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                                   ABSTRACT 

 

Defect severity assessment is the most crucial step in major companies and organizations 
where the complexity of the software is growing at an exponential rate. One of most active 
research areas in software engineering is software defect prediction (SDP). SDP is a 
technique for envisioning software defects. Early defect discovery during the software 
development life cycle (SDLC) results in early repairs and ultimately on-time delivery of 
maintainable software, which pleases the client and fosters his confidence in the 
development team. By consistently predicting bugs, removing bugs, and identifying defect 
modules, the software industry aims to improve the quality of its products. The requirement 
for high-quality and affordable software that can be maintained is growing as the need for 
automated online software systems rises daily. Predicting software defects is one of the 
major goals of the quality assurance process, which improves quality while reducing costs 
by reducing overall testing and maintenance activities. 

Artificial Neural Networks (ANN), one of the commonly utilized machine learning 
approaches, are used in the majority of suggested frameworks and models for defect 
prediction. Using Artificial Neural Networks (ANN) approach, Laverberg-Marquardt 
(LM) and Bayesian Regularization (BR) we can simply predict software defect. To use the 
MATLAB simulation tool, a framework is built and used to the NASA software dataset 
being considered for performance study. By considering the performance I can select which 
ANN method algorithm is more perfect in predicting software defect. This study will 
benefit the researchers and serve as a benchmark for future improvements, analyses, and 
evaluations. An experimental investigation demonstrates that the suggested approach can 
offer superior performance for predicting software defects. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background 

The world is becoming more digital than we anticipated because of the exponential increase 
in the use of computers over the past two decades, which has changed nearly everything 
around us. The development of software solutions to automate daily life tasks and 
procedures has risen significantly. Our lifestyles are now more easy that they were before 
thanks to these automated processes (Gao, K, 2011)The discipline of software development 
is expanding quickly both nationally and internationally as a result of technical 
advancements, and it is currently known as global software development (GSD), offshore 
software development, or development by outsourcing. A corporate-level method that has 
been used for the past 20 years and is becoming more established is software out sourcing 
. A GSD outsourcing approach called +e software outsourcing allows for the development 
of high-quality software at a cheaper cost. Despite its continued growth, the software 
development sector still faces considerable entrance obstacles due to a lack of a clearly 
defined model of operation (Iftikhar,2021)  

The requirement for high-quality, affordable software that can be managed is being driven 
by the increasing need for automated software systems. One of the key components of the 
quality assurance process, software defect prediction (SDP) lowers the overall testing and 
maintenance costs while improving quality. Early defect detection during the software 
development life cycle (SDLC) results in early adjustments and ultimately timely delivery 
of reliable software, delighting the customer and promoting his trust in the development 
team       (Khan, 2022). In the previous two decades, "the defect prediction approaches have 
accomplished the considerable adoption in the software industry." By identifying the 
software modules where problems are more likely to occur in advance, this action can 
enhance the quality of the software (Zhang, 2015). A well-known supervised learning 
method for dealing with prediction issues in a variety of areas of software engineering, 
such as estimation cost, effort and predict defect, is the Artificial Neural Network (ANN). 
(Laradji, 2015) A key element of artificial intelligence, artificial neural networks (ANNs), 
were first introduced in the early 1950s. It has acquired popularity in recent years as a result 
of its capacity to resolve a significant number of challenging real-world issues in the data 
mining and machine learning fields. Regression and classification challenges are two 
categories of issues that ANNs are most adept at solving (Ozyildirim,2013).Due to its 
flexible structure and ability to simulate any complicated non - linear behavior, ANNs are 
effective data-driven modeling tools that are frequently used for the numerical simulations 
and identification of nonlinear systems. Adaptive computing models called neural 
networks are made up of tightly coupled processing units called neurons. Figure-1 depicts 
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an ANN's basic architecture. There are three layers that make up the ANN structure: input 
layer, output layer, and hidden layer (s).  

