

A WEB-BASED MANAGEMENT SYSTEM FOR REMOTE WORKERS

FIRORA WORKSPACE

BY

Ariful Islam

ID: 201-15-13843

This Report Presented in Partial Fulfillment of the Requirement of the

Degree of Bachelor of Science in Computer Science and Engineering

SUPERVISED BY

Dr. Sheak Rashed Haider Noori
Professor

Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

 JANUARY 2023

https://github.com/firora/workspace
https://firora.com/
https://arifulislamat.com/

i ©Daffodil International University

APPROVAL

This Project “A WEB-BASED MANAGEMENT SYSTEM FOR REMOTE

WORKERS” submitted by Ariful Is lam, ID No: 201-15-13843 to the Department of

Computer Science and Engineering, Daffodil International University has been accepted

as satisfactory for the partial fulfillment of the requirements for the degree of B.Sc. in

Computer Science and Engineering and approved as to its style and contents. The

presentation has been held on January 19, 2023.

BOARD OF EXAMINERS

Dr. Touhid Bhuiyan

Professor and Head

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

 Chairman

Nazmun Nessa Moon

Associate Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Internal Examiner

Md. Abbas Ali Khan

Assistant Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Internal Examiner

Dr. Mohammad Shorif Uddin

Professor

Department of Computer Science and Engineering

Jahangirnagar University

External Examiner

ii ©Daffodil International University

DECLARATION

I hereby declare that, this project has done by myself under the supervis ion of Dr. Sheak

Rashed Haider Noori, Professor, Department of CSE Daffodil International University.

I also declare that neither this project nor any part that solely re lated to this project has been

submitted elsewhere for award of any degree or diploma.

Supervised by:

Dr. Sheak Rashed Haider Noori

Associate Professor and Associate head

Department of Computer Science and Engineering

Faculty of Science and Information Technology

Daffodil International University

Submitted by:

Ariful Islam

ID: 201-15-13843

Department of Computer Science and Engineering

Faculty of Science and Information Technology

Daffodil International University

iii ©Daffodil International University

ACKNOWLEDGEMENT

First, let me begin by expressing my sincere gratitude to Almighty God for giving us the

ability to successfully finish the senior project and internship via His divine grace.

I sincerely thank you and express my sincere gratitude to Dr. Sheak Rashed Haider

Noori, Professor, Department of CSE, Daffodil International University, Dhaka. Our

supervisor has a wealth of knowledge and a genuine interest in the "Software Engineering"

needed to complete this assignment. His never-ending tolerance, academic leadership,

ongoing encouragement, consistent and vigorous supervision, constructive criticism,

helpful counsel, reading several subpar drafts and revising them at every level have allowed

me to finish this report.

We would like to express our gratitude to the other academics and staff at Daffodil

International University's CSE department for their kind support in producing this report.

I want to thank everyone of my classmates at Daffodil International University who

participated in this discussion while also attending class.

Last but not least, I must respectfully thank my parents for their unwavering love and

support.

iv ©Daffodil International University

ABSTRACT

Since 2020 the world is seen a rapid shift to full-time remote workers and hybrid. Due to

this shift lots of new and old tools as been reconstructed to meet the new demand. On the

other hand, short-time freelancing work and independent freelancers are also increased

dramatically. Thousands of individuals start their own freelancing businesses every day.

Freelancers use a variety of paid and free products and services every day to advance and

outperform their competition. A sizable proportion of independent contractors who operate

in groups seek to launch their own businesses. One of the issues they frequently

encountered when conducting business outside of the freelance sector. They get

disorganized and wind up utilizing an excessive number of services, which causes a

stressful working experience.

So far so good I have come across building web-based systems. That follows a client-server

architecture with a micro-service in nature. It uses VueJS in the frontend, Express js for

REST-API, and Prisma for ORM. Additionally, during the development stage, the system's

scalability is given top importance. Both a monolithic and a microservice architecture can

be used to run the software. Docker has been used during the development and the package

are released as Docker images. So that it may be utilized in the Kubernetes cluster

environment. Building the actual system will require many features however, this prototype

includes some basic features which will be a great starting point for the further

development process.

The purpose of my research and development is to find and build a system that can be used

by the vast majority of individuals and businesses to conduct their business online securely

and confidently.

