
© All right Reserved by Daffodil International University

SOFTWARE DEFECT PREDICTION USING ARTIFICIAL NEURAL
NETWORK

Supervised By

Dr. Imran Mahmud
Associate Professor and Head

Department Of Software Engineering
Daffodil International University

Submitted By

Ahasanul Haque
Id: 191-35-2704

Department Of Software Engineering
Daffodil International University

This Report Presented in Partial Fulfillment of the Requirements for the Degree of
 Bachelor of Science in Software Engineering

i ©Daffodil International University

ii ©Daffodil International University

iii ©Daffodil International University

ACKNOWLEDGEMENT

First and foremost, I offer my heartfelt appreciation and gratitude to Almighty God for His

divine gift, which has enabled us to successfully finish the final year proposal.

I really grateful and wish our profound our indebtedness to Dr. Imran Mahmud, Associate

Professor and Head, Department of Software Engineering, Daffodil International

University, Dhaka. Deep Knowledge & keen interest of my supervisor in the field of

“Artificial Neural Networks” to carry out this project. His endless patience, scholarly

guidance, continual encouragement, constant and energetic supervision, constructive

criticism, valuable advice, reading many inferior drafts, and correcting them at all stages

have made it possible to complete this project.

I would like to express my heartiest gratitude to other faculty members and the staff of the

SWE department of Daffodil International University.

Finally, I must respectfully thank our parents for their unwavering love and patience.

iv ©Daffodil International University

 ABSTRACT

Defect severity assessment is the most crucial step in major companies and organizations
where the complexity of the software is growing at an exponential rate. One of most active
research areas in software engineering is software defect prediction (SDP). SDP is a
technique for envisioning software defects. Early defect discovery during the software
development life cycle (SDLC) results in early repairs and ultimately on-time delivery of
maintainable software, which pleases the client and fosters his confidence in the
development team. By consistently predicting bugs, removing bugs, and identifying defect
modules, the software industry aims to improve the quality of its products. The requirement
for high-quality and affordable software that can be maintained is growing as the need for
automated online software systems rises daily. Predicting software defects is one of the
major goals of the quality assurance process, which improves quality while reducing costs
by reducing overall testing and maintenance activities.

Artificial Neural Networks (ANN), one of the commonly utilized machine learning
approaches, are used in the majority of suggested frameworks and models for defect
prediction. Using Artificial Neural Networks (ANN) approach, Laverberg-Marquardt
(LM) and Bayesian Regularization (BR) we can simply predict software defect. To use the
MATLAB simulation tool, a framework is built and used to the NASA software dataset
being considered for performance study. By considering the performance I can select which
ANN method algorithm is more perfect in predicting software defect. This study will
benefit the researchers and serve as a benchmark for future improvements, analyses, and
evaluations. An experimental investigation demonstrates that the suggested approach can
offer superior performance for predicting software defects.