 

Fig.1.1: Architecture of ANN (Bre, 2018) 

There is a connection between the nodes in the input layer and the hidden layer, and 
subsequently between the hidden layer nodes and the output layer nodes. The input layer 
is where the input data are sent into the neural network (Jayanthi, 2019). These parallel 
operating architectures' basic quality is their capacity for self-learning and knowledge 
discovery. The following characteristics of a neural network are intrinsic to it:  

 Simple design and flexibility  
 Knowledge discovery and the capacity for self-improvement (Arora, 2016). 

In the world of software, ANNs are a widely used and acknowledged technique for 
addressing a variety of issues, including software effort estimation, cost estimation, 
optimization issues, and software fault prediction (Ahmad,2017). Recent research has 
concentrated on the use of artificial neural networks (ANNs) for developing fault 
prediction models in SDP. These studies have demonstrated that ANNs perform superior 
to conventional SDP models. Another benefit of ANNs is that they satisfy the requirements 
of the SDP models in that they are created using software metrics and do not require 
specialized knowledge (Arora, 2016). The purpose of this study is to identify the learning 
algorithm that, among the two ANN training algorithm variations, Levenberg-Marquardt 
(LM) and Bayesian Regularization (BR), performed the best for software fault prediction. 
This paper is very necessary for our software industry in Bangladesh and world. In this 
study, I offer a critical examination of recent literature on artificial neural networks' usage 
in predicting software defects that was published between 2000 and 2022. 
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1.2 Problem around the World 

Nearly everything around us has changed as a result of the exponential growth in the usage 
of computers over the past two decades, and the world is becoming more digital than we 
originally anticipated. To automate the operations and procedures relevant to our daily 
lives, more software solutions are being developed today. Our lives are now more 
comfortable than they were before thanks to these automated processes. Software with poor 
quality can result in incorrect and unexpected outcomes (Khan, 2022). Today, it is getting 
harder to generate high-quality software products at lower costs due to the growing 
complexity of current software systems (Kim, 2011). In the previous two decades, "the 
defect prediction approaches have achieved the significant acceptance in the software 
industry." By identifying the software modules where problems are more likely to occur in 
advance, this action can enhance the quality of the software (Goyal, 2022). Due to the mass 
production of software programs, the quality of software is still an unresolved problem that 
results in subpar performance for both commercial and personal applications. Software 
testing, which assists in identifying and attempting to fix software program flaws or bugs, 
was thus developed to address this problem. A significant number of software applications 
are generated each year as a result of growing demand from modern technology-based 
industries and business applications, but software quality is still an unrecognized problem 
during this growth. Software applications have recently grown in importance for daily tasks 
and corporate purposes (Manjula, 2019). Software defect in the major problem in the 
software around the world. There are various factors that contribute to cross-prediction 
approaches' poor efficacy: First off, the characteristics of each software project as 
determined by software metrics vary. Due to the individual capacity of software creators, 
feature distributions can differ greatly. Machine learning techniques will have a lot of 
difficulties dealing with this mismatch since they presuppose that training and testing data 
should be in the same feature space and subject to similar data distribution. Second, each 
project's class imbalance may make predictions less accurate. The majority class of data 
will have an impact on the prediction outcome. The majority of software files used in actual 
software projects won't have any defects (Wu, R , 2011)As a result, the ratio of files with 
flaws to files without may influence the prediction result. Thirdly, the classifier may be 
misled by the project's outlier cases.. Real-world software projects will demonstrate all of 
these flaws. A good cross-project defect prediction approach should therefore consider all 
of these flaws (Cao ,2015)Because there are so many software applications, it is difficult 
for researchers to identify, locate, and discover software defects. In this area of software 
defect identification and prediction, defect density is another difficult task. The software 
industry cannot be provided Software on time because the cost is rising daily. Because of 
this, the software company experiences losses every day. Their business was almost to shut 
down at one time (Jayanthi, 2019). 
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1.3 Problem in Bangladesh  

In the current setting, the size and consequently the complexity of the software are growing 
at an exponential rate. This results in the bugs getting into the software, which causes 
functional issues       (Myers 2011). A software system or product must be built up through 
a series of predictable processes in order to produce timely, high-quality outcomes. A 
software process, to put it more properly, is a structure for the tasks needed to create high-
quality software (Pressman 2005). An error, flaw, bug, mistake, failure, or fault in a 
computer program or system that could produce an incorrect or unexpected result or 
prevent the software from performing as intended is known as a software defect. A project 
team strives to produce high-quality software that has few or no flaws. To improve software 
quality, high risk components within the project should be identified as soon as possible. 
Costs in terms of quality and time are always associated with software problems. 