v ©Daffodil International University

TABLE OF CONTENTS

CONTENTS PAGE

Board of examiner i

Declaration ii

Acknowledgements iii

Abstract iv

CHAPTER

CHAPTER 1: INTRODUCTION 1-6

1.1 Introduction 1

1.2 Motivation 2

1.3 Objectives 3

1.4 Expected Outcome 4

1.5 Project Management and Finance 5

1.6 Report layout 6

CHAPTER 2: BACKGROUND 7-13

2.1 Preliminaries/Terminologies 7

2.2 Related Works 8

2.3 Comparative Studies 12

2.4 Scope of the Problem 12

2.5 Challenges 13

CHAPTER 3: REQUIREMENT SPECIFICATION 14-26

3.1 Business Process Modeling 14

3.2 Requirement Collection and Analysis 17

3.3 Use Case Modeling and Description 19

3.4 Logical Data Model 25

3.5 Design Requirements 26

vi ©Daffodil International University

CHAPTER 4: DESIGN SPECIFICATION 27-47

4.1 Front-end Design 27

4.2 Back-end Design 30

4.3 Interaction Design and user Experience (UX) 34

4.4 Implementation Requirements 45

CHAPTER 5: IMPLEMENTATION AND TESTING 48-51

5.1 Implementation of Database 48

5.2 Implementation of Front-end Design 49

5.3 Testing Implementation 49

5.4 Test Result and Reports 50

CHAPTER 6: IMPACT ON SOCIETY, ENVIRONMENT A… 52-54

6.1 Impact on Society 52

6.2 Impact on Environment 53

6.3 Ethical Aspects 53

6.4 Sustainability Plan 54

CHAPTER 7: CONCLUSION AND FUTURE SCOPE 55

7.1 Discussion and Conclusion 55

7.2 Scope for Further Developments 55

REFERENCES 56

vii ©Daffodil International University

LIST OF FIGURES

FIGURES PAGE NO

Figure 2.1: Kimai – Time Tracking software 8

Figure 2.2: Profosify Software 9

Figure 2.3: Freshbook Software 10

Figure 2.4: AND.CO software 11

Figure 3.1: Business Models 14

Figure 3.2: Login Activity Diagram 15

Figure 3.3: Business Processing model 16

Figure 3.4: Use case modeling 19

Figure 3.5: ERD Diagram 25

Figure 4.1: SPA Architecture 27

Figure 4.2: Component Lifecycle 29

Figure 4.3: Backend development pattern 30

Figure 4.4: Caching example 30

Figure 4.5: Authorization Flowchart 32

Figure 4.6: Authorization lifecycle with API endpoint 33

Figure 4.7: Registration page 34

Figure 4.8: Validation example 35

Figure 4.9: Login page 36

Figure 4.10: Dashboard 37

Figure 4.11: Client page 38

Figure 4.12: Project page 39

Figure 4.13: Proposal page 40

Figure 4.14: Services 41

Figure 4.15: Settings – Business Tab 42

Figure 4.16: Settings – Notification Tab 43

Figure 4.17: Logout modal 44

Figure 6.1: CI/CD Pipeline example 54

viii ©Daffodil International University

LIST OF TABLES

TABLES PAGE NO

Table 3.1: Backend node packages 18

Table 3.2: Frontend node packages 18

Table 3.3: Registration 20

Table 3.4: Login 20

Table 3.5: Dashboard 21

Table 3.6: Task 21

Table 3.7 Timer 22

Table 3.8 Client 22

Table 3.9 Project 23

Table 3.10 Client 23

Table 3.11 Proposal 24

Table 3.12 Service 24

Table 5.1: Registration 50

Table 5.2: Login 50

Table 5.3: Forgot Password 51

Table 5.4: Login Validation 51

Table 6.1: Growth in remote workers 52

 1
©Daffodil International University

CHAPTER 1

INTRODUCTION

1.1 Introduction

To build a platform for start-ups and mid-size businesses. The platform will focus user-

friendliness while reducing technical overhead. The platform will take advantage of the

traditional ERP core system and combine it with modern requirements. This platform will

help users to make planning, organizing, implementing, controlling/monitoring,

collaborating, marketing, sales, accounting, information gathering, and more. it’s all start

with the user, a user could a member or client. All the other services that the system is

providing are related to the client. A client is a person or entity who bought any services

or products from the provider. However, most of the options can be used solo as well.

The project's development has been split into two parts. I could create the software quickly

and simply using full-stack frameworks, but I'm more interested in learning each one

separately and being able to run standalone. I frequently considered switching to a simpler

framework, like Laravel, during the development. When building the backend with

ExpressJS, you will start from scratch, whereas other frameworks will include the majority

of the essential components. Even so, I'm glad that I chose the difficult path because

everything else will seem simpler once I get acclimated to it.

To work with databases, I utilized Prisma. I prefer to have a single design and the ability

to connect to several backend databases, such as MySQL, PostgreSQL, MongoDB, etc. I

find Prisma to be a very good ORM, and I really like using and understanding it. It comes

with Studio software for visual representation and database manipulation, and it's fairly

simple to learn.

Utilizing typescript was a wise choice, but it was also difficult. However, I made an effort

to keep my code as secure as I could by using TypeScript and Zod on my project.

2 ©Daffodil International University

1.2 Motivation

During the Covid-19 epidemic, I had the concept while starting my start-up firm. I then

gather a small group of close friends and well-known individuals to begin the adventure.

As a result of the scenario, every member of our team worked virtually from their homes.

For our small team, I was seeking for a solution. There are several options available;

nevertheless, I was unable to find a perfect solution at a reasonable cost. Traditional ERP

systems are extremely expensive and require additional costly training to use. I've tried a

few open-source ERPs, including Odoo, but they are all quite difficult to use and important

modules are paid.

We made an effort to employ many open-source applications. They were created to address

particular problem categories. Thus, to conduct business online, we end up using 5-7

separate pieces of software. Combining various open-source programs initially looks like

a smart idea. However, our data also expands dramatically as team’s progress and grow.

Individually managing each piece of software becomes time-consuming and difficult.

Moreover, since the data are vague, it is harder to draw any conclusive conclusions.

That this isn't simply our issue struck me. There are approximately 137,000 new businesses

founded each day, therefore 50 million new businesses are expected to be founded year.

The number of people working as independent contractors has increased dramatically.

Freelancers accounted up 36% of the American workforce in 2021, according to study by

Upwork® Global Inc., and they helped the economy of the country by $1.30 trillion

dollars.

As a result, I envis ion a healthy market demand for software that will enable those

companies or individuals to launch and sustain their worldwide businesses. Also, I see

great needs for our own team management and prosper.

3 ©Daffodil International University

1.3 Objectives

The development of microservices is my main goal because, in my opinion, doing so will

enable me to implement the software they way I have imagined. Since I entered the realm

of JavaScript, where there are countless frameworks and packages available, anything can

be done in a thousand of different ways. Hold on? I have still had to cope with Typescript.

Top priority scalability and sustainability, the software needs to be able easily scale up and

down whenever needed. The software needs to meet the demands run on both a monolithic

and a microservice architecture. It needs to package as Docker image so that it could run

in Kubernetes environment.

Due to the project's complexity and size, which requires to cover most of the major business

or individual needs. The first beta version's development may take up to one year,

according to my estimation. However, in terms of this project, I am investigating various

existing solutions and conducting market research.

I'm attempting to create a prototype for this project to display my idea and a potential means

of assisting others.

 Open source

 Learning REST API

 Learning Backend Development

 Working with ORM

 Docker (Orchestration)

 Cross platform

 Cloud and Self-hosting

 Collaborations

 User friendly

 Accessibility for old and color blind

4 ©Daffodil International University

1.4 Expected Outcome

The technology used in this project may be useful to others who are seeking for a way to

archive microservices and cross-platform development.

