PLUMBING AND SANITARY SYSTEM DESIGN OF A MULTISTOREY RESIDENTIAL BUILDING

Md. Mirazul Islam Sagor Podder Md. Abu Kawcer Rakin Afaz Uddin

DEPARTMENT OF CIVIL ENGINEERING DAFFODIL INTERNATIONAL UNIVERSITY

PLUMBING AND SANITARY SYSTEM DESIGN OF A MULTISTOREY RESIDENTIAL BUILDING

Submitted by

Md. Mirazul Islam Sagor Podder Md. Abu Kawcer Rakin Afaz Uddin

A Project submitted to the Department of Civil Engineering, Daffodil International University in Partial Fulfillment of the Requirements for the Degree of **Bachelor of Science in Civil Engineering**

Department of Civil Engineering Daffodil International University September 2022

APPROVAL

This is to certify that this project "Plumbing design of a building" is done by the following students under my direct supervision and this work has been carried out by them in the Department of Civil Engineering under the Faculty of Engineering of Daffodil International University in partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering.

List of Students:	
Md. Mirazul Islam	ID: 191-47-979
Sagor Podder	ID: 191-47-942
Md. Abu Kawcer Rakin	ID: 191-47-957
Afaz Uddin	ID: 191-47-999

Signature of the Supervisor

MMHZema

Dr. Miah M. Hussainuzzaman

Associate Professor Department of Civil Engineering Daffodil International University The project titled "**Plumbing and sanitary system design of a multistorey residential building**" submitted by Md. Mirazul Islam Student ID: 191-47-979, Sagor podder, Student ID: 191-47-942, Md. Abu Kawcer Rakin, Student ID: 191-47-957,, and Md. Afaz Uddin, Student ID: 191-47-999, has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Bachelor of Science in Civil Engineering on 16th October, 2022.

BOARD OF EXAMINERS

Dr. Miah M. Hussainuzzaman

Supervisor Department of Civil Engineering Daffodil International University

Dr. Mohammad Hannan Mahmud Khan Chairman Department of Civil Engineering Daffodil International University

Kazi Obaidur Rahman

Member (Internal) Department of Civil Engineering Daffodil International University

Md. Imran Hasan Bappy

Member (Internal) Department of Civil Engineering Daffodil International University

Dr. Muhammad Mukhlesur Rahman Member (External) Deputy Secretary Ministry of Textiles and Jute Govt of Bangladesh

MMHZem

DECLARATION

Declared that except where specified by reference to other works, the studies embodied in thesis is the result of investigation carried by the authors. Neither the thesis nor any part has been submitted to or is being submitted elsewhere for any other purposes.

Signature of the candidates

MD. MIRAZUL ISLAM ID NO: 191-47-979

Sogon

SAGOR PODDER ID NO: 191-47-942

Dow Kowcer Pakin

MD. ABU KAWCER RAKIN ID NO: 191-47-957

for uddin

MD. AFAZ UDDIN ID NO: 191-47-999

ACKNOWLEDGMENT

First of all, the authors would like to express their heartiest gratitude to the Almighty Allah, The sovereign lord, who is the absolute king of entire universe and who regulates each and every achievement of every individual life.

The authors have the great pleasure to express their deepest sense of gratitude to Dr. Miah M. Hussainuzzaman, Associate Professor, Department of Civil Engineering, Daffodil International University, Dhaka for his guidance, continuous encouragement and invaluable support throughout the course of this work. His tireless devotion, unfailing support and dynamic leadership in pursuit of excellence have earned the authors' highest respect. The authors will remain ever grateful to him for his supervision and inspiration to work hard in writing this thesis.

The authors wish to convey sincere thanks to all the teachers of Department of Civil Engineering, DIU for their entire assistance in carrying out this research. The authors also wish their sincere thanks to the stuffs of DIU who helped a lot to overcome the daily difficulties in carrying out this thesis.

Last but not the least, the authors would like to express their deep sense of gratitude to their parents, sisters and brothers, their underlying love, encouragement and support throughout their life and education. Without their blessings, achieving the goal would have been impossible.

DEDICATION

This Project is dedicated to Almighty Allah for his protection, kindness, strength over my life throughout the period and also to my family for his financial support and moral care towards me. Also to my mentor Dr. Miah M. Hussainuzzaman his academic advice he often gives to me. May Almighty Allah shield them from the peril of his world and bless their entire endeavor, Amen.

ABSTRACT

Plumbing as a technology falls under the purview of building services, which helps an occupant to use their building for the purposes for which it has been developed. This study of plumbing system plan is aimed at planning a plumbing system that is compatible of eco-friendly environments and meet the 5 aspects of safety, economic, comfort, sustainable and aesthetics.

Multistoried buildings are inevitable in today's modern living. Other than structural stability there are lot of services being emphasized like water supply, sanitary, firefighting, etc., A civil engineer's scope under duty are not only to design and construct the structure, but also to provide the best services and maintenance. So we decide to take a case study of a proposed G+8 storey residential apartment, for that we decide to design a perfect engineering plumbing system. This report includes the necessary CAD files as well as all the calculations and considerations in detail.

Table of Contents

СНАР	TER 1 INTRODUCTION	1
1.1	General	1
1.2	Objectives of the study	1
1.3	Limitation of the study	1
1.4	Overview of research program	
1.5	Summary	2
СНАР	TER 2 BASIC INFORMATION OF THE PROJECT	3
2.1	General Data of the Project	3
2.2	Location of the project	3
2.3	Plumbing design considerations	3
Снар	TER 3 DESIGN OF WATER SUPPLY SYSTEM	5
3.1	General	5
3.1	.1 Demand Calculation	5
3.1	.2 Under Ground (UG) Reservoir	6
3.1	.3 Over Head Water Tank (OHWT)	7
3.1	.4 Pump selection	7
3.1	.5 Riser size	8
3.2	Distribution piping design	8
3.2	.1 Pressure check for distribution network	8
3.2	.2 Typical figure for connections	10
Снар	TER 4 DESIGN OF SEWERAGE SYSTEM	11
4.1	General	
4.2	Waste Water Loads	11
4.3	Selection of Branch and Stack pipe size	13
4.4	Design of building drain	14
4.5	Design of Septic Tank.	14
Снар	TER 5 DESIGN OF STORM WATER DRAINAGE SYSTEM	15
5.1	General	15
5.2	Storm water management system	15
Снар	TER 6 CONCLUSIONS AND RECOMMENDATION	16
6.1	General	16
6.2	Conclusion of the study	16
6.3	Future Scopes and Recommendation	16
Refei	RENCES	17
	NDICES	

CHAPTER 1 INTRODUCTION

1.1 General

All the places where people live needs basic services like water supply and sanitation. In a residential or commercial building where people need to stay for longer period of time requires those services integrated into the building. Proper design and construction of those services ensures economy and safety of the users. Therefore, plumbing design is an integrated part of the detailed design of the building along with architectural, structural electrical designs. Building in large cities may require to have an approved design from the water supply authority to get a water and sewage connection. This project report presents such a design for a residential building.

1.2 Objectives Of The Study

The major objectives were identified and pointed out to fulfill the purposes are given below:

- 1. To determine the right size of different components of this system.
- 2. To determine the proper planning of plumbing system for a multistorey residential building

1.3 Limitation Of The Study

Some of the features of a complete design is not presented in this report which are:

- Some of the sizing options are fixed by architectural design and this report only verifies those size provided.
- Detailed design of structural elements to hold the plumbing in place is not included.
- Cost and volume estimation is not included.

1.4 Overview Of Research Program

• The research work conducted for achieving the objectives is presented through several chapters of this thesis. There are five more chapters of this thesis excluding the current chapter. Brief discussions of those chapters are stated below.

Chapter 2 (Basic Information of the Project): This chapter is provides to the general information of the project.

Chapter 3 (Design of Water Supply System): Water supply & distribution system is discussed here. The supply system used on a G+8 storied residential building.

Chapter 4 (Design of Sewerage System): Soil and waste water design and disposal system is discussed here. Also vent pipe design system is discussed.

Chapter 5 (Rain Water Drainage System): This chapter provides Rain water catchment area calculations, pipe sizing and disposal system.

1.5 Summary

This chapter of the report introduces the project and the report. The description summarizes all the design that are presented throughout the report along with the objectives and limitations. The following chapter provides the specific project data.

CHAPTER 2 BASIC INFORMATION OF THE PROJECT

2.1 General Data Of The Project

A table has been given below to the details information of the project.

