
©Daffodil International University

MACHINE LEARNING BASED PHISHING WEBSITE DETECTOR

BY

Sayed Abdus Sobur

ID: 221-25-094

This Report Presented in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computer Science and Engineering

Supervised By

Professor Dr. Touhid Bhuiyan

Head

Dept. of Computer Science & Engineering

Daffodil International University

Co-Supervised By

Mr. Abdus Sattar

Assistant Professor & Coordinator M.Sc

Dept. of Computer Science & Engineering

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

17th JANUARY 2023

©Daffodil International University

APPROVAL

©Daffodil International University

©Daffodil International University

ACKNOWLEDGEMENT

First I express my heartiest thanks and gratefulness to almighty God for His divine blessing make

me possible to complete the final year thesis successfully.

I really grateful and wish my profound my indebtedness to Professor Dr. Touhid Bhuiyan, Head,

Department of CSE, Daffodil International University, Dhaka. Deep Knowledge & keen interest

of my supervisor in the field of “Machine Learning” to carry out this thesis. His endless patience,

scholarly guidance, continual encouragement, constant and energetic supervision, constructive

criticism , valuable advice, reading many inferior draft and correcting them at all stage have made

it possible to complete this thesis.

I would like to express my heartiest gratitude to Head, Department of CSE, for his kind help to

finish my thesis and also to other faculty member and the staff of CSE department of Daffodil

International University.

iii

©Daffodil International University

ABSTRACT

Cyber-attacks have increased in number along with the growth of online services. Phishing, in

which attempts are made to steal confidential information by pretending to be a legitimate source,

is one of the most prevalent and successful attacks. The success of phishing sites is based on

manipulating human emotions, which causes worries and creates an urgent situation by warning

that failure to act promptly could result in significant losses in data and money. Because of this,

we cannot rely solely on humans to identify phishing; instead, we need more efficient and

automatic phishing detection systems. Although many detectors have been suggested, there needs

to be more work done due to a large number of phishing websites. In order to increase the accuracy

of phishing detection, we propose a phishing site classifier model in this study that uses

multinomial naive bayes, logistic regression, and natural language processing over a url text. This

study demonstrated the success of the algorithm in increasing the precision of phishing site

detection, and the literature will demonstrate this algorithm's success in url text classification. The

classifier will be put to the test using supervised learning. The classifier will become efficient in

identifying phishing sites using url text among the current detection methods, and it will do so

quickly and with a high degree of accuracy, according to experimental tests.

iv

©Daffodil International University

TABLE OF CONTENTS

CONTENTS PAGE

Approval Page

Declaration

Acknowledgement

Abstract

List of Figures

List of Table

CHAPTER

i

ii

iii

iv

 vii-viii

 ix

CHAPTER 1: INTRODUCTION
1-5

 1.1 Introduction 1-3

 1.2 Motivation

 1.3 Rationale of the Study

 1.4 Research Questions

3-4

4

4

 1.5 Expected output
4-5

 1.7 Report Layout
5
5

CHAPTER 2: BACKGROUND
6-11 6

 2.1 Preliminaries
6
7

 2.2 Related works
6-9

1

 2.3 Comparative Analysis & Summary
9
1

 2.4 Scope of the Problem
10

1

1

 2.5 Challenges
10-11

1

v

©Daffodil International University

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Research Subject & Instrumentation 12

3.2 Data Collection Procedure 12-13

3.3 Applied Mechanism 13-23

 3.4 Implementation Requirements 23-24

CHAPTER 4: EXPERIMENTAL RESULTS & DISCUSSION

4.1 Experimental Setup 25

4.2 Experimental Result & Analysis 25-35

4.3 Discussion 35

 CHAPTER 5: IMPACT ON SOCIETY, ENVIRONMENT &

SUSTAINABILITY

 5.1 Impact on Society 36

 5.2 Impact on Environment 36

 5.3 Ethical Aspects 36

 5.4 Sustainability 37

CHAPTER 6: SUMMARY, CONCLUSION & IMPLICATION OF

FUTURE RESEARCH
6.1 Summary of the Study 38

6.2 Conclusions 38

6.3 Implication for Further Study 38

 REFERENCES 39-41

 APPENDIX 42-50

12-24

25-35

36-37

38

vi

©Daffodil International University

LIST OF FIGURES

TITLE PAGE

Figure 1.1: Current Phishing Situation 1

Figure 1.2 : PayPal signup page URL.

3

Figure 3.1: Bad URL from dataset

12

Figure 3.2: Good URL’s from dataset

13

Figure 3.3: Working Mechanism

13

Figure 3.4: CountVectorizer Working System

15

Figure 3.5: Stemming VS Lemmatization

17

Figure 3.6: Logistic Regression Working Procedure

18

Figure 3.7: Naive Bayes Classifier

19

Figure 3.8: MNB Classification System

21

Figure 3.9: Confusion matrix

22

Figure 4.1: Dataset Ratio

25

Figure 4.2: RegexpTokenizer

26

Figure 4.2.1: RegexpTokenizer Output

26

Figure 4.3: Before using SnowballStemmer

27

Figure 4.3.1: After using SnowballStemmer

28

Figure 4.4: URLs that are not attempts at phishing

29

Figure 4.5: URLs that are attempts at phishing

30

Figure 4.6: Confusion Matrix of Logistic Regression

31

vii

©Daffodil International University

Figure 4.7: Confusion Matrix of Multinomial Naive Bayes 32

Figure 4.7: Accuracy difference between Logistic Regression and Multinomial 33

Naive Bayes

Figure 4.8: Confusion Matrix of Best Fit Model 34

Figure 4.9: Model Testing Result 35

viii

©Daffodil International University

LIST OF TABLES

NAME PAGE

Table 4.1: Logistic Regression Accuracy 31

Table 4.2: Logistic Regression Classification Result

31

Table 4.3: Multinomial Naive Bayes Accuracy

32

Table 4.4: Multinomial Naive Bayes Classification Result

32

Table 4.5: Best Fit Model Accuracy

33

Table 4.6: Best Fit Model Classification Result

34

ix

1

©Daffodil International University

1.1 Introduction

CHAPTER 1

INTRODUCTION

In this age of technology, people are able to communicate with one another through the use of the

internet and electronic devices such as desktop computers, laptops, and personal digital assistants

(PDA). E-banking as well as e-commerce shopping have been chosen by most of its users due to

their comfort ability, availability, and convenience of use. This preference was brought about by

the revolution brought about by the internet. Owing to the fact that all of these dealings and

conversations are conducted over a channel that is exposed to the public and is therefore inherently

insecure. The malicious actor is attempting to seize control of the vulnerable system in order to

carry out a variety of attacks on the users' transactions while they are in the process of completing

them. An example of this kind of attack is known as a "phishing attack." In this kind of attack, the

intruder attempts to obtain sensitive and personal information from the user by imitating reliable

websites in order to redirect the link toward the intruder. The intruder tries to force the genuine

user into believing that they are accessing a fraudulent website during this Phishing attack by

creating a fake version of the reliable webpage that is under their control. When a genuine user

provides their personal information to a fraudulent website, the information that the user provides

is immediately and covertly captured by the attacker in the background. The perpetrator of the

phishing attempt will have access to all of the sensitive information if they are successful in

obtaining this information.

Figure 1.1: Current Phishing Situation

2

©Daffodil International University

It is common practice to refer to resources found on the Internet by their Uniform Resource Locator

(URL) addresses. Sahoo et al. presented information in [22] regarding the characteristics of the

URL as well as its two fundamental components, which are as follows: the protocol identifier,

which specifies the protocol that will be used, and the resource name, which indicates the IP

address or the domain name where the resource can be found. It is clear that each URL has its own

unique structure and arrangement of components. Attackers frequently attempt to modify one or

more components of the structure of the URL in order to fool users into propagating their malicious

URL. Links that are known to have a negative impact on users are referred to as malicious URLs.