In addition, one of the most time- and money-intensive software operations is finding and 
fixing errors. While it is not realistic to get rid of every flaw, it is possible to lessen the 
severity of flaws and their detrimental effects on project (Rawat, 2012). Bangladesh, which 
has a population of more than 135 million, is one of the biggest developing nations in the 
world. Bangladesh's software sector has advanced significantly in recent years. There are 
now more than three hundred (300) registered software companies working in Bangladesh, 
according to BASIS (the Bangladesh Association of Software and Information Services). 
These software companies face a lot of risk during this time when they start a project, build 
it and finally hand it over to their (Bernard ,2006)  

 

 

 

Figure. 1.2 Feedback about Project Failure (Rahman, 2022). 
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This survey's findings show that specific risk effect areas are frequently encountered by 
Bangladesh's IT industries. Such as-Tight schedules (60.7%) Budget changes 
(65.9%),Technical Difficulties(46.8%),Poor management(37%) (Rahman, 2022).  

One of the key components of the quality assurance process, software defect prediction 
lowers the overall testing and maintenance costs while improving quality. Early defect 
identification in the life cycle of software development (SDLC). One of the primary 
concerns of software developers today is the timely delivery of high-quality software. 
Delivering high-quality maintainable software at lower costs is becoming more 
challenging, nevertheless, as a result of the increasing complexity of software systems. By 
employing methods for software fault prediction, this problem can be resolved. One of the 
popular supervised machine learning techniques to anticipate faults at the beginning of the 
SDLC is the artificial neural network (ANN) (Khan, 2022).  
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1.4 Research Model 

 

 

 
 

Figure. 1.3: Research model 

 

  

1.5 Research Question 

In this thesis, I has a core research questions which are given below: 

RQ1. Does ANN help to Predict Defect of the software? 

 

 

1.6 Research Objective 

To answer the research questions, I has following objectives.  

RO1. To implement ANN to Predict Defect from the software. 
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1.7 Organization of the Chapter 

In Chapter 1, I have discussed software defect prediction process, global problem, 
Bangladesh problem, research model, research question, research objective. To discuss 
more about the thesis, the rest of the chapters are organized like: 

In Chapter 2, I will describe the literature review that reflected previous work on software 
defect prediction. In chapter 3, which is research methodology. In this section, I will 
discuss about artificial neural network and its algorithm, data collection, model 
implementation process, performance evaluation metrics. Following Chapter 3, I will 
describe Chapter 4 which is Results and Discussion. In this section I will discuss the 
experimental setup, analysis of results, discussion of results. Finally in Chapter 5, I will 
discuss the conclusion and recommendations. This sector have be the total summary of my 
work. Here I discussed what work I will do in the future for the betterment of the work. 
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CHAPTER 2 

LITERATURE REVIEW  

 

Software Defect Prediction Using Neural Networks. Researchers in (Jindal,2014)The 
Radial Basis Function Network (RBF network), an artificial neural network with a single 
layer topology, is the framework that is being given. As suggested by the name, this 
network's activation functions are radial functions. As a result, the network offers a linear 
model of radial functions that have been applied to the inputs. In this study, we extract data 
from the PITS (Project and Issue Tracking System) database that NASA engineers 
frequently use. The suggested program would initially use a number of text mining 
algorithms to retrieve the pertinent data from the PITS database. Following extraction, the 
tool will use machine learning techniques to forecast the defect severities. The software 
researchers and developers will be able to focus their testing efforts on the more 
problematic sections of the software with the aid of the forecast of defect severity. Area 
Under the Curve (AUC) and susceptibility from Receiver Operating Characteristics (ROC) 
analysis are indeed the performance metrics employed in the paper. The model has already 
successfully detected problems of very low impact, as evidenced by the model's AUC, 
which has a highest value of 0.83.According to this pattern, the model may be able to 
forecast problems with high levels of severity with greater accuracy than defects with lower 
severity levels 

