 

applications of equations (15) - (18) respectively.  

This process is repeated in time and provided that 

the time-step is sufficiently small, U, V, T, C  
should eventually converge to values which 

approximate the steady-state solution of equations 

(15)-(18). The steady- state or converged solutions 

of these equations are shown graphically in nine 

different figures. 

5.  Results and Discussions  

The main goal of the computation is to obtain the 

steady-state solutions for the non-dimensional 

velocityU , temperature T  and concentration C  

for different values of Prandtl number  Pr , the 

Grashof number  Gr , the modified Grashof 

number  Gm , the Schmidt number  Sc  and the 

heat source parameter   . For this purpose, 

computations have been carried out up to 

dimensionless time  = 80. The results of the 

calculations show graphical changes when 

time = 40 and at (50 80)   graphical change 

are negligible. Therefore the solution for 

dimensionless time =80 is necessarily steady-

state solutions.  

The solutions for the transient values of 

U versusY , T  versusY , C  versus Y  along with 

the steady state solutions are displayed for 

different values of the parameters. In this paper, 

three values of the Prandtl numbers are 

considered.  They are Pr = 7.00 (water), Pr = 0.71 

(air at 020 ), Pr = 1.00 (salt water). Three values 

of  ,Sc  ,Gr Gm  and  are however chosen 

randomly. From Figure 3(a), we see that the 

velocity profile increases as Grashof number 

increases at time 10   and the velocity profile 

remains unchanged with the increasing of time 

which is shown in Figure 3(b), Figure 3(c) and 

Figure 3(d). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure  3: Velocity profile for Gr   at 1.0,Pr  
2.0, 

 3.0,Gm 15.0Sc , (a) 10  , (b) 20  , 

(c) 50   and (d) 80   

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4: Velocity profile for Pr at 2.00,   
6.00,Gr 

 3.00,Gm  15.00Sc   (a) 10  , (b) 20  , 

(c) 50   and (d) 80.   
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Figures 4(a) and 4(b) show that the velocity 

profile decreases with the increase of Pr at 

time 10,20   but at time  50, 80 the velocity 

profile increases at Pr = 0.71, 1.0, which is shown 

in Figure 4(c) and Figure 4(d). We also observe 

that at Pr = 7.00 at time  50, 80 the velocity 

profile decreases. Figure 5 shows the effects of 

temperature distribution at various values of Pr 

with respect to time. We also observe that at 

different time if the values of Pr increases then the 

temperature profile decreases accordingly. Finally 

we see that at Pr = 7.0 the rate of change of 

temperature is low. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5: Temperature profile for Pr at 2.00,   
6.00,Gr  3.00,Gm  15.00Sc   (a) 10  , (b) 20  , 

(c) 50   and (d) 80.   

 

(a) 
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(b) 

   

(c) 

 

(d) 

Figure 6: Concentration profile for Pr at 2.00,   
6.00,Gr  3.00,Gm   15.00Sc   (a) 10   (b) 20   

(c) 50   (d) 80.   

Figure 6  shows the concentration profile for 

different values of Pr and from Figure  6(a) and 

Figure  6(b), we found that the concentration 

profile is steady at time 10,20   but Figure  6(c) 

and Figure 6(d) show that the concentration 

profile increases with the increases of Pr at time 

50,80  . Figure 7 represents the velocity profile 

for different values of Gm  number at different 

times. From Figure 7 we observed that with the 

increase of Gm, velocity profile increases at 

different times. Figure 8 represents the 

concentration profile for different values of the 

Schmidt number at different time. We observe that 

concentration profile decreases with the increase 

of Sc at different time.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 7: Velocity profile for Gm  at 1.00,Pr   
2.00,  6.00,Gr  15.00Sc   (a) 10   (b) 20   

(c) 50   (d) 80   

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8: Concentration profile for Sc  at 1.00,Pr   
2.00,  6.00,Gr  3.00Gm   (a) 10   (b)

 
20   

(c) 50   (d) 80.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9:  Velocity profile for   when 7.0,Pr   

3.00,Gm  6.00,Gr  15.00Sc   (a) 10  , (b) 20  , 

(c) 50   and (d) 80.   

Figure 9 represents the velocity profile for 

different values of the heat source parameter at 

different time. From Figure 9(a) and Figure 9(b), 

we found that the velocity profile decreases with 

the increase of . but Figure 9(c) and Figure 9(d) 

show that the velocity profile is steady at   = 

4.00, 6.00. Figure 10 represents the temperature 

profile for different values   at different time. 

We notice that with the increase of , the 

temperature profile decreases at different time. 

Figure 11 shows the concentration profiles for 

different values of   at different time. We also 

notice that temperature profile is steady with the 

increases of   at different time.   

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 10: Temperature profile for  at 7.00,Pr   

3.00,Gm  6.00,Gr  15.00Sc   (a) 10   (b) 20   

(c) 50   (d) 80.   

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 11: Concentration profile for   at 

7.00,Pr  3.00,Gm  6.00,Gr  15.00Sc   (a) 10   

(b) 20   (c) 50   (d) 80.     

 

6. Conclusion 

In this paper the thermal boundary layer equations 

have been derived from Navier-Stokes and 

concentration equation by boundary layer 

technique. Some dimensionless variables have 

been used into Boundary layer equations for 

providing better understanding of the physical 

situation. The boundary layer equations are 

transformed into non-linear partial differential 

equations by using dimensionless variable. These 

equations are solved numerically by using finite 

difference method. Finite difference solution of 

heat and mass transfer flow is studied to examine 

the velocity, temperature and concentration 

distribution characteristics. The effects of different 

kind of parameters have been examined on the 

flow with the help of graphs. Different values 

of Pr , Gr , Gm , Sc  and   has been used for 

obtaining steady-state solutions for the non-

dimensional velocity U , temperature T  and 

concentration C  at   various dimensionless time 

 =10, 20, 50, 80. Along with the steady state 

solutions, the solutions for the transient values of 

U versus Y , T  versus Y and C  versus Y  are 

obtained. The calculation shows graphical changes 

in the mentioned quantities up to time = 40. 

Then we notice that at    50-80 the graphical 

change is negligible. Thereby at dimensionless 

time  = 80, the solutions are essentially steady-

state solutions. 
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