Users who visit these URLs will be redirected to resources or pages on which cybercriminals can

run codes on them' computers, send users to undesirable websites, harmful websites, or other

phishing sites, or download malware. In addition, malicious URLs can be concealed within

download links that are believed to be safe, and they can quickly propagate through the sharing of

files and messages on shared networks. [23, 24, 25] Drive-by Download, Phishing as well as Social

Engineering, and Spam are all examples of attack tactics that make use of malicious URLs.

According to the data that is published in [26], the assaults that make use of the technique of

propagating malicious URLs are now placed first among the top 10 most popular attack strategies

that are being used in 2019. The use of harmful URLs, botnet URLs, and phishing URLs are the

three primary methods of distributing URLs, and according to this data, all three of these

approaches are seeing an increase in the amount of assaults they are causing as well as the risk

level they provide. It is abundantly obvious, based on the statistics that demonstrate a growth in

the number of harmful URL distributions over the course of successive years, that there is a need

to investigate and put into practice strategies or processes that can identify and prohibit the use of

dangerous URLs. Concerning the issue of recognizing dangerous URLs, there are now two primary

trends: the first is the detection of malicious URLs based on indicators or sets of rules, and the

second is the detection of malicious URLs based on approaches that include behavior analysis [22,

23]. The technique of identifying harmful URLs based on a set of markers or criteria enables for

the detection of malicious URLs to occur both rapidly and correctly. On the other hand, this

approach is not able to identify newly created malicious URLs since it relies on a set of

predetermined signs and rules and cannot detect new rules or signs. The approach of detecting

dangerous URLs based on behavior analysis techniques use machine learning or deep learning

algorithms to classify URLs based on the behaviors they

3

©Daffodil International University

exhibit. This method was developed to detect URLs that lead to malicious websites. In this article,

machine learning methods are used to classify URLs according to the properties of those URLs. In

addition to that, a novel approach for extracting URL attributes is presented in the study.

Figure 1.2 : PayPal signup page URL.

1.2 Motivation

There are several distinct varieties of phishing assaults, each of which may be employed by

cybercriminals in a variety of contexts and for a variety of goals. The financial industry is

consistently targeted by phishing scams more than any other sector. When a person authenticates

themselves to their online banking utilizing their username and password, a phishing attack is most

likely to occur in this sector of the internet. At this point in time, the attackers are creating the

replication of both the URL and the webpage in order to trick users into entering their credentials

on bogus websites that have been copied. The credentials of the users will be recorded in this

manner, and those users will be able to get access control towards the user account without the

user needing to worry about it. The next type of phishing assault typically targets websites that are

involved in online commerce. Intruders develop copies of authentic websites in order to trick

people into conducting business on their phony websites and steal their personal information. After

the transaction has been completed, the adversaries make a note of their credentials, such as their

login and password, as well as the transaction parameters, such as the ATM card information, pin

number, as well as CVV number. As a result of the attacker caring about these actions, the attacker

gains access to the system and is able to carry out the operation on behalf of the genuine user

without the genuine user's knowledge or consent. These are the kinds of situations in which a

phishing attempt might endanger the users who are really

4

©Daffodil International University

Authorized to access the system. In order to keep track of the various phishing attacks that take

place in different parts of the world, a non-profit organization known as the Anti-Phishing Working

Group was established. This organization is responsible for conducting in-depth investigations of

the various phishing attacks that take place and publishing their findings so that users can identify

malicious websites. In most cases, cybercriminals will construct phony websites, which they will

then distribute to victims in the form of links via social networking sites such as Facebook,

Instagram, WhatsApp, and LinkedIn. When a user clicks on the link, they are immediately sent to

one of the phony websites, where their personal information may be recorded. The most recent

Phishing assaults are quite powerful, and they are even capable of breaching the security services

provided by various protocols like HTTPS and SSL. As a result, the already-in-place security

mechanisms are no longer reliable. In order to circumvent the restrictions imposed by previously

implemented systems, the unique solutions presented in this work are intended to: On top of that,

the proposed method uses the URL-based attributes as that of the input for the machine learning

based classification algorithm. By doing so, the proposed method is able to successfully detect

normal websites from fake sites and can control online phishing attacks for users on the internet.

1.3 Rationale of the Study

High detection efficiency: To achieve high detection efficiency, benign sites should be classified

as phishing as infrequently as possible (false-positive), while phishing sites should be classified

correctly (true-positive). To assess the efficacy of the proposed features, I conducted extensive

experiments using various machine learning algorithms. The evaluation results show that the

proposed approach accurately identifies legitimate websites, with a high true negative rate and a

very low false positive rate.

1.4 Research Questions

Following research questions were formulated as part of the phishing website study:

 What are the general ways people use to phishing websites?

 What are the currently available phishing detection technologies?

 Can we make a website that can trick machine learning training algorithms

1.5 Expected output

Through this work we will do the following:

● Detect fake website

● More Accuracy

5

©Daffodil International University

● Lightweight Classifier

● Find out the Efficient Algorithm

● Reduce the number of false positives,

 1.6 Report Layout

This article is broken up into sections, and Section II examines the same efforts that have been

done by other researchers. The dataset is broken out in detail in Section III. The pre-processing

pipeline is described and the technique is discussed in the same section. Section IV presents the

findings, along with several representations of those results. The study is brought to a close with

the discussion of its potential future scope in the last part.

6

©Daffodil International University

CHAPTER 2

BACKGROUND

2.1 Preliminaries

On the Internet, phishing scams remain one of the most serious dangers that users face. The URL

of a website can provide light on whether or not it is a phishing site, as previous research has shown

this to be a viable method for making this determination. Previous work that is relevant to the issue

is presented in this section. To begin, one of the easiest ways to recognize phishing websites is to

utilize an outdated method such as blacklisting. However, this method cannot be used to locate

newly created phishing websites. Utilizing this type of meth also requires a significant amount of

time. The research that is being done currently on the identification of phishing links may be broken

down into some distinct categories. These categories are indeed the Visual Similarity-based method,

the Heuristic Based approach, the Fuzzy rule-based approach, and the Machine Learning approach.

2.2 Related Works

2.2.1 Visual Similarity

In this method, the visual look of a phishing website is evaluated to that of a legitimate website.

This comparison involves examining the HTML tags, images, and versions of JavaScript that are

present on the page that is under suspicion, as well as other aspects of the website. A method quite

similar to this one was utilized by Eric et al [1], who retrieved the unique signature of a website

that was suspected of being phishing and compared it to the signatory of a website that was real.

For the purpose of gathering information about the pictures contained on a particular website, a

"signature" of the website in question was utilized. To be more exact, it describes a set of traits

that reflect distinct features of a website. These attributes are referred to as "attributes." They

employ three elements to identify phishing websites: text fragments, graphics placed in the site,

and the general visual look of the web page as it is created by the browser. Even though they have

a very low rate of false positives on the dataset, they used to only have 41 phishing pages, which

is much too few. This makes their sample size much too tiny. Blacklists are, in their most basic

form, a library of URLs that have already been established as being associated with phishing.

Blacklist-based solutions are efficient, but they are ineffective against zero-hour phishing attempts

[2], and it is simple for attackers to circumvent them [3]. Researchers have

7

©Daffodil International University

developed a proactive technique called PhishNet [4], which makes use of simple algorithms to

create additional candidate phishing URLs from existing blacklisted URLs. The goal of this

strategy is to circumvent the difficulties that are associated with blacklists. You can produce new

candidate URLs by, for example, replacing a brand name inside the blacklisted URLs with a

different brand name or replacing a TLD with a different TLD. This is one method. PhishNet may

also be employed to identify new phishing URLs by doing an approximate matching operation

(based on regular expressions) also with URLs that are already in the blacklist. URL blacklisting

has proven successful to some extent; however, it is rather simple for an adversary to trick the

system by subtly altering one or more parts of such URL string [5].