v ©Daffodil International University

TABLE OF CONTENTS

CONTENTS PAGE

Approval i

Declaration ii

Acknowledgment iii

Abstract iv

List of Figure vii

List of Table viii

Abbreviation ix

CHAPTER 1: INTRODUCTION………………………………………………. 1-7

1.1 Background 1-2

1.2 Problem around the World 3

1.3 Problem In Bangladesh 4-5

1.4 Research Model 6

1.5 Research Question 6

1.6 Research Objective 6

1.7 Organization of the Chapter 7

CHAPTER 2: LITERATURE REVIEW………………………………………. 8-10

CHAPTER 3: RESEARCH METHODOLOGY………………………………. 11-16

3.1 Artificial Neural Network 11-12

 3.1.1 Levenberg-Marqaurdt (LM) Algorithm 11

 3.1.2 Bayesian Regularization (BR) Algorithm 12

vi ©Daffodil International University

3.2 Data Collection 13-14

3.3 Model Implementation process 15

3.4 Performance Evaluation Measure 16

CHAPTER 4: RESULTS AND DISCUSSION………………………………… 17-23

4.1 Experimental Setup 17-21

4.2 Result Analysis 22

4.3 Result Discussion 23

CHAPTER 5: CONCLUSIONS AND RECOMMENDATION……………… 24-25

5.1 Conclusion 24

5.2 Recommendation for Future Work 25

REFERENCES………………………………………………………………….. 26-28

vii ©Daffodil International University

LIST OF FIGURES

FIGURES PAGE

Figure 1.1 Architecture of ANN 2

Figure 1.2 Feedback about Project Failure 4

Figure 1.3 Research Model 6

Figure 3.1 LM and BR Model 12

Figure 3.2 Research Model 15

Figure 4.1 Neural Network Training 17

Figure 4.2 LM Performance Plot 18

Figure 4.3 LM Error Histogram 18

Figure 4.4: LM Regression Plot 19

Figure 4.5: BR Performance Plot 20

Figure 4.6: BR Error Histogram 20

Figure 4.7: BR Regression Plot 21

viii ©Daffodil International University

LIST OF TABLES

TABLE PAGE

Table 3.1: PROMISE Software Defect Prediction Attribute Details 13

Table 3.2: Sample Data Set (KC2) 14

Table 4.1: Comparison Of LM and BR progress 17

Table 4.2: MSG and R Value 22

Table 4.3: R Square Value of Test Set 22

Table 4.4: Accuracy 22

ix ©Daffodil International University

ABBREVIATION

SDP = software defect prediction

ANN = Artificial Neural Networks

SDLC = software development life cycle

GSD = global software development

LM = Laverberg-Marquardt

BR = Bayesian Regularization

MSE = mean squared error

1 ©Daffodil International University

CHAPTER 1

INTRODUCTION

1.1 Background

The world is becoming more digital than we anticipated because of the exponential increase
in the use of computers over the past two decades, which has changed nearly everything
around us. The development of software solutions to automate daily life tasks and
procedures has risen significantly. Our lifestyles are now more easy that they were before
thanks to these automated processes (Gao, K, 2011)The discipline of software development
is expanding quickly both nationally and internationally as a result of technical
advancements, and it is currently known as global software development (GSD), offshore
software development, or development by outsourcing. A corporate-level method that has
been used for the past 20 years and is becoming more established is software out sourcing
. A GSD outsourcing approach called +e software outsourcing allows for the development
of high-quality software at a cheaper cost. Despite its continued growth, the software
development sector still faces considerable entrance obstacles due to a lack of a clearly
defined model of operation (Iftikhar,2021)

The requirement for high-quality, affordable software that can be managed is being driven
by the increasing need for automated software systems. One of the key components of the
quality assurance process, software defect prediction (SDP) lowers the overall testing and
maintenance costs while improving quality. Early defect detection during the software
development life cycle (SDLC) results in early adjustments and ultimately timely delivery
of reliable software, delighting the customer and promoting his trust in the development
team (Khan, 2022). In the previous two decades, "the defect prediction approaches have
accomplished the considerable adoption in the software industry." By identifying the
software modules where problems are more likely to occur in advance, this action can
enhance the quality of the software (Zhang, 2015). A well-known supervised learning
method for dealing with prediction issues in a variety of areas of software engineering,
such as estimation cost, effort and predict defect, is the Artificial Neural Network (ANN).
(Laradji, 2015) A key element of artificial intelligence, artificial neural networks (ANNs),
were first introduced in the early 1950s. It has acquired popularity in recent years as a result
of its capacity to resolve a significant number of challenging real-world issues in the data
mining and machine learning fields. Regression and classification challenges are two
categories of issues that ANNs are most adept at solving (Ozyildirim,2013).Due to its
flexible structure and ability to simulate any complicated non - linear behavior, ANNs are
effective data-driven modeling tools that are frequently used for the numerical simulations
and identification of nonlinear systems. Adaptive computing models called neural
networks are made up of tightly coupled processing units called neurons. Figure-1 depicts

2 ©Daffodil International University

an ANN's basic architecture. There are three layers that make up the ANN structure: input
layer, output layer, and hidden layer (s).

Fig.1.1: Architecture of ANN (Bre, 2018)

There is a connection between the nodes in the input layer and the hidden layer, and
subsequently between the hidden layer nodes and the output layer nodes. The input layer
is where the input data are sent into the neural network (Jayanthi, 2019). These parallel
operating architectures' basic quality is their capacity for self-learning and knowledge
discovery. The following characteristics of a neural network are intrinsic to it:

 Simple design and flexibility
 Knowledge discovery and the capacity for self-improvement (Arora, 2016).

In the world of software, ANNs are a widely used and acknowledged technique for
addressing a variety of issues, including software effort estimation, cost estimation,
optimization issues, and software fault prediction (Ahmad,2017). Recent research has
concentrated on the use of artificial neural networks (ANNs) for developing fault
prediction models in SDP. These studies have demonstrated that ANNs perform superior
to conventional SDP models. Another benefit of ANNs is that they satisfy the requirements
of the SDP models in that they are created using software metrics and do not require
specialized knowledge (Arora, 2016). The purpose of this study is to identify the learning
algorithm that, among the two ANN training algorithm variations, Levenberg-Marquardt
(LM) and Bayesian Regularization (BR), performed the best for software fault prediction.
This paper is very necessary for our software industry in Bangladesh and world. In this
study, I offer a critical examination of recent literature on artificial neural networks' usage
in predicting software defects that was published between 2000 and 2022.