Software Defect Prediction via Convolutional Neural Network. (Li, 2017)Is presented at 
Convolutional neural networks were used in a software defect prediction technique known 
as DP-CNN (Defect Prediction via Convolutional Neural Network), that preserved the 
semantic and factors – of the source code by generating discriminant information from the 
programs' Abstract Syntax Trees (ASTs). To benefit from both nonlinear features and 
hand-crafted elements, the CNN learnt components are combined with conventional defect 
prediction features. Hence, test all five models, including our suggested DP, on the seven 
projects. –CNN. Presented DP-CNN, a system for precise software defect prediction that 
automatically produces semantically and structural characteristics from source code and 
combines conventional features. Traditional, DBN, DBN+, CNN, and DP-CNN are the 
models with the maximum accuracy, going from lowest to most accurate. Most precisely, 
DPCNN enhances CNN by 2%, DBN by 12%, and Traditional by 16%, correspondingly. 
While it is advantageous to combine conventional features, DP-CNN is the most efficient. 

Software Defect Prediction via Transfer Learning-Based Neural Network. This researchers 
(Cao, 2015) suggested the Transfer Component Analysis Neural Network as a useful 
software defect prediction technique (TCANN). TCANN is divided into three sections, 
each of which aims to address each of the three issues described above. Firstly, a strategy 
based on the Inter Quartile Range (IQR) is suggested for removing noise from datasets. 
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Secondly, the feature distribution disparities between both the target and the source data 
are minimized using the transfer component analysis method. Thirdly, a dynamic sampling 
neural network is suggested as a solution to the issue of minority class in the training 
dataset. Precision, Recall, F-measure, and AUC are used to evaluate the performance of 
the suggested technique. Within-project and cross-project performance assessment are two 
types of defect prediction that are carried out. The goal of a dynamic sampling neural 
network is to build a system for training ANNs dynamically. First off, this technique does 
not destroy any samples in the event of information loss. On a project-specific dataset, we 
do tests to assess the effectiveness of the recommended strategy. In order to create training 
samples, we randomly select 70% of each dataset. And test specimens will be drawn from 
the remaining 30% of the data. A typical ratio for training and testing datasets is this 
experimental configuration. Each project in the dataset would be evaluated separately for 
the experiment, and the test outcomes will be compared to the real value in accordance. 
The suggested method demonstrated great result for software fault prediction in both intra- 
and inter-project scenarios. 

Improved Approach for Software Defect Prediction using Artificial Neural Networks. 
(Sethi, 2016) In this study, the outcomes of a basic fuzzy inference system technique are 
contrasted with those of a neural network-based method for predicting software defects. 
The suggested method, it is discovered that now the neural network-based training process 
offers superior and efficient outcomes on a variety of parameters. SDP is a method for 
anticipating the flaws that give a software module dependability. Several organizations, 
including Blackberry, IBM, and Google, use SDP. A simplified dataset of base research is 
taught as the dataset for a feed-forward, back-propagation network that use the MATLAB 
ANN tool. Comparing the suggested method to the conventional strategy, superior 
outcomes are being achieved. 