2.2.2 Heuristics-Based Approach

The heuristic-based strategy is the second option available to you. This technique takes into

account a variety of characteristics gleaned as from target pages in order to assess whether or not

the page in question is a phishing scam or an authentic website. In this technique, the heuristic

design of phishing sites matches the feature set that also is typically seen in websites that are used

for phishing. CANTINA is a framework that was provided by Zhang et al [6], which has suggested

a technique known as CANTINA that detects phishing pages by evaluating text content to use the

TF-IDF algorithm. CANTINA was developed by Zhang et al. However, the TF-IDF algorithm, as

well as the language of the website both, have a role in determining the scope of the scheme's

limits.

2.2.3 Fuzzy Rule-based Approach

The primary phishing characteristic indications can be more accurately represented using fuzzy

logic techniques, which make use of linguistic factors. Phishing websites were identified by Maher

et al. [7] by the application of fuzzy logic, which was based on six distinct criteria. In their system,

they have created separate levels, with each layer including one or more criteria; in addition, they

use a formula to compute the phishing rate. The fact that this technology is unable to identify any

phishing websites is one of its many drawbacks.

2.2.4 Search Engine

8

©Daffodil International University

Searching the complete URL of the website in question on well-known search engines like Google,

Bing, or Yahoo is yet another uncomplicated method that might be effective in determining

whether or not the website in question is a phishing scam [8], [9]. URLs of reputable websites

typically retrieve a high quantity of search outcomes and are ranked first, but URLs of fake sites

usually return zero outcomes or are not ranked at all. This is because legitimate websites are more

trustworthy than phishing websites. However, searching search engines for each URL results in

additional expense and may not be feasible due to the rate-limiting that is enforced by providers of

search engines. The search engine may provide paid services with higher rate limits; nevertheless,

scanning each URL would still expose the user's private information even if the rate restrictions

were increased.

2.2.5 Machine Learning Approach

Researchers have turned to strategies that utilize machine learning (ML) in order to enhance the

detection of new emerging phishing websites. According to the research carried out by McGrath

and colleagues [10], the length, as well as character patterns of phishing URLs, seem strikingly

dissimilar to those of non-phishing URLs. As a direct result of this, subsequent studies trained a

variety of machine learning models by utilizing URL-based attributes, and these models were able

to accurately identify phishing URLs. The method of phishing detection that was demonstrated by

Ma et al. [11] uses two different kinds of URL features: lexical features extracted from URL

names, including such URL length as well as bag-of-words (BoW), but also external features

acquired by querying remote servers, such as whois lookup. Both of these kinds of features can be

found in URLs. PhishDef was proposed by Le et al. [12], who also demonstrated that the use of

lexical features is just as successful as the utilization of complete features. Sahingoz et al. [13]

investigated the usage of natural language processing (NLP) features, word vectors, and hybrid

features using various machine learning algorithms and found that all three types of features were

successful. Verma et al. [14] investigated the effectiveness of unigrams, bigrams, and trigrams

features to learn the nature as well as the construction of phishing URLs as compared to benign

URLs. They discovered that classifiers trained on n-gram features accomplish a higher

classification accuracy than those trained on the other types of features.

9

©Daffodil International University

The acquisition of representative URL samples for the purpose of training a classifier presents a

significant obstacle to the application of machine learning to the detection of phishing. PhishTank

[15], which consists of human-verified phishing URLs, and DMOZ [18], which consists of human-

confirmed benign URLs, are the URL sources that are utilized the most frequently in the literature

[13], [14], [16], [17]. Nevertheless, the URLs that are reported by PhishTank are not objective

(submitted by a few users). In addition, it only contains phishing data for a few hundred brands,

the majority of which are based in the United States [19]. On the other side, DMOZ has not been

updated since it ceased operations in 2017 and is no longer operational. In addition, the DMOZ

dataset consists primarily of the hostnames of innocuous websites, but the PhishTank dataset

includes the entire URLs of domains that are used for phishing. Whittaker et al. [20] provided a

description of the construction of the proprietary machine-learning model that is used by Google

to identify phishing websites. This model makes use of URL data, Google Page Rank, and page

features. A strategy for detecting phishing assaults was proposed by Ardi et al. [21], and it involves

storing a cryptographic hash to whitelisted web pages as well as comparing this hash with the

cryptographic hash of newly accessed web pages.

However, the primary advantage of using models that have been trained solely on URL-based

features is that they are able to determine the label of a new URL the moment the page is loaded

by the web browser. This eliminates the risk of other potential threats, such as cryptojacking and

drive-by download attacks. In addition, the majority of strategies that are page based only become

effective once the entirety of a web page has been generated in the browser. Because of this, there

is a chance that visitors will reveal private information on the website before it is identified as a

phishing scam.

 2.3 Comparative Analysis & Summary

According to the study and assessment of malicious URL detection systems that were presented

earlier, the vast majority of the currently available malicious URL detection techniques are

signature-based URL detection processes. This was discovered as a result of the investigation and

evaluation of malicious URL detection methods. As a consequence of this, the efficacy of these

technologies is constrained.

10

©Daffodil International University

2.3 Scope of the Problem

Phishing is a well-known act in which cybercriminals steal sensitive information from users by

impersonating websites or by attracting visitors to click other false webpages where their personal

information is exposed and made available to the cybercriminals, even though the users have done

so unintentionally and innocently. In recent years, the proliferation of numerous online resources,

such as financial services, entertainment, educational opportunities, app uploading, and social

networking, has contributed significantly to the spectacular growth of the internet. In recent years,

intelligent ways for phishing websites based on machine learning techniques have grown more

prevalent, smarter, and web-based in comparison to previous methods for phishing websites. These

approaches are founded on the idea that computer programs can learn from experience. A detection

method for phishing pages that contain a variety of malicious traits, based on NLP and Random

Forest.

2.4 Challenges

This subsection provides examples of comparable prior work. Blacklisting is one of the simplest

methods for identifying phishing websites, however, it cannot be used to identify new phishing

websites. This procedure is also quite time-consuming. In this method, a phishing website's visual

look is compared to that of a real website. This involves examining the HTML elements, images,

and JavaScript version used on the suspicious page. Eric et al. [1] employed a similar strategy in

which they collected the signature of a suspected phishing website and compared it to the signature

of a valid website. A web page's signature was employed to gather data comprising the graphics

and textual content on this webpage. To be more precise, it is a collection of characteristics

representing many features of a website. They employ three elements to detect phishing sites: text

fragments, embedded pictures, and the overall visual look of the web page as generated by the

browser. Although they have a minuscule incidence of false positives on the dataset, they previously

consisted of only 41 phishing pages, which is much too tiny. The heuristic technique is the second

option available. This approach combines distinct characteristics gathered from the target web page

to identify whether or not it is a phishing site. In this technique, the heuristic design of suspicious

websites matches the feature set often seen on phishing websites. Zhang et al. [2] introduced

CANTINA, a system that identifies phishing pages by evaluating text content with the TF-IDF

algorithm. However, the scheme's restrictions are defined by the website's language and the TF-

11

©Daffodil International University

IDF algorithm. Fuzzy logic approaches utilize language variables to express the primary phishing

indicator characteristics. Based on six distinct criteria, Maher et al. [3] employed fuzzy logic to

identify phishing websites. In their system, they have created distinct levels, with each layer

including one or more criteria; they also use a formula to compute the phishing rate. This approach

has the problem of being unable of detecting any phishing pages. One of the most recent methods

used by researchers to determine whether a website is a phishing site is machine learning. Ankit et

al. [4] established a system for anti-phishing that employs hyperlink-specific features of multiple

machine learning methods. As the website's source code is susceptible to modification for harmful

intentions, the fact that the features are based on the source code is a downside of this technique.

This might lead to a rise in incorrect predictions. In spite of all these works many challenges needs

to be addressed. Therefore, we proposed an efficient model to detect phishing attacks using various

machine learning algorithms.