3 ©Daffodil International University

1.2 Problem around the World

Nearly everything around us has changed as a result of the exponential growth in the usage
of computers over the past two decades, and the world is becoming more digital than we
originally anticipated. To automate the operations and procedures relevant to our daily
lives, more software solutions are being developed today. Our lives are now more
comfortable than they were before thanks to these automated processes. Software with poor
quality can result in incorrect and unexpected outcomes (Khan, 2022). Today, it is getting
harder to generate high-quality software products at lower costs due to the growing
complexity of current software systems (Kim, 2011). In the previous two decades, "the
defect prediction approaches have achieved the significant acceptance in the software
industry." By identifying the software modules where problems are more likely to occur in
advance, this action can enhance the quality of the software (Goyal, 2022). Due to the mass
production of software programs, the quality of software is still an unresolved problem that
results in subpar performance for both commercial and personal applications. Software
testing, which assists in identifying and attempting to fix software program flaws or bugs,
was thus developed to address this problem. A significant number of software applications
are generated each year as a result of growing demand from modern technology-based
industries and business applications, but software quality is still an unrecognized problem
during this growth. Software applications have recently grown in importance for daily tasks
and corporate purposes (Manjula, 2019). Software defect in the major problem in the
software around the world. There are various factors that contribute to cross-prediction
approaches' poor efficacy: First off, the characteristics of each software project as
determined by software metrics vary. Due to the individual capacity of software creators,
feature distributions can differ greatly. Machine learning techniques will have a lot of
difficulties dealing with this mismatch since they presuppose that training and testing data
should be in the same feature space and subject to similar data distribution. Second, each
project's class imbalance may make predictions less accurate. The majority class of data
will have an impact on the prediction outcome. The majority of software files used in actual
software projects won't have any defects (Wu, R , 2011)As a result, the ratio of files with
flaws to files without may influence the prediction result. Thirdly, the classifier may be
misled by the project's outlier cases.. Real-world software projects will demonstrate all of
these flaws. A good cross-project defect prediction approach should therefore consider all
of these flaws (Cao ,2015)Because there are so many software applications, it is difficult
for researchers to identify, locate, and discover software defects. In this area of software
defect identification and prediction, defect density is another difficult task. The software
industry cannot be provided Software on time because the cost is rising daily. Because of
this, the software company experiences losses every day. Their business was almost to shut
down at one time (Jayanthi, 2019).

4 ©Daffodil International University

1.3 Problem in Bangladesh

In the current setting, the size and consequently the complexity of the software are growing
at an exponential rate. This results in the bugs getting into the software, which causes
functional issues (Myers 2011). A software system or product must be built up through
a series of predictable processes in order to produce timely, high-quality outcomes. A
software process, to put it more properly, is a structure for the tasks needed to create high-
quality software (Pressman 2005). An error, flaw, bug, mistake, failure, or fault in a
computer program or system that could produce an incorrect or unexpected result or
prevent the software from performing as intended is known as a software defect. A project
team strives to produce high-quality software that has few or no flaws. To improve software
quality, high risk components within the project should be identified as soon as possible.
Costs in terms of quality and time are always associated with software problems.

In addition, one of the most time- and money-intensive software operations is finding and
fixing errors. While it is not realistic to get rid of every flaw, it is possible to lessen the
severity of flaws and their detrimental effects on project (Rawat, 2012). Bangladesh, which
has a population of more than 135 million, is one of the biggest developing nations in the
world. Bangladesh's software sector has advanced significantly in recent years. There are
now more than three hundred (300) registered software companies working in Bangladesh,
according to BASIS (the Bangladesh Association of Software and Information Services).
These software companies face a lot of risk during this time when they start a project, build
it and finally hand it over to their (Bernard ,2006)

Figure. 1.2 Feedback about Project Failure (Rahman, 2022).

5 ©Daffodil International University

This survey's findings show that specific risk effect areas are frequently encountered by
Bangladesh's IT industries. Such as-Tight schedules (60.7%) Budget changes
(65.9%),Technical Difficulties(46.8%),Poor management(37%) (Rahman, 2022).

One of the key components of the quality assurance process, software defect prediction
lowers the overall testing and maintenance costs while improving quality. Early defect
identification in the life cycle of software development (SDLC). One of the primary
concerns of software developers today is the timely delivery of high-quality software.
Delivering high-quality maintainable software at lower costs is becoming more
challenging, nevertheless, as a result of the increasing complexity of software systems. By
employing methods for software fault prediction, this problem can be resolved. One of the
popular supervised machine learning techniques to anticipate faults at the beginning of the
SDLC is the artificial neural network (ANN) (Khan, 2022).

6 ©Daffodil International University

1.4 Research Model

Figure. 1.3: Research model

1.5 Research Question

In this thesis, I has a core research questions which are given below:

RQ1. Does ANN help to Predict Defect of the software?

1.6 Research Objective

To answer the research questions, I has following objectives.

RO1. To implement ANN to Predict Defect from the software.

7 ©Daffodil International University

1.7 Organization of the Chapter

In Chapter 1, I have discussed software defect prediction process, global problem,
Bangladesh problem, research model, research question, research objective. To discuss
more about the thesis, the rest of the chapters are organized like:

In Chapter 2, I will describe the literature review that reflected previous work on software
defect prediction. In chapter 3, which is research methodology. In this section, I will
discuss about artificial neural network and its algorithm, data collection, model
implementation process, performance evaluation metrics. Following Chapter 3, I will
describe Chapter 4 which is Results and Discussion. In this section I will discuss the
experimental setup, analysis of results, discussion of results. Finally in Chapter 5, I will
discuss the conclusion and recommendations. This sector have be the total summary of my
work. Here I discussed what work I will do in the future for the betterment of the work.