I will try my best to demonstrate system architecture, which will assist others in developing

projects of a similar nature.

 REST API

 JWT Authentication

 Microservice architecture

 ORM (Object–relational mapping)

 SPA (Single Page Application)

 SMTP

 Docker image

 Docker-compose

5 ©Daffodil International University

1.5 Project Management and Finance

There are numerous project management services accessible. GitHub, Bitbucket with Jira,

and GitLab are potential excellent choices for software development. I have decided to go

with GitLab since it is open-source.

 Project Management

 Git is a version controller for distributed system. It has been used on my

project to keep track of changes in any set of files.

 GitLab is DevOps software package suite which has many features that I

have utilize on my project development.

 Kanban board is task scheduling system. Its comes pre-built with GitLab

out of the box. I have used keep track different task and create my

development plans using it.

 XP stand for “Extreme Programming”, I like this idea and principle. Since

I am the only person working on this project, I am trying to follow as much

as I can. However, for the long run I will go with Agile development

methodology.

 Finance

 Self-finance, since I am using my own existing equipment, there was no

need to buy new equipment for this project.

 Prototype's assumed cost is $16,500 USD, depending on resources and a

$35 hourly rate over the course of three months.

6 ©Daffodil International University

1.6 Report layout

Chapter 1: Introduction

This chapter serves as an introduction to my project and a discussion of its driving forces,

goals, and anticipated outcomes.

Chapter 2: Background

I walk you through the business aspect of the project and introduce to competitors. In

comparison to many other possible systems, I also discuss the associated work, the project's

scope, and the challenges.

Chapter 3: Requirement Specification

Discussion about software requirement as non-functional and deep details about software

development dependences.

Chapter 4: Design Specification

I provide screenshots to illustrate the front-end design of our project, along with

information on installation, configuration, and other necessary support tools.

Chapter 5: Implementation and Testing

Using GitLab CI/CD tools, I have demonstrated the build and implementation process.

conduct some elementary API endpoint tests, too.

Chapter 6: Impact on Society, Environment and Sustainability

I have try described the direct and indirect affect the software might have on the society

and environment. Sustainability is one of my prime futures objectives I have also shared

my plan on it.

Chapter 7: Conclusion and the future opportunities

I talked about my findings and the potential for further research and development.

7 ©Daffodil International University

CHAPTER 2

BACKGROUND

2.1 Preliminaries/Terminologies

Microservice

Definition: Software is created using an architectural and organizational strategy known as

microservices, which consists of small, autonomous services that communicate over

defined APIs.

REST API

Definition: Representational State Transfer (REST also knows as RESTful) an application

programming interface (API) that complies with the restrictions of the REST architectural

style and enables communication with RESTful web services.

ORM

Definition: Object-Relational Mapping (ORM) is a method that enables addressing,

accessing, and manipulating objects without taking into account how those objects relate

to their data sources.

SPA

Definition: Single-Page Application (SPA) is a web app implementation technique that

only load a single web document and update the DOM for body content. Invention of this

technique played a major role in cross-platform development with web technologies.

CI/CD

Definition: Continuous Integration/Continuous Deployment (CI/CD) is a set of technique

that make possible the frequently deliveries through automation to the various stages of

software development process.

8 ©Daffodil International University

2.2 Related Works

There are only a few businesses out there that are offering solutions specific to my project.

I am conducting extensive study on them, which is greatly assisting me in obtaining the

user needs.

Kimai: Is an open source time tracking software that has the concept of client, service and

charge client based hourly or monthly.

Figure 2.1: Kimai – Time Tracking software

9 ©Daffodil International University

Profosify: Is a proposal software for sales team or contractor. Growing teams can eliminate

document bottlenecks and gain vis ibility into the close, which is the most crucial stage of

sales cycle, with the aid of Proposify proposal software.

Figure 2.2: Profosify Software

10 ©Daffodil International University

Freshbooks: The accounting program FreshBooks is run by 2ndSite Inc. and is largely

used by small and medium-sized enterprises. It is accessible from a desktop or mobile

device and is a web-based software as a service model.

Freshbooks stands out from the prior solution as being more beneficial and packed with

features, both of which I was considering including in my project.

Figure 2.3: Freshbook Software

11 ©Daffodil International University

AND.CO: The freelancing program AND CO, designed to assist you in managing your

offline business from proposal to payment, was acquired by Fiverr in 2018. Now called

AND CO from Fiverr, by reducing friction, this SaaS tool enables freelancers to earn more

money.

This service is a perfect example of what I am trying to build from ground up.

Figure 2.4: AND.CO software

12 ©Daffodil International University

2.3 Comparative Studies

There are other businesses offering features, and I’ll be included them in my project as

well. However, there are no businesses operating in Bangladesh or in our region of Asia.

A program that will assist this new firm in becoming legally established is in high demand

due to the daily growth of commerce-based businesses in our nation. Our government also

loses VAT and TAX because there isn't any specific software for them. Note don’t compare

extensive ERP system with this lightweight software for small and mid-size business. If

all businesses operated responsibly, it would be simpler for them to analyze data and make

wiser business decisions. They will then automatically have reports and records that can

be given to authorities.

2.4 Scope of the Problem

To avoid the usual monolithic development approach, I have divided the project into server

side (backend) and client side (frontend) components. Start creating API, so that they can

talk to each other over API and that will allow me later develop the desktop and mobile

client for the system. There for it took me longer time to even started. Additionally, I

avoided selecting an all-encompassing backend framework so that I could study each one

separately and consider other solutions as opposed to simply seeing through a predefined

view. According to what I've learned, this path is harder, but if you go through it,

everything else will seem simpler.

Some key technical problem of the project as follow:

 Protecting the API endpoint from unauthorized access

 Connecting the server API with the client

 Choosing correct NPM packages

 Creating authentication mechanism

 Validating user input

 Development pattern and architecture

 Setting up development environment

13 ©Daffodil International University

2.5 Challenges

I encountered difficulties at every stage of the process, and I frequently became irritated.