12

©Daffodil International University

Chapter 3

Research Methodology

3.1 Research Subject

The primary purpose of our study is to identify potentially harmful URLs through the use of three

distinct approaches and evaluate the accuracy of each in doing so. First, we take phishing and

benign URLs and extract eight attributes from each of them. Then, we generate dataset with those

features as that of the column names as well as a label that indicates 0 for genuine as well as 1 for

phishing. To ensure that the new dataset we produced is representative across the board, we utilized

5,49,346 samples from each dataset. The address bar is the basis for the characteristics that were

extracted.

3.2 Data Collection

In the course of our investigation, we made use of a dataset that included both negative and positive

URLs in their entirety. The URLs were harvested from publicly available data sources; however,

a significant number of these sources did not contain the protocol. Because of this, the protocol

(http:// or https://) and the sub domain (such as www) were omitted from the URL string in cases

where they were present. Every URL in the dataset has a label associated with it, either the number

1 or the number 0. A label of 1 indicates that the URL is harmful, whereas a label of 0 suggests

that it is harmless. Figure 2 only includes a small selection of the data samples we have. The dataset

was divided in two for the purposes of training and validation; 70% of the data was utilized for

training, while the remaining 30% was used for validation.

Figure 3.1: Bad URL from dataset

13

©Daffodil International University

Figure 3.2: Good URL’s from dataset

3.3 Applied Mechanism

Our model has to be trained on the dataset before it can be used to differentiate between URLs that

are harmful and those that are safe to visit. On the other hand, our algorithm is unable to decipher

raw URLs, along with any other kind of alphanumeric text including symbols. Therefore, in order

to make the URLs worthy of training, they need to go through a pre-processing pipeline. Within

this pipeline, the URLs will go through three stages: tokenization, character-to-index mapping,

and sequence padding.

Figure 3.3: Working Mechanism

In our proposed model at first, it will process the data then tokenize and stem it with the help of

countvectorizer we will make a model and select our best model.

14

©Daffodil International University

3.3.1 Tokenizar

Tokenization is an essential step in the pre-processing phase of virtually every NLP-related

activity. Tokenization refers to the technique of slicing up a string of text into more manageable

linguistic components called tokens (words, punctuations, numbers, special symbols, etc.).

According to the findings of our study, each and every character (including letters, numbers, and

special symbols) that makes up the URL is regarded as a token.

3.3.2 CountVectorizer

By doing preprocessing activities such as converting all words to lowercase and deleting special

characters, CountVectorizer implies breaking down a sentence or any other text into words. This

may be done with any sentence or any text. Because NLP models only understand numbers and

cannot comprehend textual data, the textual data must be vectorized before the models can use it.

The models that are used for natural language processing can only comprehend the numerical

value. So we need to transform textual input to a numerical number. Additionally, the BOW model

is a quite straightforward one. It turns whole thoughts into a random collection of phrases that have

no context. Nevertheless, it changes the text into a vector of integers with a predetermined length.

According to this model, each word is given a one-of-a-kind number that corresponds to a count

of the number of times that word appears in the model.

15

©Daffodil International University

Figure 3.4: CountVectorizer Working System

The arrangement of the words is not our primary concern; rather, we are concentrating on how

they are represented. Tokenization is the process of breaking down a sentence into its component

words. Tokenization is accomplished by doing several preprocessing activities, such as converting

all words to lowercase and deleting special characters, among other things. Therefore, an encoding

vector is returned with the length of the full vocabulary, which includes all of the words, as well

as an integer count of the number of times that each word appears in the phrase.

3.3.3 Character-to-index mapping

Simply alphabetic, numeric, and special characters make up the tokens that were formed in the

stage before this one. However, because our model can only comprehend numeric values, the

tokens that we use need to be converted. As a consequence of this, we give every character in our

lexicon its own distinct integer id, and at this stage of the pre-processing procedure, every list of

tokens is mapped to the list of ids that corresponds to it.

3.3.4 Sequence-padding

This procedure is carried out for the most part in order to assist us in automatically training the

model using the numerical data. To do sequence padding, additional zeros are appended to the

token vector before it is used. This is done to ensure that all of the vectors have the same structure

and to facilitate the process of feeding various data sets into our model in batches.

3.3.5 Embedding

16

©Daffodil International University

Following the completion of the aforementioned three stages of preprocessing, we now have a list

of numbers that correspond to each URL in our dataset; more specifically, each integer represents

a different token in our lexicon. On the other hand, this representation of tokens as integers does

not include any information that relates to our URLs. It is thus vital to transform these numbers to

some kind of encoding, since this will assist our model in training on our dataset in a more effective

manner. One such representation that is used frequently is called a one-hot encoding, in which each

integer is expressed as an array with the same length as the size of the vocabulary. In this

representation, a "1" is placed where the vector index is equal to the integer, and "0"s are placed

in all other positions. However, these encodings have a number of drawbacks, the first of which is

that the size of each encoding may be rather substantial, depending on the vocabulary. As a

consequence, the resultant matrices are quite huge and sparse, which makes the process of training

ineffective. The second and more significant flaw with these representations is that they do not

take into account the relationship between the tokens. This means that when two tokens that are

comparable are plotted in vector space, they are placed a significant distance apart from one

another. As a result, we have made use of embeddings. Embeddings are dense representations in

the form of vectors that take into account the similarities between the tokens.

3.3.6 Snowball Stemmer – NLP

It is a stemming algorithm that is also known as such Porter2 stemming method since it is an

improved version of the Porter Stemmer due to the fact that various problems with the Porter

Stemmer have been solved in this stemmer.

3.3.6.1 Stemming

The term "lemma" refers to the result of the process of reducing a word to its word stem, which

can then be attached to suffixes, prefixes, or the roots of other words. Stemming is, in layman's

terms, the process of reducing a word to its base word or stem in such a manner that words of a

similar sort lie under a common stem. Stemming may also be thought of as derivation. For instance,

the terms "care," "cared," and "caring" are all derived from the same root word: "care." Processing

natural language requires careful attention to stemming (NLP).

17

©Daffodil International University

Figure 3.5: Stemming VS Lemmatization

3.3.7 Logistic Regression

An example of supervised learning is something like logistic regression. Calculating or forecasting

the likelihood of a binary (yes/no) event happening is one of its primary applications. Using

machine learning to detect whether or not a person has COVID-19 infection is an application of

logistic regression. Another application of logistic regression is determining whether or not a

person has the COVID-19 virus. Binary classification is the term used to describe a situation in

which there are only two viable answers to a question: either yes, they are infected, or no, they are

not infected. In this hypothetical scenario, the likelihood of a patient being contaminated with

COVID-19 might be determined by looking at factors such as the viral load, the symptoms, the

existence of antibodies, and other factors. Our variables (Independent Variables), that would

impact our outcome, would include viral load, symptoms, as well as antibodies (Dependent

Variable).

18

©Daffodil International University

Figure 3.6: Logistic Regression Working Procedure

Logistic regression is a technique that may be utilized to handle classification issues; the most

popular application of this technique is binary logistic regression, in which the result is also binary

(yes or no). In the actual world, logistic regression was used to a wide variety of different domains

and industries.

3.3.8 Logistic Regression and the Underlying Mathematics

Probability is always in the range of 0 (does not occur) to 1 (always occurs) (happens). Using the

example of Covid-19, the likelihood of testing positive and the probability of not testing positive

will both add up to one in the case of binary categorization. For the purpose of calculating

probability in logistic regression, we make use of the logistic function or the sigmoid function.

The logistic function is a straightforward S-shaped curve that is applied to data in order to

transform it into a number that falls between 0 and 1.

19

©Daffodil International University

Logistic regression, in a nutshell, is used to classify issues where the output or dependent variable

in question is binary or categorical. When putting in place logistic regressions, it is important to

keep certain assumptions in mind. Some of these assumptions include the many forms of logistic

regression, the various types of independent variables, and the amount of training data that is

currently accessible.

3.3.9 Multinomial Naive Bayes

While there are dozens of programs and tools available for the evaluation of numerical data, only

a handful of options are available for the study of textual data. One of the most common supervised

learning classifications that are employed in the analysis of categorical text data is called

multinomial Naive Bayes. This method was developed by George Naive.