Occupancy Type	Residential
Building Category	Small Apartment (y ₂)
Building Storey	9 Storied (G+8)
Number of Basements	N/A
Building Height	99 ft
Number of Residents	100
Land Area	3455 sft
Cover Area	2786 sft
Floor Area	2636 sft
Type of Structure	RCC Frame

2.2 Location Of The Project

Address of the project : Plot-529, Mouza-Goran, R.S-5217, East Mothertek, Sobujbagh, Dhaka.

2.3 Plumbing Design Considerations

- BNBC 2020 has been followed for the design.
- Every flat has balconies.

Water Supply:

WASA is supplying water to the underground reservoir tank.

Water distribution system is gravity driven system (not a pressure system).

Own pumping system will be used to pump the water to the over head tank above the roof.

Master bed attached toilet considered hot water distribution system (10 gallon geyser). Others considered only cold water distribution system.

Water will be pumped to the over head tank (OHT) twice a day.

Underground water reservoir considered for 2 days.

Sewerage System:

- No sewers are available in the area. Buildings must have their own treatment facility- Septic tank.
- Two pipe system is used and hence Soil and Waste water are drained separately.
- Only black water (from soil stack) will be diverted into septic tank.
- Effluent from septic tank will flow to the existing drain of building front.
- All waste water will directly flow to the existing drain of building front.

Storm / Rain Water:

- There is no rain water harvesting system.
- Rain water from roof and balcony will be collected by separate stack system.
- Rain water will dispose to above ground and finally flow will be released to the existing drain of building front.

CHAPTER 3 DESIGN OF WATER SUPPLY SYSTEM

3.1 General

A water supply system design requires the following components to be considered:

- Calculation of demand and estimate the water volume.
- Determine / Check adequacy of the underground water reservoir.
- Calculate / select the capacity of the pump to deliver water to the over head tank within a certain time limit (say, about 30 minutes pumping). This will include the pump riser size.
- Determine / Check adequacy of the underground water reservoir.
- Design the distribution pipe line over the roof and the risers.
- Design the distribution pipes over each of the facilities. Generally these pipes run over the false slab of the toilets and through the walls.
- Check the pressure of the most vulnerable water fixture (predicted to have the lowest pressure). This fixture is generally located on the top floor and having the longest supply pipe network.

3.1.1 Demand Calculation

Use total people number and per capita demand for specific occupancy type.

Total demand = Population * per capita demand

$$=> Q= p * q$$

Here, p= Number of flats/apartment * 6 persons/flat

```
q=120 lpcd (for small apartment (y<sub>2</sub>) from table 8.5.1(a) BNBC 2020)
Determined demand for a 9-storey apartment building with 16 flats with 6 persons in each flat:
```

$$Q= p * q$$

= (16*6) * 120
= (96+4) * 120
= 12000 Liters/Day
= 12.0 m³/day

3.1.2 Under Ground (UG) Reservoir

Generally the Architect provides the design and location for such reservoirs. In such case it is necessary to check the adequacy of the volume provided. A ratio of

Volume/Demand provides the security or extra water that can be stored in case of a water supply disruption. The actual volume of the reservoir should include dead volumes at bottom (never be pumped out) and free board (at top, which will never be filled).

Water demand V = $12 \text{ m}^3/\text{day}$ Require Volume of UG water tank, V = (12 + 12)[From BNBC 2020 Table 5.9.1.2.c] $= 24.0 \text{ m}^3$ Depth of UG water tank, $H = V^{1\backslash 3}$ $=(24)^{1/3}$ = 2.884 mFree board, FB = 0.15 mTotal depth, H = H + FB $= 2.884 \pm 0.15$ = 3.034 mTank Area, A = L * B = V / H=>A = 24 / 2.884 $= 8.32 \text{ m}^2$ Assume, length to width ratio of 2 => L = 2 BNow, Area, A = L * B $=> 2B * B = 8.32 m^2$ $=>B^2=8.32/2=4.16$ $=> B = \sqrt{4.16} = 2.039 m$ Therefore, L = 2 B= 2 * 2.039 = 4.078 mUG Water Tank Size L = 4.078 m, B = 2.039 m, H = 3.034 m

Figure for the UGWT is shown in CAD #16.

3.1.3 Over Head Water Tank (OHWT)

In this part of the report the available size provided or set by the Architect is being checked. If architectural design is not available than the size is designed. Larger OHT

size leads to higher live load. As it has been decided to pump twice everyday, therefore the size of OHT should include 50% daily demand, dead volume and volume for free board. This results in the size is about 60~70% of daily demand.

Daily water demand, V = 12.0 m3/day

It is decided that the users will pump 50% of the daily demand twice a day.

So, the required volume of OHT water tank

 $V = 0.5 * 12.0 = 6.0 \text{ m}^3$ $H = V^{1/3} = (6.0)^{1/3}$ Depth of OHT, = 1.817 mFree board, FB = 0.15 mTotal depth, H = H + FB = 1.817 + 0.15 = 1.96 m $A = 6.0 / 1.90 = 3.15 m^2$ Tank Area, Assume, L = 2 B $A = 2 B * B = 3.15 m^2$ $=>B^2=3.15/2=1.57$ $=> B = \sqrt{1.57} = 1.25 m$ L = 2B = 2 * 1.25 = 2.51 mTherefore, OHT water tank Size L = 2.51 m, B = 1.25 m, H = 1.96 m Figure for the OHWT is shown in CAD #16.

3.1.4 Pump Selection

Pump capacity should be such that, it matches the electricity type (volt) and should be able to pump the desired volume within 30 minutes or so.

Estimation of power required for the pump

$$KW = \frac{Q(l/s) \times Head(m)}{75 \times Efficiency} \times 0.746$$

Here,

$$Q=6.0 \text{ m}^{3}/\text{hr.} = \frac{6000lts}{1*60*60} = 1.67lps$$

Efficiency = 50%
and, Head = (34.65+6.4) = 41.05 m
$$KW = \frac{1.67 \times 41.05}{75 \times 0.5} \times 0.746 = 1.37$$

Following PWD-2018 Schedule,

Selecting Multi Stage-Three Phase Pump. Pump Capacity Details: HP= 2 Q= 20-140 lpm Head= 30-56 m Suction pipe diameter= 32 mm and Delivery pipe diameter= 25 mm.

3.1.5 Riser Size

Riser size is related to pump delivery pipe diameter. With the pumping rate, head and diameter of the pipe, head loss can be calculated. The water velocity should not exceed 1.5 m/s (to minimize water hammer). Typical figure for risers along with the OHT and UG reservoir and pump is shown in CAD #16.

3.2 Distribution Piping Design

CAD#06 & CAD#12 are provided showing riser, and distribution piping over the false ceiling with all the branches. BNBC provides the typical standard diameter for these pipes. For example all risers to the fixtures to be 13 mm dia (0.5 inch) pipes, while pipes running over the false ceiling are 19 mm in diameter (0.75 inch). But, those standards should be checked for pressure drop study.

3.2.1 Pressure Check For Distribution Network.

The distribution pipeline diameters are checked for pressure. The objective of this calculation is to ensure minimum water pressure in the most difficult fixture. Most difficult fixture is generally located on the top floor with the highest pipe length from the source. The calculation table also helps to identify any inadequacy in the preliminary design and take corrective measures, i.e. adjust the diameter of the pipes which produce excessive head loss.

An isometric sketch showing the pipe layout on the roof and the risers were created to better understand this design and head-loss calculation. CAD#5, CAD#06 and CAD#07 are used to get a total picture of that part of network which are used to deliver water to the most difficult fixture.

The Hazen Williams equation is used for head-loss calculations. The equation can be written in the following form:

$$Q = 3.7 \times 10^{-6} CD^{2.63} \left(\frac{H}{L}\right)^{0.54}$$

Where, Q = Flows, lps

- C = Roughness coefficient (100 140 for rough to smooth pipes)
- D = Diameter, mm
- H = Head loss, m
- L = Length of pipe, m

For a definite value of C, the equation can be written as:

$$\frac{H}{L} = 1.39 \times 10^6 \frac{Q^{1.85}}{D^{4.87}}$$
 ---- [for C = 130]

This above formula is used to calculate the head-loss or pressure check. WSFU were obtained from BNBCTable 8.0.1 in . Besides BNBC Table 8.0.2(a), 8.0.2(b), 8.0.2(c) is used to get the equivalent lengths for different valves and fittings. BNBC figure 8.0.1 is used to convert WSFU values to lpm values. For lower range of values a simple conversion factor is used as it is very difficult to obtain lpm values in that range.