8 ©Daffodil International University

CHAPTER 2

LITERATURE REVIEW

Software Defect Prediction Using Neural Networks. Researchers in (Jindal,2014)The
Radial Basis Function Network (RBF network), an artificial neural network with a single
layer topology, is the framework that is being given. As suggested by the name, this
network's activation functions are radial functions. As a result, the network offers a linear
model of radial functions that have been applied to the inputs. In this study, we extract data
from the PITS (Project and Issue Tracking System) database that NASA engineers
frequently use. The suggested program would initially use a number of text mining
algorithms to retrieve the pertinent data from the PITS database. Following extraction, the
tool will use machine learning techniques to forecast the defect severities. The software
researchers and developers will be able to focus their testing efforts on the more
problematic sections of the software with the aid of the forecast of defect severity. Area
Under the Curve (AUC) and susceptibility from Receiver Operating Characteristics (ROC)
analysis are indeed the performance metrics employed in the paper. The model has already
successfully detected problems of very low impact, as evidenced by the model's AUC,
which has a highest value of 0.83.According to this pattern, the model may be able to
forecast problems with high levels of severity with greater accuracy than defects with lower
severity levels

Software Defect Prediction via Convolutional Neural Network. (Li, 2017)Is presented at
Convolutional neural networks were used in a software defect prediction technique known
as DP-CNN (Defect Prediction via Convolutional Neural Network), that preserved the
semantic and factors – of the source code by generating discriminant information from the
programs' Abstract Syntax Trees (ASTs). To benefit from both nonlinear features and
hand-crafted elements, the CNN learnt components are combined with conventional defect
prediction features. Hence, test all five models, including our suggested DP, on the seven
projects. –CNN. Presented DP-CNN, a system for precise software defect prediction that
automatically produces semantically and structural characteristics from source code and
combines conventional features. Traditional, DBN, DBN+, CNN, and DP-CNN are the
models with the maximum accuracy, going from lowest to most accurate. Most precisely,
DPCNN enhances CNN by 2%, DBN by 12%, and Traditional by 16%, correspondingly.
While it is advantageous to combine conventional features, DP-CNN is the most efficient.

Software Defect Prediction via Transfer Learning-Based Neural Network. This researchers
(Cao, 2015) suggested the Transfer Component Analysis Neural Network as a useful
software defect prediction technique (TCANN). TCANN is divided into three sections,
each of which aims to address each of the three issues described above. Firstly, a strategy
based on the Inter Quartile Range (IQR) is suggested for removing noise from datasets.

9 ©Daffodil International University

Secondly, the feature distribution disparities between both the target and the source data
are minimized using the transfer component analysis method. Thirdly, a dynamic sampling
neural network is suggested as a solution to the issue of minority class in the training
dataset. Precision, Recall, F-measure, and AUC are used to evaluate the performance of
the suggested technique. Within-project and cross-project performance assessment are two
types of defect prediction that are carried out. The goal of a dynamic sampling neural
network is to build a system for training ANNs dynamically. First off, this technique does
not destroy any samples in the event of information loss. On a project-specific dataset, we
do tests to assess the effectiveness of the recommended strategy. In order to create training
samples, we randomly select 70% of each dataset. And test specimens will be drawn from
the remaining 30% of the data. A typical ratio for training and testing datasets is this
experimental configuration. Each project in the dataset would be evaluated separately for
the experiment, and the test outcomes will be compared to the real value in accordance.
The suggested method demonstrated great result for software fault prediction in both intra-
and inter-project scenarios.

Improved Approach for Software Defect Prediction using Artificial Neural Networks.
(Sethi, 2016) In this study, the outcomes of a basic fuzzy inference system technique are
contrasted with those of a neural network-based method for predicting software defects.
The suggested method, it is discovered that now the neural network-based training process
offers superior and efficient outcomes on a variety of parameters. SDP is a method for
anticipating the flaws that give a software module dependability. Several organizations,
including Blackberry, IBM, and Google, use SDP. A simplified dataset of base research is
taught as the dataset for a feed-forward, back-propagation network that use the MATLAB
ANN tool. Comparing the suggested method to the conventional strategy, superior
outcomes are being achieved.

Prediction approach of software fault-proneness based on hybrid artificial neural network
and quantum particle swarm optimization (Jin, 2015). The use of hybrid artificial neural
networks (ANN) and quantum particle swarm optimization (QPSO) in software fault-
proneness prediction is presented in this study. Software applications are categorized into
fault-prone or non-fault-prone categories using ANN, and dimensionality is reduced using
QPSO. The suggested method has brought attention to the relationship between software
metrics and defective software modules. NASA software applications are utilized to
provide the data sets used to test the performance of the suggested method. The
performance in terms of AUC, number of chosen software indexes, and Mean Calculation
Time. We compare the accuracy of the predictions by listing their AUC values. The
maximum AUC scores of the new ANNs built on PSO (i.e., PSO + ANN) and QPSO (i.e.,
QPSO + ANN) over 30 independent runs on four datasets, correspondingly, are shown at
the similar time.