Figure 3.7: Naive Bayes Classifier

Text data categorization is becoming increasingly popular for the simple reason that there is an

overwhelming quantity of data that has to be examined. This data may be found through email,

documents, websites, and other places. Finding out how people who are going to use a program or

product are going to perceive it is made easier by having a better understanding of the context

around a certain form of text.

You will emerge from reading this article with a comprehensive knowledge of the multinomial

Naive Bayes method as well as all of the ideas that are associated with it. In this section, we will

20

©Daffodil International University

go through an overview of the algorithm, including how it operates, the benefits it offers, and the

applications it may be used for.

The Multinomial Naive Bayes algorithm is indeed a probabilistic learning approach that is utilized

in Natural Language Processing the majority of the time (NLP). The Bayes theorem serves as the

foundation for the computer program that can determine the tag associated with a piece of text

such as an email or a newspaper article. After determining the probabilities of having each tag for

a specific sample, it selects the tag with the highest likelihood as the one to output.

The Naive Bayes classifier is indeed a collection of several different algorithms, all of which

adhere to the same fundamental concept, which states that the features that are being categorized

are not connected to any of the other features in any way. There is no correlation between the

presence or absence of one trait and the presence and absence of the other feature.

3.3.10 How Multinomial Naive Bayes Works

The Naive Bayes method is a useful tool that may be utilized for the analysis of text data as well

as challenges involving numerous classes. It is essential to have a fundamental understanding of

the Bayes theorem notion before attempting to comprehend the operation of the Naive Bayes

theorem because the former is founded on the latter.

The Bayes theorem, which was developed by Thomas Bayes, is a mathematical formula that

determines the likelihood of an event taking place given the previous knowledge of conditions that

are associated with the occurrence. The following equation serves as its foundation:

P(A|B) = P(A) * P(B|A)/P(B)

Here, predictor B is already available, so we only need to figure out how likely class A is.

P(B) = prior probability of B

P(A) = prior probability of class A

P(B|A) = occurrence of predictor B given class A probability

21

©Daffodil International University

The probability of the tags appearing in the text can be calculated with the help of this formula.

Figure 3.8: MNB Classification System

3.3.11 Evaluation Matrics

The concept of constructing learning models for machine learning is based on the notion of

constructive feedback. Construct a model, monitor its performance using metrics, evaluate its

efficacy, and keep going until you reach the level of accuracy you require. The performance of a

model may be explained using evaluation measures. The capacity of assessment metrics to

differentiate between different model outputs is an essential characteristic of these metrics.

Developing a predictive model for the sake of developing a predictive model should not be a

purpose. The process involves developing and choosing a model that provides a high level of

accuracy on data that is not part of the sample set. As a result, it is essential to verify the correctness

of the model before attempting to compute expected values.

3.3.12 Confusion Matrix

The number of classes that are being predicted is denoted by the N in a confusion matrix, which is

a N x N matrix. Because N is equal to two in this particular situation, we will be working with a

matrix that has those dimensions.

22

©Daffodil International University

Figure 3.9: Confusion matrix

The following are some definitions pertaining to a confusion matrix that you will need to keep in

mind:

● Accuracy: May be defined as the percentage of right predictions relative to the total

number of guesses.

● Positive Predictive Value or Precision: The percentage of positive instances that were

found to have been appropriately recognized.

● Negative Predictive Value: The percentage of instances that were found to be false

positives that were accurately detected.

● Sensitivity or Recall: The proportion of actual positive cases which are correctly

identified.

● Specificity: The percentage of true negative cases that can be identified without error.

3.3.14 F1 Score

In the last part of this article, we spoke about precision and recall for issues involving classification,

and we also highlighted how important it is to choose precision and recall based on our use case.

What if, for one of our use cases, we want to achieve the highest possible level of both precision

and recall simultaneously? A classification problem's F1 score is calculated by finding the

harmonic mean of the problem's accuracy and recall scores. The following is the formula used to

get the F1-Score:

23

©Daffodil International University

Now, the issue that immediately springs to mind is why we are using a harmonic mean rather than

an arithmetic mean. This is an obvious question. This is due to the fact that HM is more strict with

punishing excessive values. Let's look at an example of this to better comprehend it. A binary

classification model that we have yielded the outcomes of which are as follows:

If we were to calculate the arithmetic mean of these values, we would obtain 0.5. It is very evident

that the aforementioned result was produced by a simple classifier that just ignores the input and

makes a prediction regarding which of the classes should be output. Now, if we were to take HM,

we would receive 0 as a correct result, which is appropriate seeing as how this model is completely

pointless for any and all applications.

It appears to be quite easy. However, there are circumstances in which a data scientist would want

to place a greater emphasis on or assign a greater amount of weight to, either precision or recall.

By making a few adjustments to the formula above so that we may add an adaptable parameter

named beta for the purpose of this discussion. The efficacy of a model is evaluated with respect to

a user that places a weighting of twice as much value on recall as precision when using the fbeta

metric.

3.3.15 Conclusion

In this chapter, we covered the preliminary work that was done on our research project, as well

as the theoretical framework that underpinned it.

3.4 Implementation Requirements

Python (v3.xx) Python is an interpreted high-level language whose design philosophy calls for

an emphasis on code readability and a syntax that allows programmers to express Concepts and

their work require fewer lines of code than in languages such as Java & C++.

3.4.1 Python Libraries Python comes with an extensive standard library, an aspect of python

referred to as "batteries included" python philosophy. Python's ability to provide tools for a wide

24

©Daffodil International University

range of tasks is one of its greatest strengths. We can easily gain access by using the import

keyword. Python provides a list of libraries used for data science, some of which are listed below

and are used in this thesis:

3.4.2 Numpy

Numpy is a powerful base package for scientific computing.

● tools for integrating C/C++ and Fortran code

● routines for fast operations on arrays, including mathematical, logical, shape manipulation,

sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical

operations, random simulation and much more.

3.4.3 Matplotlib

Matplotlib is a Python 2D plotting library that produces publication-quality figures in a variety

of hardcopy formats and in an interactive environment across platforms. Matplotlib is available

for Python scripts, Python and IPython shells, Jupyter notebooks, web application servers, and

four GUI toolkits. Using matplotlib, we can generate plots, histograms, power spectra, bar charts,

error plots, scatterplots, and more with just a few lines of code.

3.4.4 Jupyter Notebook

Jupyter Notebook is an open source web application with an interactive environment for creating

and sharing documents containing live code, equations, visualizations, and narrative text.

Jupiter's code can generate rich interactive output such as HTML, images, and videos. It can be

used for data cleaning and transformation, numerical simulation, statistical modeling, data

visualization, machine learning, and many other applications.

25

©Daffodil International University

CHAPTER 4

 4.1 Experimental Setup

In my study, all data analysis, manipulation, training, and evaluation were performed in Jupyter

notebooks. The purpose of the experiment is to obtain a logistic regression classifier model which

has the best generalization performance and also achieves very good accuracy in its predictions.

While most of the techniques and models deployed there have been criticized for over fitting the

training data, so the model performs well on the training data with a very low error rate, but fails

on unseen test data or real Poor performance in world data. To overcome this problem, a "hold-

out" authentication technique is used. This is one of the standard procedures in the machine

learning process. The training set is divided into training, validation and testing dataset.

4.2 Experimental Result & Analysis

The total sample size is 549846. Good and Bad URL quantity is given below:

Figure 4.1: Dataset Ratio

Experimental Result & Discussion

26

©Daffodil International University

4.2.1 RegexpTokenizer

A regular expression is used by a RegexpTokenizer to divide a text into its component substrings.

To give just one illustration, the following tokenizer creates tokens out of alphabetic sequences,

monetary expressions, and any other sequences that do not contain whitespace:

Figure 4.2: RegexpTokenizer

If we want total control over how the text is tokenized, we utilize regular expressions to do this.