Collecting and analyzing user requirement then creating different features that are

interconnect and keeping relation all in your mind is quite good challenging.

Also need to collect and analysis similar software, then come to conclusion which one is

the best approach that will solve people’s problem.

Some key challenges that I tried to overcome:

 Finding the best “tech stack” for the client side

 Finding the best “tech stack” for server side

 Creating a pattern or workflow, that will be followed

by the system to do any actions.

 Creating a Single-Page Application for web app

 Securing REST-API end point

 Validating user input and protecting from SQL injection

14 ©Daffodil International University

CHAPTER 3

REQUIREMENT SPECIFICATION

3.1 Business Process Modeling

By providing data-driven visual representations of the most important business processes,

business process modeling (BPM) provides organizations with an easy approach to

comprehend and optimize workflows.

I have created some basic BPM; those are given below.

Figure 3.1: Business Models

15 ©Daffodil International University

The illustration below demonstrates the secure authentication process. If the user

credentials are accurate and saved in the database, the end user attempted to log in. If the

user information is missing from the database, they will receive the wrong login

information and, if they haven't already signed up, be presented with a registration screen.

Figure 3.2: Login activity Diagram

16 ©Daffodil International University

The BPM diagram was pretty challenging to create. Please accept my sincere apologies for

making the component appear so tiny and difficult to read because there were so many

components to depict.

Figure 3.3: Business Processing model

17 ©Daffodil International University

3.2 Requirement Collection and Analysis

The first step in creating any system is gathering user requirements. There are various

methods for gathering requirements. I decided to conduct online research, analyze current

projects, and my personal working experience (since I am freelancer myself, therefor I am

a perfect candidate).

Non-technical requirement:

 Easy access to the system (Suggested by an old man)

 Visible color for UX/UX (Suggested by an old man)

 Searching option

 Client/Customer management

 Invoice generator

 Product/Service or Stock management

 Easy proposal creation and tracking

 Easy payment option

 Multiple organization management

 Good performance and great user experience

 Being able to access from different platform (Desktop, Phone)

 Require simple overview or business insight

Based on the user requirement I have find some technical requirement to develop such

system.

18 ©Daffodil International University

Technical requirement analysis report:

Table 3.1: Backend node packages

SN Name Minify size Minify + GZIP Load Time 4G

1 @prisma/client 233B 171B 191 μs

2 bcryptjs 21.2KB 9.6KB 11ms

3 config 14.6KB 5.3KB 6ms

4 cookie-parser 3.4KB 1.3KB 2ms

5 cors 4.3KB 1.8KB 2ms

6 dotenv 2.7KB 1.3KB 2ms

7 envalid 14.8KB 4.9KB 6ms

8 express 572.8KB 229.4KB 262ms

9 html-to-text 229.7KB 74.4KB 85ms

10 jsonwebtoken 39.9KB 11.6KB 13ms

11 lodash 69.9KB 24.5KB 28ms

12 nodemailer 197.6KB 52.4KB 60ms

13 pug 731.9KB 170.1KB 194ms

14 redis 249.8KB 45.7KB 52ms

15 ts-node-dev 416.5KB 133.1KB 152ms

16 zod 45.3KB 11KB 13ms

Total 2.6MB 776.5KB 888.19ms

Note: This are backend packages, so will not reflect the frontend load time on client side.

Table 3.2: Frontend node packages

SN Name Minify size Minify + GZIP Load Time 4G

1 quasar 505KB 143.9KB 164ms

2 chart.js 194.1KB 65KB 74ms

3 vue 78.5KB 28.7KB 33ms

4 vue-i18n 48.6KB 14.6KB 17ms

5 vue-router 30.6KB 11.2KB 13ms

6 axios 13.5KB 4.6KB 5ms

7 pinia 11.4KB 4.5KB 5ms

Total 881.6KB 272.3KB 314ms

19 ©Daffodil International University

3.3 Use Case Modeling and Description

Use Case Modeling: This model diagram shows an overview of who have access to which

services of the system.

Figure 3.4: Use case modeling

20 ©Daffodil International University

Use Case Description:

Table 3.3: Registration

Use-Case ID UC-01

Use-Case Title Registration

Precondition  Need a valid email address

 Strong password

Actors User

Success End State Show successful registration message

Failure End State Show error message

Trigger Redirect to login page

Description To access the system, users must first

register.

Table 3.4: Login

Use-Case ID UC-02

Use-Case Title Login

Precondition  User was pre-registered

Actors User, Owner, Administrator

Success End State Allow user to access portal

Failure End State Show error message

Trigger Redirect to portal

Description Only those who have been granted access

may use this private system.

21 ©Daffodil International University

Use Case Description (Continued):

Table 3.5: Dashboard

Use-Case ID UC-03

Use-Case Title Dashboard statistics

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to access dashboard statistics

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description Dashboard is a collection of different

statistics about user business. That give a

quick insight for business decision.

Table 3.6: Task

Use-Case ID UC-04

Use-Case Title Task

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to create and see task list

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description Task are small activity or work related to

user projects. User can create task and

assign them to any project.

22 ©Daffodil International University

Use Case Description (Continued):

Table 3.7: Timer

Use-Case ID UC-05

Use-Case Title Timer

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to track time and set stopwatch

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description A timer is a tool that lets users keep track

of the time they spend on various tasks. Set

a stopwatch as well to aid in maintaining

focus and completing the most crucial

tasks.

Table 3.9: Client

Use-Case ID UC-06

Use-Case Title Client

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to create and see client list

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description Client are the primary consumer of the

business services. User will be able to

create client records to track and grow their

business.

23 ©Daffodil International University

Use Case Description (Continued):

Table 3.8: Project

Use-Case ID UC-07

Use-Case Title Project

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to create and see project list

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description Projects are short- or long-term business

agreements based on specific terms and

conditions between the seller and the

buyer. In my system user can track each

project and assign them to any client.