Table 1: Analysis and design of distribution pipes based on head loss calculation

	Length,	Diameter,	WSF					
Pipe	L (m)	D (mm)	U	GPM	LPM	LPS	H/L	н
A-Elbow	1.83	63	184	62	234.98	3.916	0.030	0.055
AB	2.75	63	184	62	234.98	3.916	0.030	0.082
B- Elbow	1.83	63	184	62	234.98	3.916	0.030	0.055
BC	2.03	63	184	62	234.98	3.916	0.030	0.061
BC-Gate	0.85	63	184	62	234.98	3.916	0.030	0.025
C-Elbow	1.83	63	184	62	234.98	3.916	0.030	0.055
CD	1.95	63	184	62	234.98	3.916	0.030	0.058
D-Tee	3.66	63	184	62	234.98	3.916	0.030	0.110
DE	7.798	50	80	38	144.02	2.400	0.037	0.291
E-Elbow	1.53	50	80	38	144.02	2.400	0.037	0.057
EF	4.25	50	80	38	144.02	2.400	0.037	0.159
F-Elbow	1.53	50	80	38	144.02	2.400	0.037	0.057
FG	0.45	50	80	38	144.02	2.400	0.037	0.017
FG-Gate	0.7	50	80	38	144.02	2.400	0.037	0.026
G-Elbow	1.53	50	80	38	144.02	2.400	0.037	0.057
GH	0.92	50	80	38	144.02	2.400	0.037	0.034
H-Tee	3.05	50	80	38	144.02	2.400	0.037	0.114
HI	0.61	25	10	14.6	55.33	0.922	0.186	0.114
I-Tee	1.53	25	10	14.6	55.33	0.922	0.186	0.285
IJ	0.46	25	10	14.6	55.33	0.922	0.186	0.086

©Daffodil International University

Page-9

J-Elbow	0.79	25	10	14.6	55.33	0.922	0.186	0.147
JK	1.95	25	10	14.6	55.33	0.922	0.186	0.363
K-Tee	1.53	25	10	14.6	55.33	0.922	0.186	0.285
KL	0.6	19	5	9.4	35.63	0.594	0.314	0.188
L-Tee	1.22	19	5	9.4	35.63	0.594	0.314	0.383
LM	0.97	19	4	8	30.32	0.505	0.233	0.226
M-Elbow	0.61	19	4	8	30.32	0.505	0.233	0.142
								3.533

Note: WSFU to GPM was determined using IPC 2018 Table [Appendix]

Total Head = 5.491m Head loss = 3.533m Available Head = 1.958m = 2.78psi

3.2.2 Typical Figure For Connections

Typical standard for valves, joints, clumps etc. are also provided in the CAD.

CHAPTER 4 DESIGN OF SEWERAGE SYSTEM

4.1 General

The detailed calculations for the design of different components are presented in this chapter. The sewerage plumbing pipes for each floors are generally located below the floor slab and the vertical stacks run through the designated voids to the building drains.

A waste water drainage system design requires the following components to be considered:

- Determine the wastewater load in terms of fixture unit from each bathroom or other units which produces wastewater.
- Selection / Check adequacy of the size (diameter) of the branch pipes according to BNBC.
- Selection / Check adequacy of the size (diameter) of the vertical stack pipes according to BNBC.
- Determining the grade and diameter of the building drain.
- Design the septic tank.

4.2 WASTE WATER LOADS

There are four toilet unit locations and two kitchen location in the first to eight typical floor plan and ground floor have one number of toilet for care taker. All these kitchens and toilets are using a total of four (4) ducts to run down the vertical stacks. Waste water loads are calculated based on the Fixture Unit (FU) system. In this system a load value is assigned for each type of wastewater fixture. The relevant table from BNBC [Table 8.6.12] is provided in Appendix: BNBC Tables. FU values are picked up from that table to determine the total FU load coming from each toilet to each type of vertical stacks. The fixture unit loads to different stacks from these toilets are listed in the following table:

DUCT-1											
FIXTURES	GF	1F	2n d	3rd	4th	5t h	6th	7th	8th	No.of Fixture	FU
Water closet (flush tank)	0	1	1	1	1	1	1	1	1	8	48
Wash Basin (domestic)	0	1	1	1	1	1	1	1	1	8	8
Kitchen sink	0	0	0	0	0	0	0	0	0	0	0
Shower	0	1	1	1	1	1	1	1	1	8	32
Laundry	1	1	1	1	1	1	1	1	1	9	27
Floor trap	1	1	1	1	1	1	1	1	1	9	9
DUCT-2	1	<u>I</u>	1	1	1	1	<u> </u>	I		<u> </u>	
FIXTURES	G. F	1st	2n d	3rd	4th	5t h	6th	7th	8th	No. of Fixture	FU
Water closet (flush tank)	0	1	1	1	1	1	1	1	1	8	48
Wash Basin (domestic)	0	2	2	2	2	2	2	2	2	16	16
Kitchen sink	0	1	1	1	1	1	1	1	1	8	16
Shower	0	1	1	1	1	1	1	1	1	8	32
Laundry	1	1	1	1	1	1	1	1	1	9	27
Floor trap	1	1	1	1	1	1	1	1	1	9	9
DUCT-3	1				1	1		1	1	I	1
FIXTURES	G. F	1st	2n d	3rd	4th	5t h	6th	7th	8th	No. of Fixture	FU
Water closet (flush tank)	0	1	1	1	1	1	1	1	1	8	48
Wash Basin (domestic)	0	2	2	2	2	2	2	2	2	16	16
Kitchen sink	0	1	1	1	1	1	1	1	1	8	16

Table 4.1: Listing of fixture unit loads from each toilet and kitchen (Ground to 8th Floor)

Shower	0	1	1	1	1	1	1	1	1	8	32
Laundry	1	1	1	1	1	1	1	1	1	9	27
Floor trap	1	1	1	1	1	1	1	1	1	9	9

DUCT-4											
FIXTURES	G. F	1st	2nd	3r d	4th	5th	6t h	7th	8th	No. of Fixture	FU
Water closet / Long pan (flush tank)	1	1	1	1	1	1	1	1	1	9	54
Wash Basin (domestic)	0	1	1	1	1	1	1	1	1	8	8
Kitchen sink	0	0	0	0	0	0	0	0	0	0	0
Shower	0	1	1	1	1	1	1	1	1	8	32
Bib cock	1	0	0	0	0	0	0	0	0	1	1.5
Laundry	1	1	1	1	1	1	1	1	1	9	27
Floor trap	1	1	1	1	1	1	1	1	1	9	9

Table 4.2: Listing of total fixture unit loads on different stack (Ground to 8th Floor)

Duct No.	TotalFixtureUnitLoadonWasteStack (WS)	Total Fixture Unit Load on Soil Stack (SS)
1	76	48
2	100	48
3	100	48
4	77.5	54
Total	353.5	198

CAD #19 includes the section detail of fixture.

4.3 Selection Of Branch And Stack Pipe Size

All branch pipes are selected to be 100 mm in diameter. This uniform size selection will eliminate the need of reducers and will reduce the hassle of maintaining different sized pipe stocks for any repair work. According to Table 8.6.14 from BNBC (Appendix: BNBC Tables) this 100 mm branch pipe can take up to 160 FU load and hence this selection is more than enough. That table also indicate that the vertical stacks of this size can take up to 500 FU load and hence this design or selection is enough. CAD#13 includes a sketch of stack with velocity reducer arrangement. CAD #14 & CAD#15 includes typical soil stack, waste water stack, rain water stack & vent stack joint details.

4.4 Design Of Building Drain

Total load on building drains for SS and WS are 198 and 353.5 FU accordingly. Therefore, according to BNBC Table 8.6.15 (Appendix: BNBC Tables), Ø150 mm pipe is selected with a slope of 1/100. This setup has a capacity of 700 FU load. Layout of the building drain with, Septic tank, building sewer etc are shown in CAD #01. A layout of the UG reservoir for water supply is shown in CAD #01. These two elements are separated by sufficient distance to prevent any chance of cross contamination. CAD#14 and CAD#15 shows the detailed of stack connections and CAD#18 shows detailed sections of typical inspection pits for building drains.

4.5 Design Of Septic Tank.

Septic tank has been designed according to the process described in the text book. All the details for septic tank arrangements are provided in CAD #17.

Size of Septic Tank,

Length = 4.078 mWidth = 2.039 mDepth = 3.034 m

CHAPTER 5 DESIGN OF STORM WATER DRAINAGE SYSTEM

5.1 General

There is no special arrangements to store and manage storm water for this building. Arrangements were made to discharge rain water easily from roof through several rain stacks to the building drain.

5.2 Storm Water Management System

Rain/storm water is disclosed to building drain and will flow to the available drainage system.

Roof rain water disposal system detailed are shows in CAD#04.

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 General

An extensive computational plumbing design has been performed on G+8 storey residential building. This project is about to design a plumbing & sanitary system. So, at first a details has been made in second chapter for better understanding of the project information. Necessary plumbing design consideration are also included in that chapter. The detailed water supply design process has been discussed in chapter-3. Necessary tables & figure are also included in that chapter. In chapter-4 the sewerage system design has been provided. And chapter-5 discussed the rain water management system.