Prediction approach of software fault-proneness based on hybrid artificial neural network 
and quantum particle swarm optimization (Jin, 2015). The use of hybrid artificial neural 
networks (ANN) and quantum particle swarm optimization (QPSO) in software fault-
proneness prediction is presented in this study. Software applications are categorized into 
fault-prone or non-fault-prone categories using ANN, and dimensionality is reduced using 
QPSO. The suggested method has brought attention to the relationship between software 
metrics and defective software modules. NASA software applications are utilized to 
provide the data sets used to test the performance of the suggested method. The 
performance in terms of AUC, number of chosen software indexes, and Mean Calculation 
Time. We compare the accuracy of the predictions by listing their AUC values. The 
maximum AUC scores of the new ANNs built on PSO (i.e., PSO + ANN) and QPSO (i.e., 
QPSO + ANN) over 30 independent runs on four datasets, correspondingly, are shown at 
the similar time. 
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Software defect prediction techniques using metrics based on neural network classifier. 
This paper (Jayanthi, 2019) ANN and the feature reduction technique were combined in a 
suggested method to software defect prediction. It provides a hybrid feature minimization 
and artificial neural network technique for predicting software defects. The upgraded PCA 
approach for feature reduction and its mathematical modeling are covered in the initial part 
of the paper, while the combined execution of the neural network and the suggested PCA 
method is covered in the second part. The proposed method is examined using the 
MATLAB tool and NASA software data sets. When compared to earlier investigations, the 
proposed approaches increase defect predictive performance while requiring fewer 
attributes. It employed attribute selection to demonstrate that classifiers still provided 
equivalent or even higher reliability than the total number of attributes used, even when 
the number of attributes was reduced by almost 80%. KC1, JM1, PC3, and PC4 are the 
four separate datasets used for performance monitoring. 2096 instances, 325 defects, or 
15.5% of the dataset (KC1) have a flaw, and we used the suggested hybrid model for 
software defect. The prediction and outcome demonstrate that the suggested strategy 
provides 86.91% performance for the KC1 dataset, 83.03% performance for the JM1 
dataset, 89% accuracy for PC3 and 93.64% performance for PC4. 

A novel approach for software defect prediction through hybridizing gradual relational 
association rules with artificial neural networks. (Miholca, 2018) In this paper, they created 
a brand-new supervised classification technique called HyGRAR for such prediction of 
software defects. A non-linear hybrid approach called HyGRAR uses artificial neural 
networks and progressive relational mining of association rules to distinguish among 
software entities with defects and those without defects. Ten open-source data sets showed 
off the HYGRAR classifier's outstanding performance. To compare HyGRAR approach 
between AUC. The p-value was below = 0.1 in 92% of the cases (10 out of 11 analogies 
for the Ar data sets and 13 out of 14 analogies again for JEdit, Ant, and Tomcat data sets), 
indicating that HyGRAR performed on generally higher than other methods on average (in 
terms of AUC) at a significance level of 0.1. 

Deep Neural Network-Based Hybrid Approach for Software Defect Prediction. (Manjula, 
2019) In this research, a hybrid strategy that combined GA and DNN was proposed. After 
being enhanced by applying an adaptable auto-encoder, that offered a greater 
representation n of a few software characteristics, DNN too was added. They employ the 
MATLAB tool and NASA software data sets. The suggested methodology outperformed 
other state-of-the-art procedures when their performances were compared, according to the 
correlative analysis of the data. 

 

 

 



11                                                                                                                                       ©Daffodil International University 

 

CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Artificial Neural Network  

Artificial neural networks (ANNs) are computer models that draw inspiration from 
biological networks, particularly the brain's neural network. It attempts to mimic 
neurological processes carried out by the human brain, such as speech recognition, pattern 
recognition, and facial recognition, to name just a few (Jafarzadeh-Ghoushchi, 2015). 
Artificial Neural Network (ANN), one of the commonly used machine learning methods. 
As it continues to iterate using both forward and backward propagation, the network picks 
up lessons from previous examples. This procedure is carried out until the result satisfies 
the desired accuracy and conformance to the response given. Each example includes a set 
of inputs and related outputs, often known as responses, and the network modifies itself 
using internal connections called weights Awolusi(Awolusi, 2019).  