Table 3.10: Client

Use-Case ID UC-08

Use-Case Title Invoice

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to create and see client list

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description a list of the products or services sent, along

with a summary of the payment owed; a

bill.

24 ©Daffodil International University

Use Case Description (Continued):

Table 3.11: Proposal

Use-Case ID UC-09

Use-Case Title Proposal

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to create and see proposal list

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description A sales proposal is a written or electronic

document that is used to promote goods

and services to potential customers. User

will be able to create, send and track the

status of the proposal.

Table 3.12: Service

Use-Case ID UC-10

Use-Case Title Service

Precondition  The end users is currently logged

into the system.

Actors User, Owner

Success End State Allow user to create and see service list

Failure End State Show unauthorized warning and redirect

Trigger Redirect to login page

Description In my system service are treated as

business service, that user provide to their

client.

25 ©Daffodil International University

3.4 Logical Data Model

The relationship between each entity and its main and foreign keys is depicted in this entity

diagram. It's a fantastic method to examine the intricate database and comprehend it

quickly.

Figure 3.5: ERD Diagram

26 ©Daffodil International University

3.5 Design Requirement

As far as my study goes, I've discovered several system design requirements. I also research

their function and relationship. I'll attempt to describe them below.

 Role based access: This system has concept of roles per user. Users can have a role

of owner, member, customer or admin. Base on the user role the system will provide

different user interface and information the user.

 Service and Product: Owners and members can create, modify and share service,

product to the customer. Customer will be able to see it and place order.

 Proposal and Invoice: Proposal are a convenient way to get business leads from

customer. And invoice will help them to get paid for the services or product they are

selling to their respective customers.

 Subscription: To have repeated business user can sell subscription to their customer.

They subscription option in the system will automatically charge the customer based

on what they subscribe to.

 Timer and Todo: Task list manager or To-do is a great way to get list of work need to

done per project and by whom. Owner and customer both will be able to create task

and assign them to projects, users. Timer is user depended, user can turn on and off. It

will allow them to get paid hourly basis and customer will have clear idea about how

much hours took per tasks or project.

 Transaction: Its give a history of all financial transaction is occurred respective to per

user. Owner will get much brought view from the Transaction function.

 Client: Customer or client are the same in this system. Only business owner should see

the client list and how many and information related to them.

 Organization: The concept behind having organization function is that the system can

be used by an entity who might own multiple business and want them to manage from

a single system. So that make organization a top node of the system tree, everything

else connected to the organization.

27 ©Daffodil International University

CHAPTER 4

DESIGN SPECIFICATION

4.1 Front-end Design

I developed the frontend using VueJS and followed SPA pattern to give a seamless user

experience. SPA provides end users with the same experience as using a mobile

application.

Figure 4.1: SPA Architecture

The frontend initaliy loads a empty htlm page and manuplate the browser DOM to renender

different view or component on the display. This way user nerver see blank screen when

navigating from one page to another. Since in SPA there is only one single page.

There will be other SPA for Admin panel, will develop it later on. The resion I want to

have separate code base for user and admin is reduce the load time. So I don’t load any

unnecassary code that wasn’t required for that specific user.

28 ©Daffodil International University

Project structure: There are more files in the project than those mentioned here. It would

take up a lot of room to display every file and folder, which is unnecessary.

➜ frontend git:(master)

├── 📜 index.html
├── 📜 jsconfig.json
├── 📜 package.json

├── 📂 public
│ ├── 📜 favicon.ico

│ └── 📂 icons

└── 📂 src
 ├── 📜 App.vue
 ├── assets

 ├── 📂 boot
 │ ├── 📜 axios.js
 │ └── 📜 i18n.js

 ├── 📂 components
 │ ├── 📜 charts
 │ ├── 📜 settings
 │ └── 📜 WYSIWYG.vue

 ├── 📂 css
 │ ├── 📜 app.sass

 ├── 📂 i18n
 │ ├── 📜 en-US
 │ └── 📜 index.js

 ├── 📂 layouts
 │ ├── 📜 LoginLayout.vue
 │ └── 📜 MainLayout.vue

 ├── 📂 pages
 │ ├── 📜 ClientPage.vue
 │ ├── 📜 DashboardPage.vue
 │ ├── 📜 ErrorNotFound.vue
 │ ├── 📜 InvoicePage.vue
 │ ├── 📜 ProjectPage.vue
 │ ├── 📜 ProposalPage.vue
 │ ├── 📜 ServicesPage.vue
 │ ├── 📜 _SettingsPage.vue
 │ ├── 📜 SigninPage.vue
 │ ├── 📜 SignupPage.vue
 │ ├── 📜 SubscriptionPage.vue
 │ ├── 📜 TimerPage.vue
 │ ├── 📜 TodoPage.vue
 │ └── 📜 TransactionPage.vue

 ├── 📂 router
 │ ├── 📜 index.js
 │ └── 📜 routes.js

 └── 📂 stores

29 ©Daffodil International University

Lifecycle Diagram of Frontend: Since the frontend build with VueJS, basically a

JavaScript framework, that allow me manuplate the DOM at different stage. Each

component I have build have this stages and this is how the component is renderd and

update data on the DOM.

Figure 4.2: Component Lifecycle

30 ©Daffodil International University

4.2 Back-end Design

ExpressJS doesn’t comes with pre-defined development pattern like Larval with MVC

(Model, View, Controller). I have developed the backend following pattern mention below

in the diagram.

Figure 4.3: Backend development pattern

In this pattern each API endpoint is first primarily manage by a controller and Middleware

can be called if it was required base the API route. Controller then forward the request to

Service and Service has connection to database. If service need to make any changes and

make it persistent then Service store that information into database. And its follow the same

path to return respond back to the API client.

Figure: 4.4: Caching example

Optionally I have also used redis to cache necessary quires. Redis is a great solution cache

data from database and serve the cache to end user instead making requires to database all

the time for same data.