6.2 Conclusion Of The Study

A plumbing system design for multistorey residential building is described in this thesis. Determined the right size of pipe for water supply, sanitary and drainage works. Also designed UGWR, OHWT, septic tank, centrifugal pump, inspection pit, etc. All the design parameter determined according to Bangladesh National Building Code-2020.

6.3 Future Scopes And Recommendation

- A recyclable plumbing system which enables regarding it waste water/rain could be done for sustainable and energy efficient purpose of this project.
- A comparative study on cost analysis can be done as well as the fire fighting system design can be done for further research.

References

Bibliography

1: Water quality and treatment, (1990), McGraw hill book company,

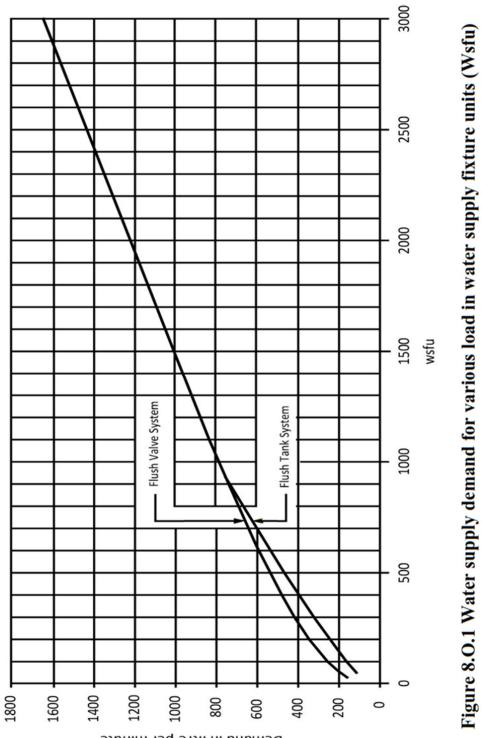
2: Ahmed F and smith P.G., (1987), Design and performance of a comunity type iron removal plant for hand pump tubewell.

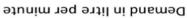
3:Deolalikar, S.G. (1994) Plumbing: Design and Practice, Tata McGraw-Hill Publishing Company Ltd, NewDelhi.

4:Bangladesh National Building Code, BNBC-2020.

5:International Plumbing Code 2018 by International Code Council.

6: Haq S.A. (2021), Plumbing Principles and Practice (Second Edition).


7: Alfred Laws, A. Calvin, Engineered Plumbing Design II by Steele.


8: M. Javaid, Drainage Systems.

9: Harris C. M. (1991), Practical Plumbing Engineering, McGraw-Hill.

Appendices

Appendix: BNBC Tables

Page-20

Fixture or group	Supply Control	C 11	wsfu	1912 - 1953 <u>-</u>
		Cold	Hot	Total
Bath group	Flush tank	4.5	3	6
Bath group	Flush valve	6	3	8
Bathtub	Faucet	1.5	1.5	2
Bidet	Faucet	1.5	1.5	2
Combination	Faucet	2	2	3
Kitchen sink	Faucet	1.5	1.5	2
Laundry tray	Faucet	2	2	3
Laundry	Faucet	1.5	1.5	2
Pedestal urinal	Flush valve	10	121	10
Restaurant sink	Faucet	3	3	4
Service sink	Faucet	1.5	1.5	2
Shower head	Mixing Valve	3	3	4
Stall or wall urinal	Flush tank	3	-	3
Stall or wall urinal	Flush valve	5		5
Water closet	Flush tank	5	2 - 22	5
Water closet	Flush valve	10	(5)	10

Table 8.O.1: Water Supply Fixture Unit (wsfu) Values for Various Plumbing Fixtures
--	--

 Fixture with both cold and hot water supplies, the weight for maximum separate demands may be considered 75% of total wsfu.

Nominal	Smooth Bend Elbows									
Pipe	90°	90° Long	90°	45°	45°	180°				
or Tube	Std*	Rad.**	Street*	Std*	Street*	Std*				
Size (mm)	句	Et.		$\langle \rangle$		A				
10	0.43	0.27	0.70	0.21	0.34	0.70				
13	0.49	0.31	0.76	0.24	0.40	0.76				
19	0.61	0.43	0.98	0.27	0.49	0.98				
25	0.79	0.52	1.25	0.40	0.64	1.25				
32	1.01	0.70	1.71	0.52	0.92	1.71				
38	1.22	0.79	1.92	0.64	1.04	1.92				
50	1.53	1.01	2.50	0.79	1.37	2.50				
63	1.83	1.25	3.05	0.98	1.59	3.05				
75	2.29	1.53	3.66	1.22	1.95	3.66				
88	2.75	1.80	4.58	1.43	2.23	4.58				
100	3.05	2.04	5.19	1.59	2.59	5.19				
125	3.97	2.50	6.41	1.98	3.36	6.41				
150	4.88	3.05	7.63	2.41	3.97	7.63				
200	6.10	3.97	170	3.05	5	10.07				
250	7.63	4.88	121	3.97	2	12.81				
300	9.15	5.80	121	4.88	2	15.25				
350	10.37	7.02	123	5.49	2	16.78				
400	11.59	7.93	(4)	6.10		18.91				
450	12.81	8.85	(#)	7.02	-	21.35				
500	15.25	10.07		7.93		24.71				
600	18.30	12.20		9.15		28.67				

Table 8.O.2(a): Fitting Losses In Equivalent Metre of Pipe - Screwed, Welded, Flanged, Flared and Brazed Connections

Nominal Pipe or Tube Size (mm)		Smooth B	end Tees	Metre Elbows				
	Flow Thru	St	raight-Thru Fl	ow	90° Ell	60º Ell	45° Ell	
	Branch	No Reduction	Reduced %	Reduced		P		
	白白	Ð		101				
10	0.82	0.27	0.37	0.43	0.82	0.34	0.18	0.09
13	0.92	0.31	0.43	0.49	0.92	0.40	0.21	0.12
19	1.22	0.43	0.58	0.61	1.22	0.49	0.27	0.15
25	1.53	0.52	0.70	0.79	1.53	0.64	0.31	0.21
32	2.14	0.70	0.95	1.01	2.14	0.92	0.46	0.27
38	2.44	0.79	1.13	1.22	2.44	1.04	0.55	0.34
50	3.05	1.01	1.43	1.53	3.05	1.37	0.70	0.40
63	3.66	1.25	1.71	1.83	3.66	1.59	0.85	0.52
75	4.58	1.53	2.14	2.29	4.58	1.95	0.98	0.61
88	5.49	1.80	2.44	2.75	5.49	2.23	1.22	0.73
100	6.41	2.04	2.75	3.05	6.41	2.59	1.37	0.82
125	7.63	2.50	3.66	3.97	7.63	3.36	1.83	0.98
150	9.15	3.05	4.27	4.88	9.15	3.97	2.14	1.22
200	12.20	3.97	5.49	6.10	12.20	5.19	2.75	1.56
250	15.25	4.88	7.02	7.63	15.25	6.41	3.66	2.20
300	18.30	5.80	7.93	9.15	18.30	7.63	3.97	2.44
350	20.74	7.02	9.15	10.37	20.74	8.85	4.58	2.75
400	23.79	7.93	10.68	11.59	23.79	9.46	5.19	3.05
450	25.93	8.85	12.20	12.81	25.93	11.29	5.80	3.36
500	30,50	10.07	13.42	15.25	30.50	12.51	6.71	3.97
600	35.08	12.20	15.25	18.30	35.08	14.95	7.63	4.88

Table 8.O.2(b): Fitting Losses in Equivalent Metre of Pipe - Screwed, Welded, Flanged, Flared and Brazed Connections

Nominal Pipe or	Globe	60° – Y	45° - Y	Angle*	Gate	Swing Check**	Lift Check
Tube Size (mm)			Æ				r B
10	5.19	2.44	1.83	1.83	0.18	1.53	0
13	5.49	2.75	2.14	2.14	0.21	1.83	
19	6.71	3.36	2.75	2.75	0.27	2.44	Globe Lif
25	8.85	4.58	3.66	3.66	0.31	3.05	and
32	11.59	6.10	4.58	4.58	0.46	4.27	Vertical
38	13.12	7.32	5.49	5.49	0.55	4.88	Lift:
50	16.78	9.15	7.32	7.32	0.70	6.10	- Same as Globe
63	21.05	10.68	8.85	8.85	0.85	7.63	Ciobe
75	25.62	13.12	10.68	10.68	0.98	9.15	Valve**
88	30.50	15.25	12.51	12.51	1.22	10.68	
100	36.60	17.69	14.34	14.34	1.37	12.20	
125	42.70	21.66	17.69	17.69	1.83	15.25	
150	51.85	26.84	21.35	21.35	2.14	18.30	
200	67.10	35.08	25.93	25.93	2.75	24.40	
250	85.40	44.23	32.03	32.03	3.66	30.50	8 YON 65
300	97.60	50.33	39.65	39.65	3.97	36.60	Angle Lift:
350	109.8	56.43	41.18	41.18	4.58	41.18	Same as
400	125.05	64.05	54.90	54.90	5.19	45.75	Angle
450	140.3	73.20	61.00	61.00	5.80	50.33	Valve
500	158.6	83.88	71.68	71.68	6.71	61/00	
600	186.05	97.60	80.83	80.83	7.63	73.20	