Artificial Neural Network (ANN) is a widely accepted supervised learning approach to 
deal with the prediction problems in multiple domains of software engineering such as 
effort estimation, cost estimation, and defect prediction (Khan, 2022). ANN trained 
algorithms Laverberg-Marquardt (LM) and Bayesian Regularization (BR) are used to 
predict software defect. In this paper I am apply this two algorithm to predict software 
defect.  Description of those algorithm is below- 

3.1.1 Levenberg-Marqaurdt (LM) Algorithm: The Levenberg-Marquardt 
algorithm (LMA), a well-liked trust region approach, is employed to determine the 
lowest value of a function (either linear or nonlinear) above a set of parameters. In 
essence, an internal function, like a quadratic function, is used to model a 
trustworthy area of the objective function. For the majority of nonlinear least square 
issues, LM is employed as a solution. It was developed as a bridge here between 
technique of gradient descent and the Gauss Newton technique. (Moré, 1998). 
When training NN, the Newton technique approximates the inaccuracy in the initial 
order statement whereas the LM approximates the second order statement. We train 
this LM algorithm in MATLAB tools.  
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Figure 3.1 LM and BR Model (Nguyen-Truong, 2015) 

 

 

3.1.2 Bayesian Regularization (BR) Algorithm: Through the mathematical 
method of "bayesian regularization," a nonlinear regression can be transformed into 
such a statistical issue that's also "well-posed," much like a ridge regression. 
(MacKay , 1998) Training Bayesian NN is so much more reliable. The optimization 
of a network design, the effort put into validating an idea, selecting a validating set, 
and determining a model's robustness are all addressed by BR. Because it is 
challenging to overtrain and overfit, BR learning algorithms are superior to other 
training functions 

 

 

 

 

 

 

 

 

 

 



13                                                                                                                                       ©Daffodil International University 

 

3.2 Data Collection 

In this study we use two data sets to predict software defect using artificial neural networks. 
one data sets from the PROMISE repository were used for the study: KC2. These software 
datasets include a few broad attributes, that are shown in Table 3.1 along with the attribute's 
name and more specific information. A sample data set is display in Table 3.2. Description 
of the defect data sets' characteristics is there. 

 

Table 3.1: PROMISE software defect prediction attribute details 

NO Attribute name  Description of attribute 

           1            LOC                                           Counts total number of line in the module 

           2            Iv(g)                                          Design complexity analysis (McCabe) 

           3            Ev(g)                                         McCabe essential complexity 

           4            N                                               Number of operators present in the software module 

           5            v(g)                                            Cyclomatic complexity measurement (McCabe) 

           6            D                                                Measurement difficulty 

           7            B                                                Estimation of effort 

           8            L                                                 Programme length 

           9            V                                                Volume 

           10          I                                                 Intelligence in measurement 

           11          E                                                Measurement effort 

           12          LoComment                            Line of comments in software module 

           13          LoBlank                                    Total number of blank lines in the module 

           14          uniq_Op                                   Total number of unique operators 

           15          uniq_Opnd                              Total number of unique operand 

           16          T                                                Time estimator 

           17          BranchCount                           Total number of branch in the software module 

           18          total_Op                                   Total number of operators 

           19          total_Opnd                              Total number of operators 

           20          LocodeandComment             Total number of line of code and comments 

           21          Defects                                     Information regarding defect whether defect is  
                                                                            present or not 
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Based on this feature we fix the data set. The majority of recent studies use software metrics 
to pinpoint fault-prone modules, and their findings indicate that these measures are quite 
helpful for predicting Defect-proneness classes. Lines of code, cyclomatic complexity, 
essential complexity, design complexity, are some of the measures used. Length, volume, 
program length, difficulty, intelligence, effort, effort estimate, programming time, lines of 
code, lines of comment, lines of blank, lines of comment and code, unique operators, 
unique operands, total operators, and total operands are some of the Halstead metrics.  

 

Table 3.2: Sample data set (KC2) 
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3.3 Model Implementation Process 

Following this proposed model we predict software defect. In MATLAB, an artificial 
neural network is trained using the Levenberg-Marquardt (LM) and Bayesian 
Regularization (BR) methods. Neurons made up hidden layer in the network architecture. 
Data sets from the PROMISE library were used to compare the built models to predict 
software defect. Mean squared error (MSE) and Neuros regression (R) values, processing 
time, performance, and gradient have all been computed after implementing the LM and 
BR neural network training methods. 