31 ©Daffodil International University

Project structure: Backend file and directory structure is cleaner and simpler than the

frontend. Most of them are displayed here as a level three tree list.

➜ server git:(master)

├── 📂 config

│ ├── 📜 custom-environment-variables.ts

│ └── 📜 default.ts

├── 📜 dev-db.yml

├── 📜 package.json

├── 📂 prisma

│ └── 📜 schema.prisma

├── 📂 source
│ ├── controller

│ │ ├── 📜 auth.ctrl.ts

│ │ └── 📜 user.ctrl.ts

│ ├── 📂 middle-ware

│ │ ├── 📜 userDeserializer.ts

│ │ ├── 📜 user.ts

│ │ └── 📜 validate.ts

│ ├── 📂 routes

│ │ ├── 📜 auth.routes.ts

│ │ └── 📜 users.routes.ts

│ ├── 📂 schemas

│ │ └── 📜 users.schema.ts

│ ├── 📜 server.ts

│ ├── 📂 services

│ │ └── 📜 users.services.ts

│ ├── 📂 utils

│ │ ├── 📜 appError.ts

│ │ ├── 📜 connectRedis.ts

│ │ ├── 📜 jwt.ts

│ │ ├── 📜 smtp.ts

│ │ └── 📜 validateEnv.ts

│ └── 📂 views

│ ├── 📜 base.pug

│ ├── 📜 resetPassword.pug

│ ├── 📜 _styles.pug

│ └── 📜 verificationCode.pug

├── 📜 tsconfig.json

└── 📜 yarn.lock

32 ©Daffodil International University

I have used JWT (JSON Web Token) for this project. This below flowchart show how the

authorization process is completed and renewing process of access token.

Figure 4.5: Authorization Flowchart

33 ©Daffodil International University

This below diagram show the lifecycle of API end point with HTTP request method for

user authentication and getting access to the system.

Figure 4.6: Authorization lifecycle with API endpoint

34 ©Daffodil International University

4.3 Interaction Design and user Experience (UX)

This is a registration page where users can register themselves. the user will need to have

a valid email address and a strong password to register himself.

Figure 4.7: Registration page

35 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

The validation process involves two phases. One occurred prior to the data being

transmitted to the server, and the other when the data had already arrived at the server and

was being reviewed before being stored in the database.

Figure 4.8: Validation example

36 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

To sign in and utilize the system, the user must supply valid credentials. This serves as the

system's entrance securely.

Figure 4.9: Login page

37 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

This part of the dashboard contains various statistics regarding the user's business. That

provides a rapid understanding for business decisions. To make it happen and make it

highly helpful, I'm still working on it.

Figure 4.10: Dashboard

38 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

The main consumers of company services are clients. Users can create customer records to

keep track of and expand their business. It allows user to add and remove customer and

manipulate their records.

Figure 4.11: Client page

39 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

Project page allow user to add project and each project assigned to a customer using system.

User can add milestone, list of tasked related to the project, budget for the project and the

project timeline.

Figure 4.12: Project page

40 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

The user will be able to create, transmit, and monitor the proposal's status. This is done to

attract potential clients to products and services.

Figure 4.13: Proposal page

41 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

The service functionality on the system allows the user to create the services they want to

sell to their customer. The system allows an elegant way to share their services with their

customers.

Figure 4.14: Services

42 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

Under the settings page user will get to setup his business details. That will allow the

software to rebranded for each different companies. Allowing so user will get great way to

promote his own brand.

Figure 4.15: Settings – Business Tab

43 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

User will receive notification for certain activity regarding his/her concern. From the

setting page under the “Notification” tab they can turn on/off what they like get notified

for and what not.

Figure 4.16: Settings – Notification Tab

44 ©Daffodil International University

4.3 Interaction Design and user Experience (Continued)

By clicking on the user avatar user can open a pop-up like modal that has the logout option

at the end of option list. By clicking on the “Logout” option user can safely logged out and

protect from unwanted user accessing his/her account.

Figure 4.17: Logout modal

45 ©Daffodil International University

4.4 Implementation Requirements

Implementation requirement during development

 NodeJS 18 LTS

 Docker

 Postgres

 Redis

 VS Code (or similar like)

 Node packages for frontend

 Node packages for backen

 "devDependencies": {

 "@intlify/vite-plugin-vue-i18n": "^3.3.1",

 "@quasar/app-vite": "^1.0.0",

 "autoprefixer": "^10.4.2",

 "eslint": "^8.10.0",

 "eslint-config-prettier": "^8.1.0",

 "eslint-plugin-vue": "^9.0.0",

 "postcss": "^8.4.14",

 "prettier": "^2.5.1"

 },

 "engines": {

 "node": "^18 || ^16 || ^14.19",

 "npm": ">= 6.13.4",

 "yarn": ">= 1.21.1"

 }

 "devDependencies": {

 "@types/bcryptjs ": "^2.4.1",

 "@types/config ": "^3.3.0",

 "@types/cookie-parser": "^1.4.4",

 "@types/cors": "^2.8.12",

 "@types/express": "^4.17.14",

 "@types/html-to-text": "^8.1.1",

 "@types/jsonwebtoken": "^8.5.9",

 "@types/morgan": "^1.9.3",

 "@types/node": "^18.11.9",

 "@types/nodemailer": "^6.4.6",

 "@types/pug": "^2.0.6",

 "morgan": "^1.10.0",

 "prisma": "^4.6.1",

 "typescript": "^4.9.3"

 }

46 ©Daffodil International University

Implementation requirement during deployment

 GitLab

 Cloud (like AWS, Azure, GCP)

 Domain

 Build and containerize frontend

 Build and containerize backend

#Dockerfile

FROM node:lts-hydrogen

RUN npm i --global http-server
WORKDIR /app

COPY pack*.json ./
RUN npm i

COPY . .
RUN npm run build

EXPOSE 80

CMD ["http-server", "dist"]

FROM node:lts-hydrogen as base

WORKDIR /app

COPY package.json yarn.lock ./

RUN rm -rf node_modules && yarn install --frozen-lockfile &&
yarn cache clean

COPY . .