10 ©Daffodil International University

Software defect prediction techniques using metrics based on neural network classifier.
This paper (Jayanthi, 2019) ANN and the feature reduction technique were combined in a
suggested method to software defect prediction. It provides a hybrid feature minimization
and artificial neural network technique for predicting software defects. The upgraded PCA
approach for feature reduction and its mathematical modeling are covered in the initial part
of the paper, while the combined execution of the neural network and the suggested PCA
method is covered in the second part. The proposed method is examined using the
MATLAB tool and NASA software data sets. When compared to earlier investigations, the
proposed approaches increase defect predictive performance while requiring fewer
attributes. It employed attribute selection to demonstrate that classifiers still provided
equivalent or even higher reliability than the total number of attributes used, even when
the number of attributes was reduced by almost 80%. KC1, JM1, PC3, and PC4 are the
four separate datasets used for performance monitoring. 2096 instances, 325 defects, or
15.5% of the dataset (KC1) have a flaw, and we used the suggested hybrid model for
software defect. The prediction and outcome demonstrate that the suggested strategy
provides 86.91% performance for the KC1 dataset, 83.03% performance for the JM1
dataset, 89% accuracy for PC3 and 93.64% performance for PC4.

A novel approach for software defect prediction through hybridizing gradual relational
association rules with artificial neural networks. (Miholca, 2018) In this paper, they created
a brand-new supervised classification technique called HyGRAR for such prediction of
software defects. A non-linear hybrid approach called HyGRAR uses artificial neural
networks and progressive relational mining of association rules to distinguish among
software entities with defects and those without defects. Ten open-source data sets showed
off the HYGRAR classifier's outstanding performance. To compare HyGRAR approach
between AUC. The p-value was below = 0.1 in 92% of the cases (10 out of 11 analogies
for the Ar data sets and 13 out of 14 analogies again for JEdit, Ant, and Tomcat data sets),
indicating that HyGRAR performed on generally higher than other methods on average (in
terms of AUC) at a significance level of 0.1.

Deep Neural Network-Based Hybrid Approach for Software Defect Prediction. (Manjula,
2019) In this research, a hybrid strategy that combined GA and DNN was proposed. After
being enhanced by applying an adaptable auto-encoder, that offered a greater
representation n of a few software characteristics, DNN too was added. They employ the
MATLAB tool and NASA software data sets. The suggested methodology outperformed
other state-of-the-art procedures when their performances were compared, according to the
correlative analysis of the data.

11 ©Daffodil International University

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Artificial Neural Network

Artificial neural networks (ANNs) are computer models that draw inspiration from
biological networks, particularly the brain's neural network. It attempts to mimic
neurological processes carried out by the human brain, such as speech recognition, pattern
recognition, and facial recognition, to name just a few (Jafarzadeh-Ghoushchi, 2015).
Artificial Neural Network (ANN), one of the commonly used machine learning methods.
As it continues to iterate using both forward and backward propagation, the network picks
up lessons from previous examples. This procedure is carried out until the result satisfies
the desired accuracy and conformance to the response given. Each example includes a set
of inputs and related outputs, often known as responses, and the network modifies itself
using internal connections called weights Awolusi(Awolusi, 2019).

Artificial Neural Network (ANN) is a widely accepted supervised learning approach to
deal with the prediction problems in multiple domains of software engineering such as
effort estimation, cost estimation, and defect prediction (Khan, 2022). ANN trained
algorithms Laverberg-Marquardt (LM) and Bayesian Regularization (BR) are used to
predict software defect. In this paper I am apply this two algorithm to predict software
defect. Description of those algorithm is below-

3.1.1 Levenberg-Marqaurdt (LM) Algorithm: The Levenberg-Marquardt
algorithm (LMA), a well-liked trust region approach, is employed to determine the
lowest value of a function (either linear or nonlinear) above a set of parameters. In
essence, an internal function, like a quadratic function, is used to model a
trustworthy area of the objective function. For the majority of nonlinear least square
issues, LM is employed as a solution. It was developed as a bridge here between
technique of gradient descent and the Gauss Newton technique. (Moré, 1998).
When training NN, the Newton technique approximates the inaccuracy in the initial
order statement whereas the LM approximates the second order statement. We train
this LM algorithm in MATLAB tools.

12 ©Daffodil International University

Figure 3.1 LM and BR Model (Nguyen-Truong, 2015)

3.1.2 Bayesian Regularization (BR) Algorithm: Through the mathematical
method of "bayesian regularization," a nonlinear regression can be transformed into
such a statistical issue that's also "well-posed," much like a ridge regression.
(MacKay , 1998) Training Bayesian NN is so much more reliable. The optimization
of a network design, the effort put into validating an idea, selecting a validating set,
and determining a model's robustness are all addressed by BR. Because it is
challenging to overtrain and overfit, BR learning algorithms are superior to other
training functions

13 ©Daffodil International University

3.2 Data Collection

In this study we use two data sets to predict software defect using artificial neural networks.
one data sets from the PROMISE repository were used for the study: KC2. These software
datasets include a few broad attributes, that are shown in Table 3.1 along with the attribute's
name and more specific information. A sample data set is display in Table 3.2. Description
of the defect data sets' characteristics is there.