 

 

 

Fig 3.2: Research model 
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3.4 Performance Evaluation Measures 

Defect prediction models created with levenberg-marquardt and Bayesian-regularization 
training techniques are experimentally evaluated by employing the following performance 
measures for the datasets included. 

 

Error based measures: class of ANN functions are error based optimization 
functions. MSE is used to compare the results. 

R value: The regression analysis can be used to assess a modeling technique's 
robustness. To determine how much the method fits the data, the R2 value of the 
test data is calculated R2 > 0.9 is typically considered to be a good fit. 

Accuracy: The number of modules that are successfully predicted is how accurate 
a system is. We compare the accuracy of two algorithms LM and RM to see which 
algorithm is more accurate for predicting software defects. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In the MATLAB tool 2019a, the research was carried out. LM and BR training methods' 
are implemented in MATLAB. The number of neurons in the input layer is equal to the 
number of characteristics in the data set, and there is only one neuron in the bottom layer.  

 

Fig 4.1: Neural network training 

4.1 Experimental Setup 

Using the LM and BR training of neural networks algorithms we are computed mean 
squared error (MSE), regression R values, epoch, processing, gradient and performance. 
Additionally provided are performance plots, training state plots, error histograms, and 
regression plots. The degree of difference between both the actual and predicted values of 
the dependent variable is determined by the mean squared error (MSE). The quality of fit 
increases with decreasing MSE value and vice versa. The degree to which the fitted model 
can account for changes in the dependent variable as a result of changes in the independent 
variable is indicated by the coefficient of correlation (R). 21 input layer, 10 hidden layer, 
and 1 output layer are trained in neural networks based on LM and BR models. 

Table 4.1: Comparison of LM and BR progress 

 Levenberg–Marquardt Bayesian Regularization 
Epoch 16 iteration 208 iteration 

Processing 0: 00 : 00 0: 00 : 01 
Performance 3.62e-05 8.71e-16 

Gradient 0.00301 9.34e-8 
MU 0.000100 0.500 

MSE (validation) 3.31888e-0 0.00000e-0 
R (validation) 9.66828e-1 0.00000e-0 
MSE (testing) 5.90684e-2 1.83978 e-3 

R (testing) 9.64029e-1 9.98062e-1 
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Figure 4.2: LM performance plot 

 

 

Figure 4.3: LM error histogram 
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Figure 4.4: LM regression plot 

 

 

Figure 4.2 displays performance plots that use the Levenberg-Marquardt method, which 
plots the mean squared error against 5 epoch values. The graph first exhibits a decreasing 
behavior between 0 and 10, so it follows a horizontal line trend for all values > 10. 

Figure 4.3 displays an error histogram showing the distribution of errors during training, 
validation, and testing. 

Figure 4.4 to help the analyst understand and improve the regression mode, the application 
automatically generates and presents the residuals when you perform the regression. 
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Figure 4.5: BR performance plot 

 

 

Figure 4.6: BR error histogram 
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Figure 4.7: BR regression plot 

 

 

Figure 4.5 shows the performance plot of the Bayesian technique that plots the mean 
squared error against the value of 208 epochs. The graphic displays the increasing behavior 
linearly from 0 to 200. It roughly follows a horizontal line pattern, with all values >200. 

The error histogram in figure 4.6 illustrates how the training, validation, and testing errors 
of the Bayesian Regularization method are roughly symmetrically distributed. 

The regression figure 4.7 contrasts the quality of the fit measure R for training, validation, 
and testing with targets on the horizontal plane and various functional structures along the 
vertical axis over the 4 specifications. R measure values in test and validation scenarios 
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4.2 Result Analysis 

Based on BR and LM algorithm performance in MATLAB. The results obtained for MSC 
and R are shown in Table 4.2. 