Table 8.O.2(c): Valve Losses in Equivalent Metre of Pipe - Screwed, Welded, Flanged and Flared Connections

FIXTURE	OCCUPANCY	TYPE OF SUPPLY	LOAD VALUES, IN WATER SUPPLY FIXTURE UNITS (wsfu)			
FIXTURE	OCCUPANCY	CONTROL	Cold	Hot	Total	
Bathmom group	Private	Flush tank	2.7	1.5	3.6	
Bathroom group	Private	Flushometer valve	6.0	3.0	8.0	
Bathtub	Private	Faucet	1.0	1.0	1.4	
Bathtub	Public	Faucet	3.0	3.0	4.0	
Bidet	Private	Faucet	1.5	1.5	2.0	
Combination fixture	Private	Faucet	2.25	2.25	3.0	
Dishwashing machine	Private	Automatic		1.4	1.4	
Drinking fountain	Offices, etc.	"/," valve	0.25		0.25	
Kitchen sink	Private	Faucet	1.0	1.0	1.4	
Kitchen sink	Hotel, restaurant	Faucet	3.0	3.0	4.0	
Laundry trays (1 to 3)	Private	Faucet	1.0	1.0	1.4	
Lavatory	Private	Faucet	0.5	0.5	0.7	
Lavatory	Public	Faucet	1.5	1.5	2.0	
Service sink	Offices, etc.	Faucet	2.25	2.25	3.0	
Shower head	Public	Mixing valve	3.0	3.0	4.0	
Shower head	Private	Mixing valve	1.0	1.0	1.4	
Urinal	Public	1" flushometer valve	0.01		10.0	
Urinal	Public 7/2 va		5.0	-	5.0	
Urinal	Public	Flush tank	3.0		3.0	
Washing machine (8 lb)	Private	Automatic	1.0	1.0	1.4	
Washing machine (8 lb)	Public	Automatic	2.25	2.25	3.0	
Washing machine (15 lb)	Public	Automatic	3.0	3.0	4.0	
Water closet	Private	Flushometer valve	6.0	-	6.0	
Water closet	Private	Flush tank	2.2	1.000	2.2	
Water closet	Public	Flushometer valve	10.0		10,0	
Water closet	Public	Flush tank	5.0	~~~	5.0	
Water closet	Public or private	Flushometer tank	2.0		2.0	

TABLE E103.3(2)

For SI: 1 inch = 25.4 mm, 1 pound = 0.454 kg a. For fixtures not listed, loads should be assumed by comparing the fixture to one listed using water in similar quantities and at similar rates. The assigned loads for fixtures with both hot and cold water supplies are given for separate hot and cold water loads and for total load. The separate hot and cold water loads being three-fourths of the total load for the fixture in each case.

SUPPLY SYSTEM	S PREDOMINANTLY FOR	R FLUSH TANKS	SUPPLY SYSTEMS PREDOMINANTLY FOR FLUSHOMETER VALVES				
Load	Dema	ind	Load	Demand			
(Water supply fixture units)	(Gailons per minute)	(Cubic feet per minute)	(Water supply flature units)	(Gallons per minute)	(Cubic feet per minute		
1	3.0	0.04104	-	-			
2	5.0	0.0684					
3	6.5	0.86892	5				
4	8.0	1.06944					
5	9.4	1,256592	5	15.0	2.0052		
6	10.7	1.430376	6	17.4	2.326032		
7	11.8	1.577424	7	19.8	2.646364		
8	12.8	1.711104	8	22.2	2.967696		
9	13.7	1.831416	9	24.6	3.288528		
10	14.6	1.951728	10	27.0	3.60936		
11	15.4	2.058672	11	27.8	3.716304		
12	16.0	2.13888	12	28.6	3,823248		
13	16.5	2.20572	13	29.4	3.930192		
14	17.0	2.27256	14	30.2	4.037136		
15	17.5	2.3394	15	31.0	4.14408		
16	18.0	2.90624	16	31.8	4.241024		
17	18.4	2,459712	17	32.6	4.357968		
18	18.8	2.513184	18	33,4	4.464912		
19	19.2	2.566656	19	34.2	4.571856		
20	19.6	2.620128	20	35.0	4.6788		
25	21.5	2.87412	25	38.0	5.07984		
30	23.3	3.114744	30	42.0	5.61356		
35	24.9	3.328632	35	44.0	5.88192		
40	26.3	3,515784	40	46.0	6.14928		
45	27.7	3,702936	45	48.0	6,41664		
50	29.1	3,890088	50	50.0	6.684		
60	32.0	4.27776	60	54.0	7.21872		
70	35.0	4.6788	70	58.0	7.75344		
80	38.0	5.07984	80	61.2	8.181216		
90	41.0	5.48088	90	64.3	8.595624		
100	43.5	5.81508	100	67.5	9.0234		
120	48.0	6.41664	120	73.0	9.75864		
140	52.5	7.0182	140	77.0	10.29336		
160	57.0	7.61976	160	81.0	10.82808		
180	61.0	8.15448	180	85.5	11.42964		
200	65.0	8.6892	200	90.0	12.0312		
225	70.0	9.3576	225	95.5	12.76644		
250	75.0	10.026	250	101.0	13.50168		

TABLE E103.3(3) TABLE FOR ESTIMATING DEMAND

(continued)

SUPPLY SYSTEM	IS PREDOMINANTLY FO	OR FLUSH TANKS	SUPPLY SYSTEMS P	REDOMINANTLY FOR FLU	SHOMETER VALVES	
Load	Der	mand	Load	Demand		
(Water supply fixture units)	(Gallons per minute)	(Cubic feet per minute)	(Water supply fixture units)	(Gallons per minute)	(Cubic feet per minute)	
275	80.0	10.6944	275	104.5	13.96956	
300	85.0	11.3628	300	108.0	14.43744	
400	105.0	14.0364	400	127.0	16.97736	
500	124.0	16.57632	500	143.0	19.11624	
750	170.0	22.7256	750	177.0	23.66136	
1,000	208.0	27.80544	1,000	208.0	27,80544	
1,250	239.0	31.94952	1,250	239.0	31.94952	
1,500	269.0	35.95992	1,500	269.0	35.95992	
1,750	297.0	39,70296	1,750	297.0	39.70296	
2,000	325.0	43.446	2,000	325.0	43.446	
2,500	380.0	50.7984	2,500	380.0	50,7984	
3,000	433.0	57.88344	3,000	433.0	57.88344	
4,000	525.0	70.182	4,000	525.0	70.182	
5,000	593.0	79.27224	5,000	593.0	79.27224	

TABLE E103.3(3)-continued

For SI: 1 inch = 25.4 mm, 1 gallon per minute = 3.785 L/m, 1 cubic foot per minute = 0.28 m¹ per minute.

TABLE E103.3(4)	
LOSS OF PRESSURE THROUGH TAPS AND TEES IN POUNDS P	ER SQUARE INCH (psl)
	Advant day the best of

GALLONS PER MINUTE	SIZE OF TAP OR TEE (Inches)								
GALLONS PER MINUTE	7.	71,	1	174	5 Y	2	3		
10	1.35	0.64	0.18	0.08			-		
20	5.38	2.54	0.77	0.31	0.14				
30	12.10	5.72	1.62	0.69	0.33	0.10			
40	2.00	10.20	3.07	1.23	0.58	0.18			
50		15.90	4.49	1.92	0.91	0.28			
60			6.46	2.76	1.31	0.40			
70) —		8.79	3.76	1,78	0.55	0.10		
80	2.00		11.50	4.90	2.32	0.72	0.13		
90		1	14.50	6.21	2.94	0.91	0.16		
100	3.4	1	17.94	7.67	3,63	1.12	0.21		
120	5 -		25.80	11.00	5.23	1.61	0.30		
140	2.7	-	35.20	15.00	7.12	2.20	0.41		
150		1		17.20	8.16	2.52	0.47		
160		1		19.60	9.30	2.92	0.54		
180				24.80	11.80	3.62	0.68		
200	2=			30.70	14.50	4.48	0.84		
225				38.80	18.40	5.60	1.06		
250				47.90	22.70	7.00	1.31		
275) —			-	27.40	7.70	1.59		
300	5 m				32.60	10.10	1.88		

For SI: 1 inch = 25.4 mm, 1 pound per square inch = 6.895 kpa, 1 gallon per minute = 3.785 L/m.