Table 3.1: PROMISE software defect prediction attribute details

NO Attribute name Description of attribute

 1 LOC Counts total number of line in the module

 2 Iv(g) Design complexity analysis (McCabe)

 3 Ev(g) McCabe essential complexity

 4 N Number of operators present in the software module

 5 v(g) Cyclomatic complexity measurement (McCabe)

 6 D Measurement difficulty

 7 B Estimation of effort

 8 L Programme length

 9 V Volume

 10 I Intelligence in measurement

 11 E Measurement effort

 12 LoComment Line of comments in software module

 13 LoBlank Total number of blank lines in the module

 14 uniq_Op Total number of unique operators

 15 uniq_Opnd Total number of unique operand

 16 T Time estimator

 17 BranchCount Total number of branch in the software module

 18 total_Op Total number of operators

 19 total_Opnd Total number of operators

 20 LocodeandComment Total number of line of code and comments

 21 Defects Information regarding defect whether defect is
 present or not

14 ©Daffodil International University

Based on this feature we fix the data set. The majority of recent studies use software metrics
to pinpoint fault-prone modules, and their findings indicate that these measures are quite
helpful for predicting Defect-proneness classes. Lines of code, cyclomatic complexity,
essential complexity, design complexity, are some of the measures used. Length, volume,
program length, difficulty, intelligence, effort, effort estimate, programming time, lines of
code, lines of comment, lines of blank, lines of comment and code, unique operators,
unique operands, total operators, and total operands are some of the Halstead metrics.

Table 3.2: Sample data set (KC2)

15 ©Daffodil International University

3.3 Model Implementation Process

Following this proposed model we predict software defect. In MATLAB, an artificial
neural network is trained using the Levenberg-Marquardt (LM) and Bayesian
Regularization (BR) methods. Neurons made up hidden layer in the network architecture.
Data sets from the PROMISE library were used to compare the built models to predict
software defect. Mean squared error (MSE) and Neuros regression (R) values, processing
time, performance, and gradient have all been computed after implementing the LM and
BR neural network training methods.

Fig 3.2: Research model

16 ©Daffodil International University

3.4 Performance Evaluation Measures

Defect prediction models created with levenberg-marquardt and Bayesian-regularization
training techniques are experimentally evaluated by employing the following performance
measures for the datasets included.

Error based measures: class of ANN functions are error based optimization
functions. MSE is used to compare the results.

R value: The regression analysis can be used to assess a modeling technique's
robustness. To determine how much the method fits the data, the R2 value of the
test data is calculated R2 > 0.9 is typically considered to be a good fit.

Accuracy: The number of modules that are successfully predicted is how accurate
a system is. We compare the accuracy of two algorithms LM and RM to see which
algorithm is more accurate for predicting software defects.

17 ©Daffodil International University

CHAPTER 4

RESULTS AND DISCUSSION

In the MATLAB tool 2019a, the research was carried out. LM and BR training methods'
are implemented in MATLAB. The number of neurons in the input layer is equal to the
number of characteristics in the data set, and there is only one neuron in the bottom layer.

Fig 4.1: Neural network training

4.1 Experimental Setup

Using the LM and BR training of neural networks algorithms we are computed mean
squared error (MSE), regression R values, epoch, processing, gradient and performance.
Additionally provided are performance plots, training state plots, error histograms, and
regression plots. The degree of difference between both the actual and predicted values of
the dependent variable is determined by the mean squared error (MSE). The quality of fit
increases with decreasing MSE value and vice versa. The degree to which the fitted model
can account for changes in the dependent variable as a result of changes in the independent
variable is indicated by the coefficient of correlation (R). 21 input layer, 10 hidden layer,
and 1 output layer are trained in neural networks based on LM and BR models.

Table 4.1: Comparison of LM and BR progress

 Levenberg–Marquardt Bayesian Regularization
Epoch 16 iteration 208 iteration

Processing 0: 00 : 00 0: 00 : 01
Performance 3.62e-05 8.71e-16

Gradient 0.00301 9.34e-8
MU 0.000100 0.500

MSE (validation) 3.31888e-0 0.00000e-0
R (validation) 9.66828e-1 0.00000e-0
MSE (testing) 5.90684e-2 1.83978 e-3

R (testing) 9.64029e-1 9.98062e-1

18 ©Daffodil International University

Figure 4.2: LM performance plot

Figure 4.3: LM error histogram

19 ©Daffodil International University

Figure 4.4: LM regression plot

Figure 4.2 displays performance plots that use the Levenberg-Marquardt method, which
plots the mean squared error against 5 epoch values. The graph first exhibits a decreasing
behavior between 0 and 10, so it follows a horizontal line trend for all values > 10.

Figure 4.3 displays an error histogram showing the distribution of errors during training,
validation, and testing.

Figure 4.4 to help the analyst understand and improve the regression mode, the application
automatically generates and presents the residuals when you perform the regression.