EXPOSE 365

CMD ["node", "./app.js"]

47 ©Daffodil International University

 Gitlab CI file (auto build)

docker-build:
 image: docker:latest
 stage: build
 services:
 - docker:dind
 before_script:
 - docker login -u "$CI-REGISTRY-USER" -p "$CI-REGISTRY-
PASSWORD" $CI-REGISTRY
 # Default branch leaves tag empty (= stable tag)
 # All other branches are tagged with the escaped branch name
(commit ref slug)
 script:
 - |
 if [["$CI-COMMIT-BRANCH" == "$CI-DEFAULT-BRANCH"]];
then
 tag="stable"
 echo "Working on the master branch '$CI-DEFAULT-
BRANCH': tag = 'stable'"
 else
 tag=":$CI-COMMIT-REF-SLUG"
 echo "Running on branch '$CI-COMMIT-BRANCH': tag =
$tag"
 fi
 - docker build --pull -t "$CI-REGISTRY-IMAGE${tag}".
 - docker push "$CI-REGISTRY-IMAGE${tag}"
 rules:
 - if: $CI-COMMIT-BRANCH
 exists:
 - Dockerfile

48 ©Daffodil International University

CHAPTER 5

Implementation and Testing

5.1 Implementation of Database

Steps need to implement database:

 Install git

 Clone backend repo

 Install docker

 Install NodeJS 18 LTS

 $ yarn install # (inside project directory)

 $ npx prisma migrate dev --name update # (to migrate the schema to database)

 Docker compose file for database

 $ docker compose –f db-dev.yaml up -d

version: "3.6"
services:
 database:
 image: postgres:alpine3.17
 container_name: psql-DB
 ports:
 - "5432:5432"
 volumes:
 - psql-DB:/data/postgres

 caching:
 image: redis:alpine3.17
 container_name: redis-caching
 ports:
 - "6379:6379"
 volumes:
 - redis-DB:/data
volumes:
 psql-DB:
 redis-DB:

49 ©Daffodil International University

5.2 Implementation of Front-end Design

Steps need to implement frontend:

 Install git

 Clone backend repo

 Install NodeJS 18 LTS

 $ npm install # (inside project directory)

 $ npx quasar dev

 Output will look like:

5.3 Testing Implementation

Testing database implementation, Docker engine and compose must be present on.

 $ docker ps

 $ npx prisma studio

➜ frontend git:(master) ✗ npx quasar dev

 » Reported at............ 12/3/2022 9:14:02 PM
 » App dir................ /home/ariful/firora-
workspace/frontend
 » App URL................ http://localhost:9000/
 » Dev mode............... spa

 App • Opening default browser at http://localhost:9000/

➜ server git:(master) ✗ dock ps -a
CONTAINER ID IMAGE CREATED STATUS
PORTS NAMES
89dbe4d99db0 postgres:alpine3.17 29 days ago Up 59
minutes 127.0.0.1:5432->5432/tcp psql-DB
62dba292b0ab redis:alpine3.17 25 days ago Up 19
minutes 127.0.0.1:6379->6379/tcp redis-caching

➜ server git:(master) ✗ npx prisma studio
Environment variables loaded from .env
Prisma schema loaded from prisma/schema.prisma
Prisma Studio is up on http://localhost:5555

50 ©Daffodil International University

5.4 Test Result and Reports

Testing API endpoint with Linux curl program. Software like postman can be also used.

Table 5.1: Registration

Test Case ID TC-01

Test Case Title Registration endpoint

Tested by Ariful Islam Execution date: 05-NOV-22

Description User must provide password longer than 8 character and valid email

Command Expected Status

curl --request POST \

 --url http://127.0.0.1:365/api/auth/register \

 --header 'Content-Type: application/json' \

 --data '{

 "name":"Ariful Islam",

 "email":"arifulis lamat@gmail.com",

 "password":"SuperPass",

 "passwordConfirm": "SuperPass"}'

Successful

registration and

feedback for

successful

registration.

Passed

Table 5.2: Login

Test Case ID TC-02

Test Case Title Login endpoint

Tested by Ariful Islam Execution date: 06-NOV-22

Description User must pre-register on the system

Command Expected Status

curl --request POST \

 --url http://127.0.0.1:365/api/auth/login \

 --header 'Content-Type: application/json' \

 --data '{ "email":"ariful@firora.com",

 "password":"SuperPass"}'

Successful login

and welcome

message

Passed

51 ©Daffodil International University

Table 5.3: Forgot Password

Test Case ID TC-03

Test Case Title Forgot password endpoint

Tested by Ariful Islam Execution date: 06-NOV-22

Description User must pre-register on the system

Command Expected Status

curl --request POST \

 --url http://127.0.0.1:365/api/auth/forgotpassword \

 --header 'Content-Type: application/json' \

 --data '{

 "email":"ariful@firora.com"

}'

Successful

execution and

received a reset

link via email

Passed

Table 5.4: Login Validation

Test Case ID TC-04

Test Case Title Login endpoint

Tested by Ariful Islam Execution date: 26-NOV-22

Description User must pre-register on the system

Command Expected Status

curl --request POST \

 --url http://127.0.0.1:365/api/auth/login \

 --header 'Content-Type: application/json' \

 --data '{

 "email":"ariful@firora.com",

 "password":"Super pass"

}'

Showing

warning for

using invalid

access

credential

Passed

52 ©Daffodil International University

CHAPTER 6

Impact on Society, Environment and Sustainability

6.1 Impact on Society

In 2019, the covid19 epidemic swept the globe. Since 2020, remote work has grown

significantly. The majority of workers think that hybrid work may help to achieve a

harmonious balance between home and professional lives. According to the study, this

tendency is not going away, and researchers still think that hybrid work will be the most

popular type of employment in the future.