Type of Fixture	Fixture Unit Value as Load Factor
One bathroom group consisting of water closet, wash basin and bath tub or shower stall :	
a) Flush Tank water closet	3
b) Flush-valve water closet	6
Bathtub*	2
Bidet	2
Combination sink and tray (drain board)	2
Drinking fountain	0.5
Floor traps†	1
Kitchen sink, domestic	2
Wash basin, ordinary‡	1
Wash basin, surgeon's	2
Shower stall, domestic	2
Shower (group) per head	3
Urinal, wall hung	4
Urinal, stall	4
Water closet, tank operated	3
Water closet, valve operated	6

Table 8.6.12: Fixture Units for Different Sanitary Appliances or Groups

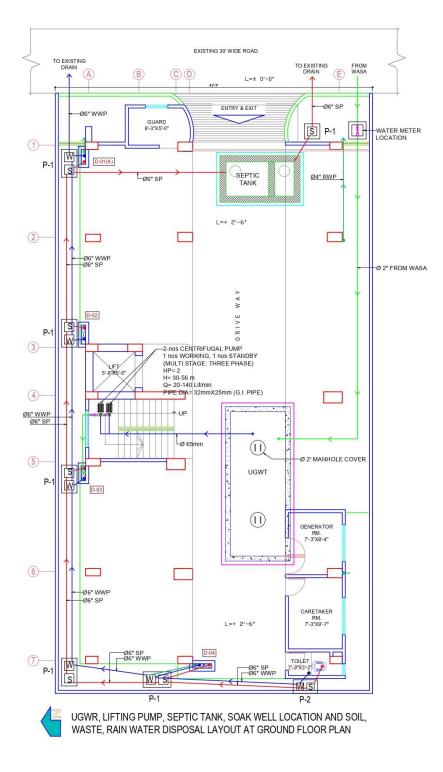
* A shower head over a bath tub does not increase the fixture unit value.

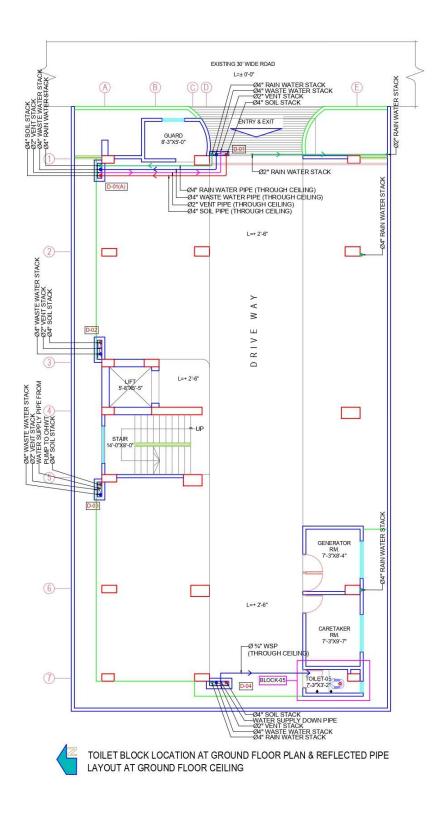
† Size of floor trap shall be determined by the area of surface water to be drained.

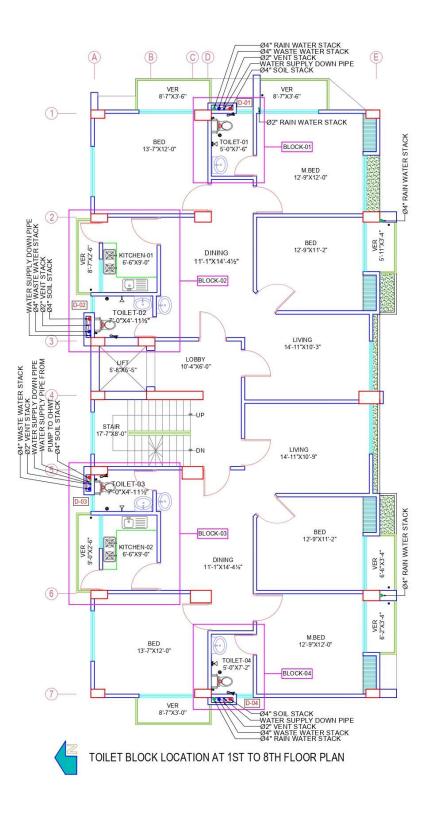
‡ Wash basin with 32 mm and 40 mm trap have the same load value.

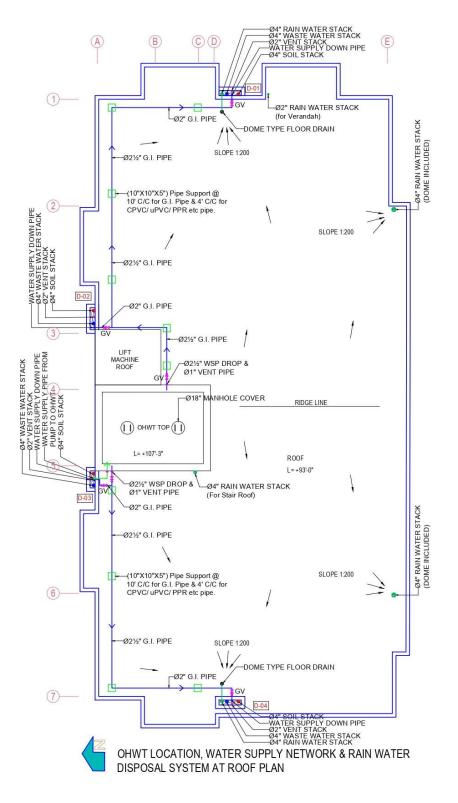
Diameter	Any	One Stack of 3	More the	an 3 Storeys in Height
of Pipe (mm)			Total for Stack	Total at One Storey or Branch Interval
30	1	2	2	1
40	3	4	8	2
50	6	10	24	6
65	12	20	42	9
75	20	30	60	16
100	160	240	500	90
125	360	540	1100	200
150	620	960	1900	350
200	1400	2200	3600	600
250	2500	3800	5600	1000
300	3900	6000	8400	1500
375	7000	b	b	b

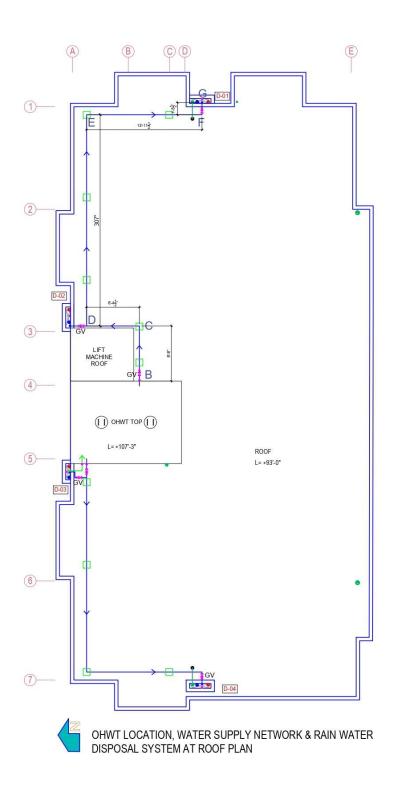
Table 8.6.14: Maximum Number of Fixture Units that can be connected to Branches and Stacks

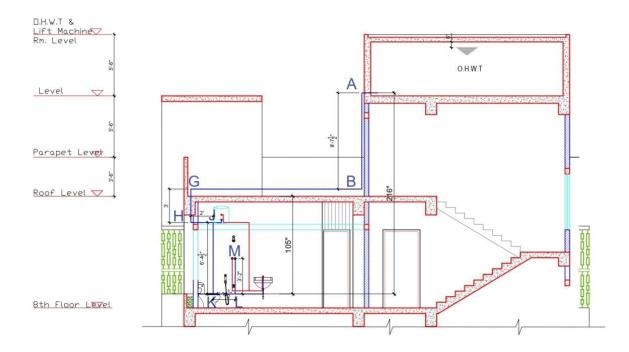

^a Does not include branches of the building sewer. ^b Sizing load based on design criteria