 

Table 4.2: MSG and R value 

LM  BR 

MSE R  MSE R 

1.58555e-2 9.69644e-1  2.75967e-4 9.99496e-1 

 

 

Table 4.3: R Square value of test set 

Algorithm R square value 

LM 0.99603 

BR 1 

 

 

Table 4.4: Accuracy 

Algorithm Accuracy 

LM 83.33% 

BR 91.18% 
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4.3 Result Discussion  

From the implementation, Table 4.2 clearly shows the MSC value of BR algorithm is 
2.75967e-4  and  the MSC value of BR algorithm is 1.58555e-2. As MSC value of BR is 
less then MSC value of LR, so we say that the Bayesian regularization (BR) algorithm is 
the winner. 

But the R2 values are completely the opposite. The higher the R^2 result, the more the fit. 
In Table 4.3, The R^2 value in LM performance is 99 percent and The R^2 value in BR 
performance is 100 percent. The value of R^2 is almost similar between LM and BR. 
Usually, R2 > 0.9 is usually treated as a good fit (Arora, 2016) This criterion showed that 
LM and BR were both reliable prediction approaches in defect datasets. 

From the implementation, I got the best accuracy which was 91.18% in table 4.4. The 
Bayesian-based training function outperformed the LM methods on the accuracy 
parameters, performing over 90% of them on the dataset, as shown in table 4.4. This is 
similar to how they outperformed on the error scale. 

In the area of software defect prediction, the Bayesian regularization-based Artificial 
Neural Networks (ANN) training algorithm surpasses the Levenberg-Marquardt-based 
approaches.so I can say that in term of two artificial neural network training algorithm LM 
and BR, the  BR algorithm preforms best to predict software defect but the another 
algorithm LM is not bad. There is not much different between the performance of LM and 
the performance of BR.  

So I can say that Using Artificial Neural Networks (ANN) model we can simply predict 
software defect. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATION 

 

5.1 Conclusion 

Because modern life is becoming more and more digital, there is an exponential rise in the 
demand for software systems, which now has led to a demand for higher-quality, more 
affordable software. Today, software developers are thought to be most concerned with 
timely delivery of high-quality software. Increasing complexity of software systems, it is 
not possible to deliver a high-quality maintainable software at a low cost in a timely 
manner. This problem can be resolved by employing methods for predicting software 
defects. ANN is the best approach to predicting software defect at the early stage of SDLC.  

This problem is solved in this paper using Artificial Neural Networks (ANN) approach. 
Laverberg-Marquardt (LM) and Bayesian Regularization (BR), two common ANN-based 
training techniques, are empirically compared in this paper's performance evaluation for 
the purpose of predicting software defects. Using the command-line interface of 
MATLAB, an artificial neural network was created. Data sets from the promise repository 
are used to run the tests. The Ann models compared depending on confusion matrix, MSE, 
RMSE, R2 values. A comprehensive comparison revealed that BR performed better than 
LM, as measured by MSE, R2 value and accuracy. To get us better results in predicting 
software defects. We can use Laverberg-Marquardt (LM) which is an ANN-based training 
algorithm. To predict software defect Artificial Neural Networks (ANN) is a best approach. 

The Artificial Neural Networks (ANN) training methods fall under the category of 
optimization algorithms where it is essential to optimize the weights in order to obtain the 
optimal performances. Additionally, studies have demonstrated the use of nature-inspired 
search-based optimization algorithms in the realm of software engineering 
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5.2 Recommendations for Future Works 

 It has been determined that ANN offers significant potential for software defect prediction, 
particularly when applied in a hybrid fashion following integration with other methods like 
future selection or other preprocessing methods. Additionally, it has been observed that the 
majority of studies have focused on preprocessing techniques to enhance the functionality 
of ANN classifiers. 

The prediction of software defects may be further studied by concentrating on machine 
learning methods apart from ANNs. Additionally, specific data sets can be examined while 
keeping in mind the reported accuracy of recently presented methodologies. The issue of 
predicting software defects can also be studied using contemporary feature selection and 
ensemble techniques. In future Using Convolutional Neural Network (CNN) for software 
Defect Prediction. It makes use of deep learning to generate features efficiently 
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