In the figure below after using tokenizer, we get this result

Figure 4.2.1: RegexpTokenizer Output

27

©Daffodil International University

4.2.2 SnowballStemmer

It is a stemming algorithm that is also recognized as the Porter2 stemming method since it is an

improved version of the Porter Stemmer due to the fact that various problems with the Porter

Stemmer have been solved in this stemmer. The term "lemma" refers to the result of the process

of reducing a word to its word stem, which can then be attached to suffixes, prefixes, or the roots

of other words. Stemming is, in layman's terms, the process of reducing a word to its base word or

stem in such a manner that words of a similar sort lie under a common stem. Stemming may also

be thought of as derivation. For instance, the terms "care," "cared," and "caring" are all derived

from the same root word: "care." Processing natural language requires careful attention to

stemming (NLP). In comparison to Porter Stemmer, Snowball Stemmer is a more vigorous

cultivar. The shortcomings of the Porter Stemmer have been addressed in the Snowball Stemmer.

The way in which these two things function is nearly identical to one another. When run through

the snowball stemmer, words like "fairly" and "sportingly" are shortened to "fair" and "sport."

However, when run through the porter stemmer, these words are shortened to "fairli" and

"sportingli." The manner that each of these algorithms originate the word "Sportingly" reveals an

important distinction between them, which can be observed quite clearly. Clearly Snowball

Stemmer is able to provide a stem that is more precise.

Figure 4.3: Before using SnowballStemmer

28

©Daffodil International University

After using SnowballStemmer got the above result. And we join the text in a sentence.

Figure 4.3.1: After using SnowballStemmer

4.2.3 WordCloud

A data visualization approach known as a "word cloud" is utilized for the purpose of showing text

data within which the size of each word represents the frequency with which it is used or its

relevance. With the use of a word cloud, important aspects of textual material may be brought to

light. It is common practice to employ word clouds while conducting data analysis on social

networking platforms. Python modules called matplotlib, pandas, and wordcloud are required in

order to create a word cloud using Python. In recent years, text data has seen exponential growth,

which has resulted in an ever-increasing demand for the analysis of extremely large volumes of

such data. Word Cloud is a useful tool for analyzing text data through the process of data

representation in the form of tags, or words; the significance of a word is determined by the

frequency with which it appears in the text.

The most often used terms in URLs that are not attempts at phishing.

29

©Daffodil International University

Figure 4.4: URLs that are not attempts at phishing

The most common words used in phishing sites are given below:

30

©Daffodil International University

Figure 4.5: URLs that are attempts at phishing

31

©Daffodil International University

4.2.4 Logistic Regression:

Training Accuracy: 0.9770602157212694

Testing Accuracy: 0.9629352111856367

Table 4.1: Logistic Regression Accuracy

4.2.5 Classification Result

 Precision Recall F1-score

Bad 0.90 0.97 0.93

Good 0.99 0.96 0.97

Accuracy 0.96

Macro avg 0.94 0.96 0.95

Weighted avg 0.96 0.96 0.97

Table 4.2: Logistic Regression Classification Result

4.2.6 Confusion Matrix

The confusion matrix is given below:

Figure 4.6: Confusion Matrix of Logistic Regression

32

©Daffodil International University

4.2.7 Multinomial Naive Bayes

Training Accuracy: 0.9739660122604175

Testing Accuracy: 0.957690125270984

Table 4.3: Multinomial Naive Bayes Accuracy

4.2.8 Classification Result

Precision Recall F1-score

Bad 0.90 0.97 0.93

Good 0.99 0.96 0.97

Accuracy

0.96

Macro avg 0.94 0.96 0.95

Weighted avg 0.96 0.96 0.97

Table 4.4: Multinomial Naive Bayes Classification Result

4.2.9 Confusion Matrix

The confusion matrix is given below:

Figure 4.7: Confusion Matrix of Multinomial Naive Bayes

33

©Daffodil International University

Actual Score

Actual Score of Logistic Regression: 0.9629352111856367

Actual Score of MultinomialNB: 0.957690125270984

Rounded Score

Final Rounded Score: Accuracy

Logistic Regression 0.96

MultinomialNB 0.96

Figure 4.7: Accuracy difference between Logistic Regression and Multinomial Naive Bayes

4.2.10 Best Fit Model

The findings presented above make it quite evident that the Logistic Regression model provides

the greatest fit, as indicated by its actual score of 96%.

Therefore, at this point we will create a sklearn pipeline utilizing logistic regression.

Pipeline Score: 0.9658014577574442

Training Accuracy: 0.9797979553037945

Testing Accuracy: 0.9658014578574442

Table 4.5: Best Fit Model Accuracy

34

©Daffodil International University

4.2.11 Classification Result

Precision Recall F1-score

Bad 0.91 0.97 0.94

Good 0.99 0.96 0.98

Accuracy

0.97

Macro avg 0.95 0.97 0.96

Weighted avg 0.97 0.96 0.97

Table 4.6: Best Fit Model Classification Result

4.2.12 Confusion Matrix

Figure 4.8: Confusion Matrix of Best Fit Model

35

©Daffodil International University

4.2.13 Model Testing Result

I input some good and bad URL addresses and I got some satisfactory results. For cross-

verification I insert a good URL in bad portion and also I insert a bad url in good portion.

The outcome is given below.

Figure 4.9: Model Testing Result

4.3 Discussion

Python is utilized in order to carry out the evaluation of the suggested model. Accuracy, F1 score,

Recall, and Precision are the four performance indicators that we have taken into consideration.

36

©Daffodil International University

Chapter 5

Impact on Society, Environment & Sustainability

5.1 Impact on Society

. "Phishing" is one of the most common types of cybercrime that affects consumers, businesses,

and individuals all over the world. So, exactly what is phishing? There is no formal definition, but

it can be summarized as an attempt to obtain sensitive information, often for malicious purposes,

by masquerading as a trustworthy entity or individual in electronic communication. While it is a

relatively simple attack, it has emerged as the most common and dangerous threat posed by

attackers

5.2 Impact on Environment

As I anticipate that it will be a convenience thesis with a significant impact on society, it must also

have a significant impact on the environment. Because an environment is created by a society, and

societies are created by people. If people have sufficient knowledge of phishing website detector,

it will also have dominance in their environment. As a result, my thesis will contribute to the

development of an environment in which everyone can use the phishing website detector model

without error.

5.3 Ethical Aspects

It is my moral responsibility in most organizations, IT personnel are trusted with access to sensitive

and personal data, so ethics are an important part of detect phishing website. What ethical standards

exist often shapes their behavior and how they handle this responsibility. For example, The

Institute of Electronics and Electrical Engineers is one organization that has an ethics code that

many organizations and researchers try to follow. Furthermore, the Association of Computing

Machinery's Code of Ethics and Professional Conduct emphasizes fundamental ethical

considerations and provides organizations with guiding principles. These guidelines and code of

ethics are intended primarily to serve as a foundation for ethical decision making in the course of

everyday professional work.

37

©Daffodil International University

5.4 Sustainability Plan

My plan is to introduce a detection method against phishing website attacks using logistic

regression. It will be help to detect phishing website. This is the reason why I created the model

and why I need to fix the properly so that people can easily check the phishing website. I should

have known about this concept and I should learn and clear the concept. That’s why I need to

sustain this model properly. I also need to process how to sustain this model permanently.

38

©Daffodil International University

CHAPTER 6

5.1 Summary of the Study

Malicious actors are attempting to seize control of the vulnerable system in order to carry out a

variety of attacks on the users' transactions. An example of this kind of attack is known as a

"phishing attack" The intruder tries to force the genuine user into believing that they are accessing

a fraudulent website.

5.2 Conclusions

An example of a common form of cybercrime is known as a phishing attack. In this type of attack,

the perpetrators attempt to trick users into providing their personal information by disguising

themselves as an official website. Logistic Regression and Multinomial Naive Bayes are the two

varieties of machine learning classifiers that are utilized by the proposed method. Performance

criteria like F1 score, Recall, and Precision are utilized in the implementation of these algorithms.