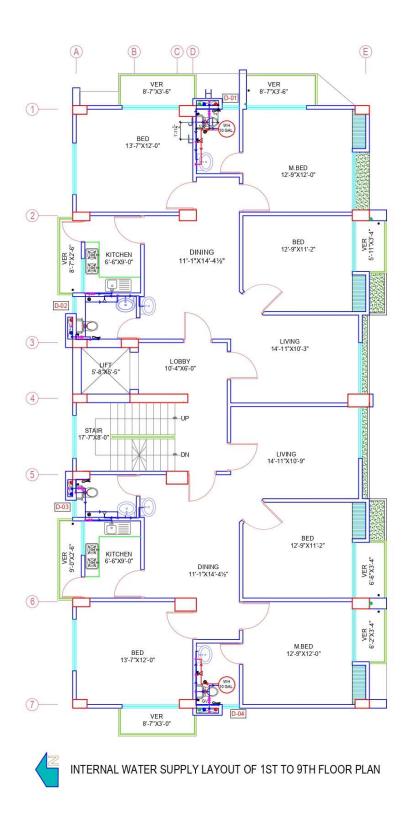

Maximum Number of Fixture Units that can be Connected to any Portion* of the Building Drain or the Building Sewer for Various Slopes							
1/200	1/100	1/50	1/25				
-	180	216	250				
-	700	840	1000				
1400	1600	1920	2300				
2500	2900	3500	4200				
2900	4600	5600	6700				
7000	8300	10000	12000				
	Portion* of the Ba 1/200 1400 2500 2900	Portion* of the Building Drain or Slop 1/200 1/100 - 180 - 700 1400 1600 2500 2900 2900 4600	Portion* of the Building Drain or the Building Sevent 1/200 1/100 1/50 - 180 216 - 700 840 1400 1600 1920 2500 2900 3500 2900 4600 5600				

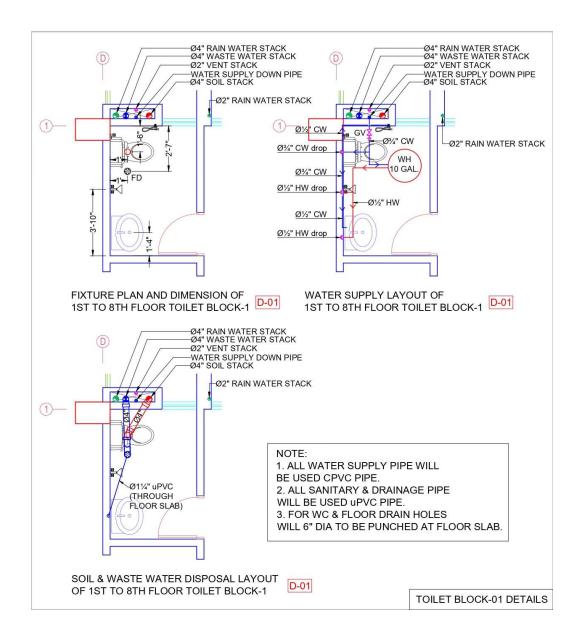

Table 8.6.15: Maximum Number of Fixture Units that can be connected to Building Drains and Sewers