20 ©Daffodil International University

Figure 4.5: BR performance plot

Figure 4.6: BR error histogram

21 ©Daffodil International University

Figure 4.7: BR regression plot

Figure 4.5 shows the performance plot of the Bayesian technique that plots the mean
squared error against the value of 208 epochs. The graphic displays the increasing behavior
linearly from 0 to 200. It roughly follows a horizontal line pattern, with all values >200.

The error histogram in figure 4.6 illustrates how the training, validation, and testing errors
of the Bayesian Regularization method are roughly symmetrically distributed.

The regression figure 4.7 contrasts the quality of the fit measure R for training, validation,
and testing with targets on the horizontal plane and various functional structures along the
vertical axis over the 4 specifications. R measure values in test and validation scenarios

22 ©Daffodil International University

4.2 Result Analysis

Based on BR and LM algorithm performance in MATLAB. The results obtained for MSC
and R are shown in Table 4.2.

Table 4.2: MSG and R value

LM BR

MSE R MSE R

1.58555e-2 9.69644e-1 2.75967e-4 9.99496e-1

Table 4.3: R Square value of test set

Algorithm R square value

LM 0.99603

BR 1

Table 4.4: Accuracy

Algorithm Accuracy

LM 83.33%

BR 91.18%

23 ©Daffodil International University

4.3 Result Discussion

From the implementation, Table 4.2 clearly shows the MSC value of BR algorithm is
2.75967e-4 and the MSC value of BR algorithm is 1.58555e-2. As MSC value of BR is
less then MSC value of LR, so we say that the Bayesian regularization (BR) algorithm is
the winner.

But the R2 values are completely the opposite. The higher the R^2 result, the more the fit.
In Table 4.3, The R^2 value in LM performance is 99 percent and The R^2 value in BR
performance is 100 percent. The value of R^2 is almost similar between LM and BR.
Usually, R2 > 0.9 is usually treated as a good fit (Arora, 2016) This criterion showed that
LM and BR were both reliable prediction approaches in defect datasets.

From the implementation, I got the best accuracy which was 91.18% in table 4.4. The
Bayesian-based training function outperformed the LM methods on the accuracy
parameters, performing over 90% of them on the dataset, as shown in table 4.4. This is
similar to how they outperformed on the error scale.

In the area of software defect prediction, the Bayesian regularization-based Artificial
Neural Networks (ANN) training algorithm surpasses the Levenberg-Marquardt-based
approaches.so I can say that in term of two artificial neural network training algorithm LM
and BR, the BR algorithm preforms best to predict software defect but the another
algorithm LM is not bad. There is not much different between the performance of LM and
the performance of BR.

So I can say that Using Artificial Neural Networks (ANN) model we can simply predict
software defect.

24 ©Daffodil International University

CHAPTER 5

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusion

Because modern life is becoming more and more digital, there is an exponential rise in the
demand for software systems, which now has led to a demand for higher-quality, more
affordable software. Today, software developers are thought to be most concerned with
timely delivery of high-quality software. Increasing complexity of software systems, it is
not possible to deliver a high-quality maintainable software at a low cost in a timely
manner. This problem can be resolved by employing methods for predicting software
defects. ANN is the best approach to predicting software defect at the early stage of SDLC.

This problem is solved in this paper using Artificial Neural Networks (ANN) approach.
Laverberg-Marquardt (LM) and Bayesian Regularization (BR), two common ANN-based
training techniques, are empirically compared in this paper's performance evaluation for
the purpose of predicting software defects. Using the command-line interface of
MATLAB, an artificial neural network was created. Data sets from the promise repository
are used to run the tests. The Ann models compared depending on confusion matrix, MSE,
RMSE, R2 values. A comprehensive comparison revealed that BR performed better than
LM, as measured by MSE, R2 value and accuracy. To get us better results in predicting
software defects. We can use Laverberg-Marquardt (LM) which is an ANN-based training
algorithm. To predict software defect Artificial Neural Networks (ANN) is a best approach.

The Artificial Neural Networks (ANN) training methods fall under the category of
optimization algorithms where it is essential to optimize the weights in order to obtain the
optimal performances. Additionally, studies have demonstrated the use of nature-inspired
search-based optimization algorithms in the realm of software engineering

25 ©Daffodil International University

5.2 Recommendations for Future Works

 It has been determined that ANN offers significant potential for software defect prediction,
particularly when applied in a hybrid fashion following integration with other methods like
future selection or other preprocessing methods. Additionally, it has been observed that the
majority of studies have focused on preprocessing techniques to enhance the functionality
of ANN classifiers.

The prediction of software defects may be further studied by concentrating on machine
learning methods apart from ANNs. Additionally, specific data sets can be examined while
keeping in mind the reported accuracy of recently presented methodologies. The issue of
predicting software defects can also be studied using contemporary feature selection and
ensemble techniques. In future Using Convolutional Neural Network (CNN) for software
Defect Prediction. It makes use of deep learning to generate features efficiently

26 ©Daffodil International University

REFERENCES

Ahmad, M., & Aftab, S. (2017). Analyzing the performance of SVM for polarity detection
with different datasets. International Journal of Modern Education and Computer Science,
9(10), 29.