It is abundantly obvious from the experimental findings that the LR algorithm has a better F1 score,

as well as higher precision and recall. In addition, in comparison to other machine learning

classifiers, the LR classifier boasts a phishing detection accuracy of 96%, which is significantly

higher. Evaluation of these machine learning classifiers using larger datasets is the next step in the

development of the system that has been suggested.

5.3 Implication for Further Study

Nevertheless, when the potential dangers posed by rogue URLs are taken into account, this figure

is rather low, and there is room for future development. The rapid development of technology in

recent years has led to the creation of a number of innovative and intricate architectural designs as

well as preprocessing methods, some of which are said to be superior to the ones that have been

described. Because of this, there is potential for future study, and it is anticipated that models built

with these sophisticated algorithms would have higher performance

Summary, Conclusion, Implication for Future Research

39

©Daffodil International University

 References

[1] Medvet, Eric, Engin Kirda, and Christopher Kruegel. "Visual-similarity-based phishing

detection." Proceedings of the 4th international conference on Security and privacy in

communication networks. 2008

[2] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Cranor, Jason Hong, and Chengshan Zhang.

An Empirical Analysis of Phishing Blacklists. In Sixth conference on email and anti-spam (CEAS).

California, USA, 2009.

[3] A Framework for Detection and Measurement of Phishing Attacks. In Proceedings of the 2007

ACM Workshop on Recurring Malcode, WORM ’07, pages 1–8, New York, NY, USA, 2007.

ACM.

[4] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta. Phish-Net: Predictive Blacklisting to

Detect Phishing Attacks. In 2010 Proceedings IEEE INFOCOM, pages 1–5, March 2010

[5] Frank Vanhoenshoven, Gonzalo Nápoles, Rafael Falcon, Koen Vanhoof, and Mario Köppen.

Detecting malicious urls using machine learning techniques. In 2016 IEEE Symposium Series on

Computational Intelligence (SSCI), pages 1–8, 2016.

[6] Zhang, Yue, Jason I. Hong, and Lorrie F. Cranor. "Cantina: a content-based approach to

detecting phishing websites." Proceedings of the 16th international conference on World Wide

Web. 2007.

[7] Aburrous, Maher, et al. "Intelligent phishing website detection system using fuzzy

techniques." 2008 3rd International Conference on Information and Communication Technologies:

From Theory to Applications. IEEE, 2008.

[8] Jun Ho Huh and Hyoungshick Kim. Phishing detection with popular search engines: Simple

and effective. In Joaquin Garcia- Alfaro and Pascal Lafourcade, editors, Foundations and Practice

of Security, pages 194–207, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[9] Routhu Srinivasa Rao and Alwyn Roshan Pais. Jail-phish: An improved search engine-based

phishing detection system. Computers & Security, 83:246–267, 2019.

40

©Daffodil International University

[10] D. Kevin McGrath and Minaxi Gupta. Behind Phishing: An Examination of Phisher Modi

Operandi. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent

Threats, LEET’08, pages 4:1–4:8, Berkeley, CA, USA, 2008. USENIX Association.

[11] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Beyond Blacklists:

Learning to Detect Malicious Web Sites from Suspicious URLs. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages

1245–1254, New York, NY, USA, 2009. ACM.

[12] A. Le, A. Markopoulou, and M. Faloutsos. PhishDef: URL Names Say it All. In 2011

Proceedings IEEE INFOCOM, pages 191–195, April 2011.

[13] Ozgur Koray Sahingoz, Ebubekir Buber, Onder Demir, and Banu Diri. Machine learning-

based phishing detection from urls. Expert Systems with Applications, 117:345–357, 2019.

[14] Rakesh Verma and Avisha Das. What’s in a url: Fast feature extraction and malicious url

detection. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy

Analytics, IWSPA ’17, pages 55–63, New York, NY, USA, 2017. ACM.

[15] PhishTank. https://www.antiphishing.org/resources/apwg-reports/, 2022.

[16] Harshal Tupsamudre, Ajeet Kumar Singh, and Sachin Lodha. Everything is in the name – a

url based approach for phishing detection. In Shlomi Dolev, Danny Hendler, Sachin Lodha, and

Moti Yung, editors, Cyber Security Cryptography and Machine Learning, pages 231–248, Cham,

2019. Springer International Publishing.

[17] A. Le, A. Markopoulou, and M. Faloutsos. PhishDef: URL Names Say it All. In 2011

Proceedings IEEE INFOCOM, pages 191–195, April 2011.

[18] DMOZ. http://dmoz-odp.org/, 2022.

[19] Tyler Moore and Richard Clayton. Financial Cryptography and Data Security. chapter

Evaluating the Wisdom of Crowds in Assessing Phishing Websites, pages 16–30. Springer-Verlag,

Berlin, Heidelberg, 2008.

[20] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-scale classification of phishing

pages. In NDSS ’10, 2010.

http://www.antiphishing.org/resources/apwg-reports/
http://dmoz-odp.org/

41

©Daffodil International University

[21] Calvin Ardi and John Heidemann. AuntieTuna: Personalized Content-Based Phishing

Detection. In Proceedings of the NDSS Workshop on Usable Security, San Diego, California,

USA, February 2016. The Internet Society.

[22] Sahoo, C. Liu, S.C.H. Hoi, “Malicious URL Detection using Machine Learning: A Survey”.

CoRR, abs/1701.07179, 2017.

[23] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature survey,” IEEE

Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013.

[24] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of driveby- download attacks

and malicious javascript code,” in Proceedings of the 19th international conference on World wide

web. ACM, 2010, pp. 281– 290.

[25] R. Heartfield and G. Loukas, “A taxonomy of attacks and a survey of defence mechanisms

for semantic social engineering attacks,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 37,

2015.

[26] Internet Security Threat Report (ISTR) 2019–Symantec.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-242019-en.pdf [Last

accessed 10/2019].

http://www.symantec.com/content/dam/symantec/docs/reports/istr-242019-en.pdf

42

©Daffodil International University

APPENDIX

Code

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import pandas as pd

from google.colab import drive

drive.mount('/content/gdrive/')

phishing_data = pd.read_csv('/content/gdrive/MyDrive/Sobur/phishing_site_urls.csv')

phishing_data.head()

phishing_data.tail()

phishing_data.info()

phishing_data.isnull().sum()

lbl_counts = pd.DataFrame(phishing_data.Label.value_counts())

import seaborn as sns

sns.set_style('darkgrid')

sns.barplot(lbl_counts.index, lbl_counts.Label)

from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer(r'[A-Za-z]+')

43

©Daffodil International University

print(phishing_data.URL[0]) # This 0 is first row

clean_text = tokenizer.tokenize(phishing_data.URL[0])

print(clean_text)

import time

start = time.time()

phishing_data['text_tokenized'] = phishing_data.URL.map(lambda text: tokenizer.tokenize(text))

end = time.time()

time_req = end - start

formatted_time = "{:.2f}".format(time_req)

print(f"Time required to tokenize text is: \n{formatted_time} sec")

phishing_data.sample(7)

from nltk.stem.snowball import SnowballStemmer

sbs = SnowballStemmer("english")

we will see the execution time to stem the tokenize text:

start = time.time()

phishing_data['text_stemmed'] = phishing_data['text_tokenized'].map(lambda text:

[sbs.stem(word) for word in text])

end = time.time()

time_req = end - start

formatted_time = "{:.2f}".format(time_req)

print(f"⏳ Time required for stemming all the tokenized text is: \n{formatted_time} sec")

phishing_data.sample(7)

start = time.time()