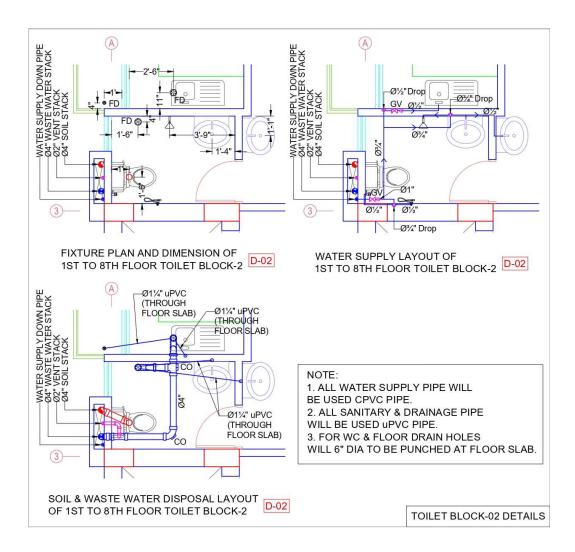

* Includes branches of building sewer

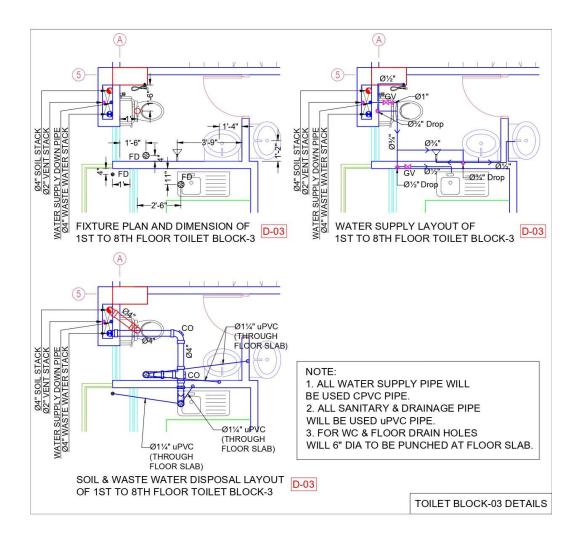

Appendix: CAD Files

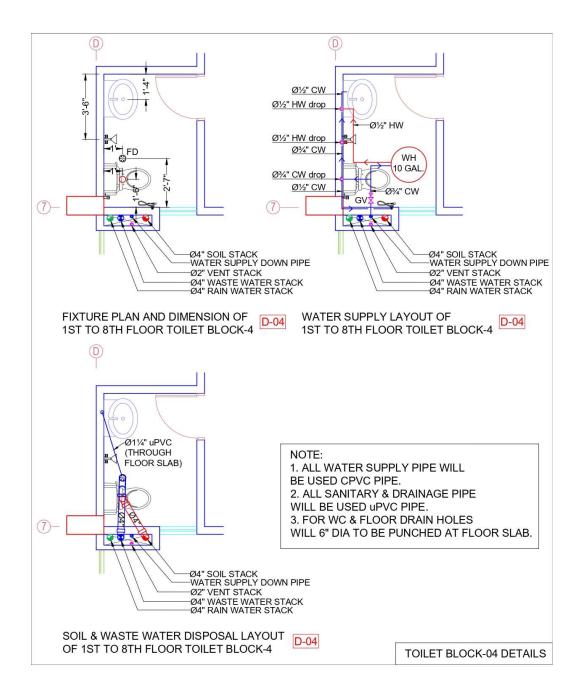




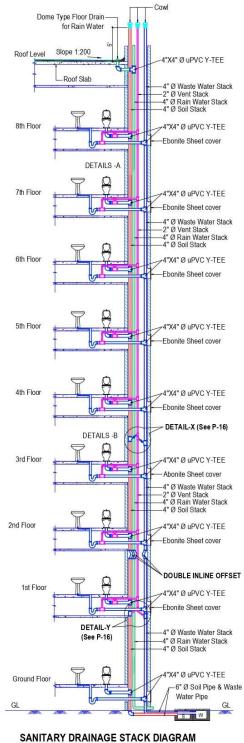


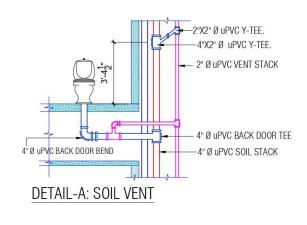


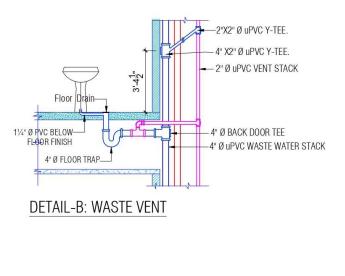


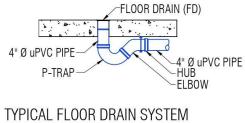


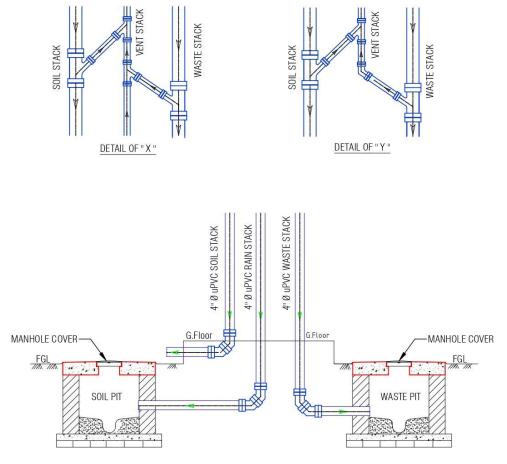
DUCT-4											
FIXTURES	G. F	1s t	2n d	3r d	4t h	5t h	6t h	7t h	8t h	No. of Fixture	F U
Water closet / Long pan (flush tank)	1	1	1	1	1	1	1	1	1	9	54
Wash Basin (domestic)	0	1	1	1	1	1	1	1	1	8	8
Kitchen sink	0	0	0	0	0	0	0	0	0	0	0
Shower	0	1	1	1	1	1	1	1	1	8	32
Bib cock	1	0	0	0	0	0	0	0	0	1	1. 5
Laundry	1	1	1	1	1	1	1	1	1	9	27
Floor trap	1	1	1	1	1	1	1	1	1	9	9
DUCT-4		1			1	1					
FIXTURES	G. F	1s t	2n d	3r d	4t h	5t h	6t h	7t h	8t h	No. of Fixture	FU
Water closet / Long pan (flush tank)	1	1	1	1	1	1	1	1	1	9	54
Wash Basin (domestic)	0	1	1	1	1	1	1	1	1	8	8
Kitchen sink	0	0	0	0	0	0	0	0	0	0	0
Shower	0	1	1	1	1	1	1	1	1	8	32
Bib cock	1	0	0	0	0	0	0	0	0	1	1.5
Laundry	1	1	1	1	1	1	1	1	1	9	27
Floor trap	1	1	1	1	1	1	1	1	1	9	9

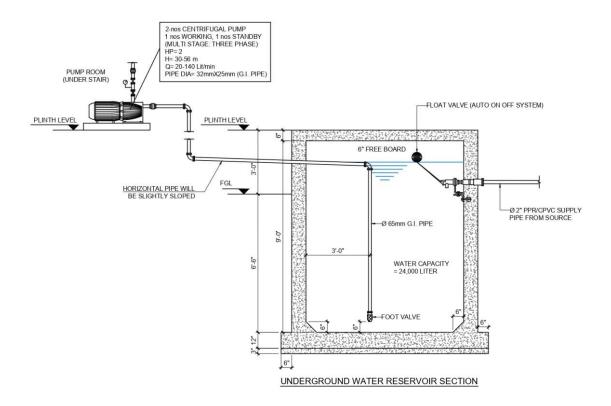


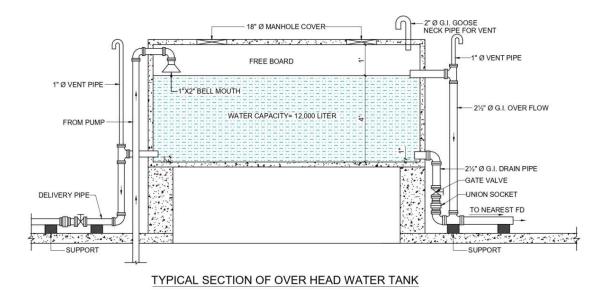


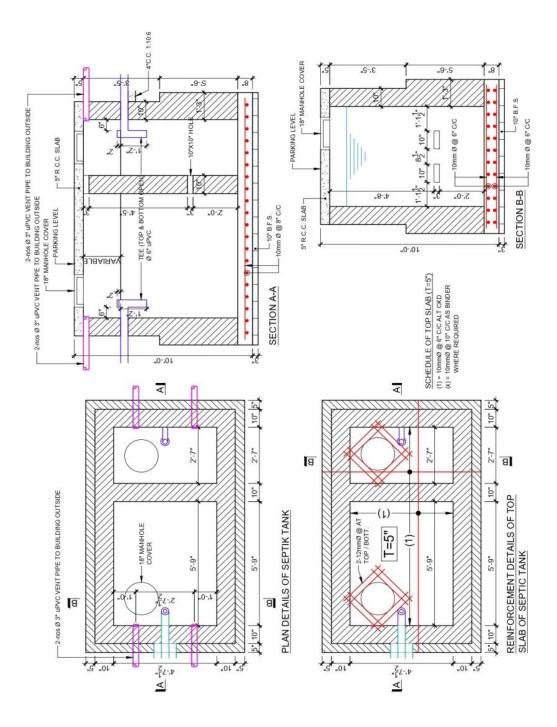

	D-01	C)-02 / 03	D-04
	2"Ø	2" Ø	2"Ø	At a second seco
ROOF FLOOR				
EALSE CEILING	<mark>-⊶-</mark> 1"Ø		<u>→→ 1¼"</u> Ø	<mark>- ⊷</mark> 1" Ø
8TH FLOOR	11/2" Ø	1½" Ø	1½" Ø	
FALSE CEILING	- > 1"Ø		<mark>- ⊭ -</mark> 1"Ø	→ 3/4" Ø
<u>7TH</u> FLOOR	11/4" Ø	11/4" Ø	1%" Ø	
FALSE CEILING	- > 1"Ø		⋈ 1"Ø	<u>→₩</u> → 3⁄4"Ø
6TH FLOOR	11/4" Ø	11/4" Ø	1,%" Ø	
FALSE CEILING	<mark>→ 1</mark> "Ø		<mark>- ⋈ -</mark> 1"Ø	<u>₩</u> 3⁄4"Ø
5TH FLOOR	11/4" Ø	1%" Ø	1%" Ø	
FALSE CEILING	™ - 1"Ø		<mark>₩ -</mark> 1"Ø	
4TH FLOOR	1¼" Ø	11/1 0	11/2" Ø	
FALSE CEILING	- M - 1"Ø		<mark>- ⋈ -</mark> 1"Ø	<mark>₩4 →</mark> 3⁄4"Ø
<u>3R</u> D FLOOR	1" Ø	1" Ø	11/1 0	
FALSE CEILING	<mark>₩</mark> 1"Ø		_₩→ 1"Ø	¾"Ø
2ND FLOOR	1" Ø	1"0	1. Ø	
FALSE CEILING	₩ 1"Ø		⋈ 1"Ø	₩ ¾"Ø
1ST FLOOR				
FALSE CEILING				<mark>₩</mark> ¾"Ø
GROUND FLOOR				

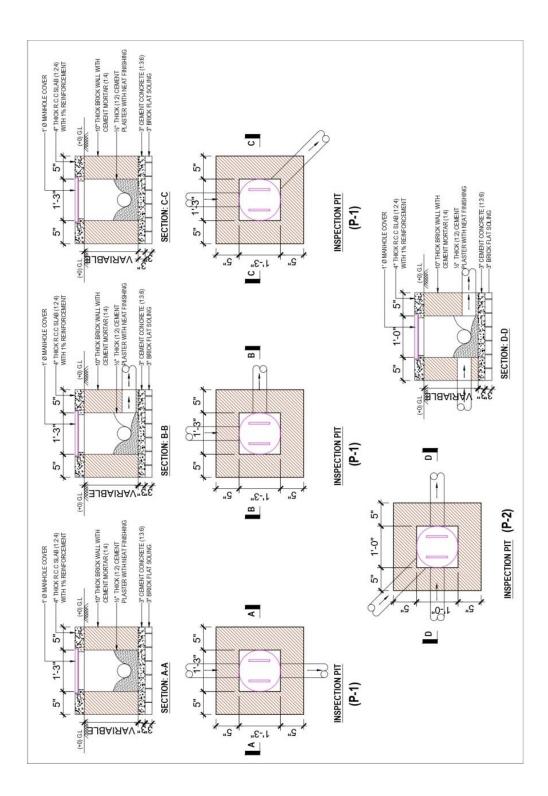

WATER SUPPLY FLOW DIAGRAM

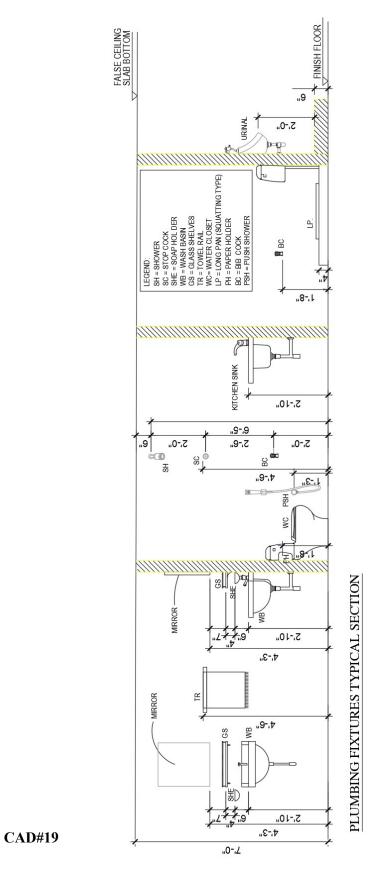

CAD#12








SHOWING STACK PIPE CONNECTION TO INSPECTION PIT


CAD#15

©Daffodil International University