Table 6.1: Growth in remote workers

Timeline No remote worker

on their team

Fully remote team Share of their

workers remote

Pre-COVID 46% 2.3% 13.2%

Post-COVID 6% 20% 56% to 74%

This radical transition to remote teams is a fresh experiment that represents a totally

different way of working for the great majority of enterprises. Video conversations have

taken the role of in-person meetings, Remote desk software replacing the IT service, and

sending a fast Slack message has taken the place of dropping by someone's desk or office.

It is not surprising that people have had to change how they collaborate despite being

separated by distance; our poll shows that remote work is effective. Working remotely has

gone better than predicted for 57% of recruiting managers, and it has gone as expected for

another 36%. It went worse than predicted for only approximately one in ten people.

There are several types of software for various types of remote work, more are on the way.

However, In this new age of work-life, I want to mark my contribution by creating an all-

in-one software solution that will benefit the vast majority of users and enable them to

achieve their goals.

53 ©Daffodil International University

6.2 Impact on Environment

The ecology will be impacted by remote labor, without a doubt. I think it will have

primarily good effects. Consider how much less energy will be needed to maintain the

massive company infrastructure and how little daily transportation will be needed. We can

combat greenhouse gases and their effects by reducing electricity use.

Right about now, you're probably wondering what the hell this has to do with the software.

Although there is no direct correlation, creating a better workplace where work can be done

remotely would undoubtedly increase the number of individuals who choose to work

entirely or partially remotely. And the environment will undoubtedly be impacted by it.

6.3 Ethical Aspects

The internet not only enables people to perform feats of inconceivable strength, but it also

facilitates fraud. Since there are various ethical considerations while conducting business

remotely, I am paying close attention as I design the system.

For example, imagine to have confidential data of your business that should be only

accessed by workers. However, one of your employees hired a stranger to perform a task

for him, and as a result, the stranger has access to this information. Therefore, the ethical

component is absolutely crucial to our undertaking.

Fortunately, we live in a time when OpenAI and similar big projects are there to assist you.

Although we can use all the conventional security measures to make sure that only

authorized users can access our program, there will always be some who find a way to get

around the security measures. Because of this, we may employ artificial intelligence and

machine learning to create a safe and intelligent system.

54 ©Daffodil International University

6.4 Sustainability Plan

I adhere to a particular mindset and set of technologies in order to achieve sustainable

software development. Below, I provide a summary of my mentality.

Agile is a development process with a set of guidelines for giving customers better

software. In the long run, I'm attempting to adhere to Agile development principles, and in

the near term, XP.

GitLab is DevOps software that's comes with CI/CD and Project management tools which

I think fare sufficient for my project development needs.

To automatically produce Docker images based on merges on the master branch and deploy

them on a Kubernetes cluster, I will develop a CI/CD pipeline. Two Kubernetes cluster

environments—one for staging and the other for production—will exist. Prior to being

released on the production environment, each release will be tested on the staging

environment.

Figure 6.1: CI/CD Pipeline example

55 ©Daffodil International University

CHAPTER 7

Conclusion and Future Scope

7.1 Discussion and Conclusion

Well the development process was quite challenging and overwhelming. Nevertheless, I

was able to learn so much about programing and development in general. Learning these

things was enjoyable, but it also caused irritation when your code didn't function or when

it did work but you had no idea why.

I'm attempting to create a program that might revolutionize how small and medium-sized

businesses function in the modern era when most activities take place online because the

previous solution wasn't created with the need for remote workers in mind.

A wise man would tell you that it all depends on how dedicated and focused you are. But

I will add that you require incredible reason and a clear purpose. When you have those,

then never loss hope it’s just matter of time when your dream comes true.

7.2 Scope for Further Developments

I am now working on a prototype; when it is released to the client, I will undoubtedly need

to add a number of features and code that adheres to industry standards. There will be more

requirements and obstacles as the development process expands. However, I will only

describe a handful of the things that come to me right now.

 A cross-platform mobile client

 A cross-platform desktop client

 Chat features

 Video conference features

 Email inbox features

 Attendance system for employee

 A Reach Calendar

 Predicting futures with ML and AI

56 ©Daffodil International University

REFERENCES

[1] Jay Mulki, Fleura bardhi, Felicia Lassk and Janye Nanavaty-Dahl “Set Up Remote

Workers to Thrive” Researchgate Vol. 51 No. 1, 63-69, Fall 2009

[2] Laker, B., Godley, W., Patel, C. and Cobb, D. “How to monitor remote workers —

ethically” MIT Sloan Management Review. ISSN 1532-9194

[3] Yang, L., Holtz, D., Jaffe, S. et al. “The effects of remote work on collaboration among

information workers” Nat Hum Behav 6, 164, October 2021

[4] Veronica Popovici, Alina - Lavinia Popovici “Remote Work Revolution: Current

Opportunities and Challenges for Organizations” Ovidius University Annals Vol. XX,

Issue 1, January 2020

[5] Ausarbeitungen zum Seminar “Rich Internet Applications w/HTML and Javascript”

Carl von Ossietzky Universität Oldenburg Vol. X, No. X, 01-33, February 2017

[6] Wikipedia, available at <<https://en.wikipedia.org/wiki/Workspace>>, last accessed

on 26-04-2021at 02:00 AM

[7] Salesforce, available at <<https://www.oracle.com/erp/what-is-erp/>>, last accessed

on 19-09-2022 at 03:35 AM

[8] Express, available at <<https://expressjs.com/en/4x/api.html>>, last accessed on 09-

10-2022 at 09:45 AM

[9] Vue.js, available at <<https://vuejs.org/guide/introduction.html>>, last accessed on 07-

01-2023 at 11:00 PM

[10] Docker, available at <<https://docs.docker.com/desktop/>>, last accessed on 11-11-

2022 at 09:26 PM

[11] PostgreSQL, available at <<https://www.postgresql.org/docs/>>, last accessed on 05-

01-2023 at 12:39 PM

[12] JWT, available at <<https://jwt.io/introduction>>, last accessed on 08-07-2022 at

09:46 PM

57 ©Daffodil International University