Arora, I., & Saha, A. (2016, December). Comparison of back propagation training
algorithms for software defect prediction. In 2016 2nd International Conference on
Contemporary Computing and Informatics (IC3I) (pp. 51-58). IEEE.

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., Sojobi, A. O., & Aluko, O. G. (2019).
Performance comparison of neural network training algorithms in the modeling properties
of steel fiber reinforced concrete. Heliyon, 5(1), e01115.

Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of wind pressure
coefficients on building surfaces using artificial neural networks. Energy and Buildings,
158, 1429-1441.

Bernard, W., & Sazzad, H. (2006). Software Process Improvement in Bangladesh.
Software Engineering Research and Practice, (1).

Cao, Q., Sun, Q., Cao, Q., & Tan, H. (2015, October). Software defect prediction via
transfer learning based neural network. In 2015 First international conference on reliability
systems engineering (ICRSE) (pp. 1-10). IEEE.

Gao, K., & Khoshgoftaar, T. M. (2011, July). Software Defect Prediction for High-
Dimensional and Class-Imbalanced Data. In SEKE (pp. 89-94).

Goyal, J., & Ranjan Sinha, R. (2022). Software defect-based prediction using logistic
regression: review and challenges. In Second International Conference on Sustainable
Technologies for Computational Intelligence (pp. 233-248). Springer, Singapore

Iftikhar, A., Alam, M., Ahmed, R., Musa, S., & Su’ud, M. M. (2021). Risk prediction by
using artificial neural network in global software development. Computational intelligence
and neuroscience, 2021.

Jindal, R., Malhotra, R., & Jain, A. (2014, October). Software defect prediction using
neural networks. In Proceedings of 3rd International Conference on Reliability, Infocom
Technologies and Optimization (pp. 1-6). IEEE.

Jayanthi, R., & Florence, L. (2019). Software defect prediction techniques using metrics
based on neural network classifier. Cluster Computing, 22(1), 77-88.

27 ©Daffodil International University

Jin, C., & Jin, S. W. (2015). Prediction approach of software fault-proneness based on
hybrid artificial neural network and quantum particle swarm optimization. Applied Soft
Computing, 35, 717-725.

Khan, M. A., Elmitwally, N. S., Abbas, S., Aftab, S., Ahmad, M., Fayaz, M., & Khan, F.
(2022). Software Defect Prediction Using Artificial Neural Networks: A Systematic
Literature Review. Scientific Programming, 2022.

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011, May). Dealing with noise in defect
prediction. In 2011 33rd international conference on software engineering (ICSE) (pp. 481-
490). IEEE.

Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using
ensemble learning on selected features. Information and Software Technology, 58, 388-
402.

Li, J., He, P., Zhu, J., & Lyu, M. R. (2017, July). Software defect prediction via
convolutional neural network. In 2017 IEEE international conference on software quality,
reliability and security (QRS) (pp. 318-328). IEEE.

Manjula, C., & Florence, L. (2019). Deep neural network based hybrid approach for
software defect prediction using software metrics. Cluster Computing, 22(4), 9847-9863.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John Wiley &
Sons.

Miholca, D. L., Czibula, G., & Czibula, I. G. (2018). A novel approach for software defect
prediction through hybridizing gradual relational association rules with artificial neural
networks. Information Sciences, 441, 152-170.

Moré, J. J. (1978). The Levenberg-Marquardt algorithm: implementation and theory. In
Numerical analysis (pp. 105-116). Springer, Berlin, Heidelberg.

MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks.
Neural computation, 4(3), 448-472.

Nguyen-Truong, H. T., & Le, H. M. (2015). An implementation of the Levenberg–
Marquardt algorithm for simultaneous-energy-gradient fitting using two-layer feed-
forward neural networks. Chemical Physics Letters, 629, 40-45.

Ozyildirim, B. M., & Avci, M. (2013). Generalized classifier neural network. Neural
Networks, 39, 18-26.

Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave
macmillan.

28 ©Daffodil International University

Rawat, M. S., & Dubey, S. K. (2012). Software defect prediction models for quality
improvement: a literature study. International Journal of Computer Science Issues
(IJCSI), 9(5), 288.

Rahman, T., Saha, S. K., Sohel, M. S. R., Maula, M. T., Bowmik, A., & Nabil, R. H. (2022).
Risk Identification and Analysis in Software Development in Bangladesh IT Industry: A
Hybrid Model. AIUB Journal of Science and Engineering (AJSE), 21(1), 37-44.

Sethi, T. (2016, September). Improved approach for software defect prediction using
artificial neural networks. In 2016 5th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 480-485).
IEEE.

Wu, R., Zhang, H., Kim, S., & Cheung, S. C. (2011, September). Relink: recovering links
between bugs and changes. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering (pp. 15-25).

Zhang, Y., Lo, D., Xia, X., & Sun, J. (2015, July). An empirical study of classifier
combination for cross-project defect prediction. In 2015 IEEE 39th Annual computer
software and applications conference (Vol. 2, pp. 264-269). IEEE.