44

©Daffodil International University

phishing_data['text_to_sent'] = phishing_data['text_stemmed'].map(lambda text: ' '.join(text))

end = time.time()

time_req = end - start

formatted_time = "{:.2f}".format(time_req)

print(f"Time required for joining text to sentence is: \n{formatted_time} sec")

phishing_data.sample(10)

phishing_sites = phishing_data[phishing_data.Label == 'bad']

not_phishing_sites = phishing_data[phishing_data.Label == 'good']

phishing_sites.head()

not_phishing_sites.head()

import matplotlib.pyplot as plt

import numpy as np

from wordcloud import WordCloud

from wordcloud import STOPWORDS

from PIL import Image

def my_wordcloud(text, mask=None, max_words=500, max_font_size=70, figure_size=(8.0,

10.0),

title=None, title_size=70, image_color=False):

stopwords = set(STOPWORDS)

my_stopwords = {'com', 'http'}

stopwords = stopwords.union(my_stopwords)

wordcloud = WordCloud(background_color='#fff',

stopwords = stopwords,

45

©Daffodil International University

max_words = max_words,

random_state = 42,

mask = mask)

wordcloud.generate(text)

plt.figure(figsize=figure_size)

if image_color:

image_color = ImageColorGenerator(mask);

plt.imshow(wordcloud.recolor(color_func=image_colors),

interpolation='bilinear');

plt.title(title,

fontdict={'size': title_size,

'verticalalignment': 'bottom'})

else:

plt.imshow(wordcloud);

plt.title(title,

fontdict={'size': title_size,

'color': '#ff3333',

'verticalalignment': 'bottom'})

plt.axis('off');

plt.tight_layout()

d = '/content/gdrive/MyDrive/Sobur/'

my_data = not_phishing_sites.text_to_sent

my_data.reset_index(drop=True, inplace=True)

46

©Daffodil International University

not_phishing_common_text = str(my_data)

#common_mask = np.array(Image.open(d+'idea.png'))

my_wordcloud(not_phishing_common_text,

#common_mask,

max_words=400,

max_font_size=50,

title = 'The Most common words use in not phishing URLs:',

title_size=20)

my_data = phishing_sites.text_to_sent

my_data.reset_index(drop=True, inplace=True)

phishing_common_words = str(my_data)

#common_mask = np.array(Image.open(d+'target.png'))

my_wordcloud(phishing_common_words,

#common_mask,

max_words=500,

max_font_size=20,

title='The Most common words use in phishing URLs:',

title_size=20)

from sklearn.feature_extraction.text import CountVectorizer

CV = CountVectorizer()

feature = CV.fit_transform(phishing_data.text_to_sent)

feature[:5].toarray()

from sklearn.model_selection import train_test_split

47

©Daffodil International University

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

train_X, test_X, train_Y, test_Y = train_test_split(feature, phishing_data.Label)

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(train_X, train_Y)

lr.score(test_X, test_Y)

Score_ml = {}

Score_ml['Logistic Regression'] = np.round(lr.score(test_X, test_Y), 2)

print('Training Accuracy: ',lr.score(train_X, train_Y))

print('Testing Accuracy: ',lr.score(test_X, test_Y))

here we create confusion matrix:

conf_mat = pd.DataFrame(confusion_matrix(lr.predict(test_X), test_Y),

columns = ['Predicted: Phishing', 'Predicted: Not Phishing'],

index = ['Actual: Phishing', 'Actual: Not Phishing'])

print('\nClassification Report: \n')

print(classification_report(lr.predict(test_X), test_Y,

target_names = ['Bad', 'Good']))

print('\nconfusion Matrix: \n')

plt.figure(figsize = (6, 4))

sns.heatmap(conf_mat, annot = True, fmt='d', cmap="RdYlBu")

from sklearn.naive_bayes import MultinomialNB

48

©Daffodil International University

mnb = MultinomialNB()

mnb.fit(train_X, train_Y)

mnb.score(test_X, test_Y)

Score_ml['MultinomialNB'] = np.round(mnb.score(test_X, test_Y), 2)

print('Training Accuracy: ',mnb.score(train_X, train_Y))

print('Testing Accuracy: ',mnb.score(test_X, test_Y))

conf_mat = pd.DataFrame(confusion_matrix(mnb.predict(test_X), test_Y),

columns = ['Predicted: Phishing', 'Predicted: Not Phishing'],

index = ['Actual: Phishing', 'Actual: Not Phishing'])

print('\nClassification Report\n')

print(classification_report(mnb.predict(test_X), test_Y,

target_names = ['Bad', 'Good']))

print('\nConfusion Matrix\n')

plt.figure(figsize = (6,4))

sns.heatmap(conf_mat, annot = True, fmt='d', cmap='PuBuGn_r')

results = pd.DataFrame.from_dict(Score_ml,

orient = 'index',

columns = ['Accuracy'])

print(f"Actual Score of Logistic Regression: \n{lr.score(test_X, test_Y)}\n")

print(f"Actual Score of MultinomialNB: \n{mnb.score(test_X, test_Y)}\n")

print(f"Final Rounded Score: \n{results}")

49

©Daffodil International University

sns.set_style('darkgrid')

sns.barplot(results.index, results.Accuracy)

from sklearn.pipeline import make_pipeline

pipeline_ls = make_pipeline(CountVectorizer(tokenizer =

RegexpTokenizer(r'[A-Za-z]+').tokenize, stop_words='english'), LogisticRegression())

train_X, test_X, train_Y, test_Y = train_test_split(phishing_data.URL, phishing_data.Label)

pipeline_ls.fit(train_X, train_Y)

pipeline_ls.score(test_X, test_Y)

print("Training Accuracy: ",pipeline_ls.score(train_X, train_Y))

print("Testing Accuracy: ",pipeline_ls.score(test_X, test_Y))

conf_mat = pd.DataFrame(confusion_matrix(pipeline_ls.predict(test_X), test_Y),

columns = ["Predicted: Phishing", "Predicted: Not Phishing"],

index = ["Actual: Phishing", "Actual: Not Phishing"])

print("\nClassification Report \n")

print(classification_report(pipeline_ls.predict(test_X), test_Y,

target_names = ['Bad', 'Good']))

print("\nConfusion Matrix \n")

plt.figure(figsize = (6,4))

sns.heatmap(conf_mat, annot = True, fmt = 'd', cmap="Blues")

import pickle

pickle.dump(pipeline_ls,open('phishing.pkl','wb'))

50

©Daffodil International University

loaded_model = pickle.load(open('phishing.pkl', 'rb'))

result = loaded_model.score(test_X,test_Y)

print(result)

predict_bad = ['www.yeniik.com.tr/wp-admin/js/login.alibaba.com/login.jsp.php',

'www.fazan-pacir.rs/temp/libraries/ipad',

'www.tubemoviez.exe/',

'www.youtube.com/',

'www.svision-online.de/mgfi/administrator/components/com_babackup/classes/fx29id1.txt']

predict_good = ['www.youtube.com/',

'www.python.org/',

'www.google.com/',

'https://colab.research.google.com',

'www.canva.con/design/DAFS7vImEk0/USxaAza_HJgVAIMJcjzT7g/edit',

'www.kaggle.com/']

loaded_model = pickle.load(open('phishing.pkl', 'rb'))

#predict_bad = vectorizers.transform(predict_bad)

predict_good = vectorizer.transform(predict_good)

result_1 = loaded_model.predict(predict_bad)

result_2 = loaded_model.predict(predict_good)

print(f"{result_1} \n {'-'*26} \n{result_2}")

http://www.yeniik.com.tr/wp-admin/js/login.alibaba.com/login.jsp.php%27
http://www.fazan-pacir.rs/temp/libraries/ipad%27
http://www.tubemoviez.exe/%27
http://www.youtube.com/%27
http://www.svision-online.de/mgfi/administrator/components/com_babackup/classes/fx29id1.txt%27
http://www.youtube.com/%27
http://www.python.org/%27
http://www.google.com/%27
http://www.canva.con/design/DAFS7vImEk0/USxaAza_HJgVAIMJcjzT7g/edit%27
http://www.canva.con/design/DAFS7vImEk0/USxaAza_HJgVAIMJcjzT7g/edit%27
http://www.kaggle.com/%27

51

©Daffodil International University

