
Page | 1

MICROCONTROLLER BASED DIGITAL CLOCK

This project report is submitted to the Department of Electrical & Electronic

Engineering (EEE), Daffodil International University, Bangladesh, in Partial

fulfillment of the requirements for the Degree of “Bachelor of Science in Electrical &

Electronic Engineering”.

Supervised By

Md. Mahmudur Rahman

Senior Lecturer

Department of Electrical & Electronic Engineering (EEE)

Daffodil International University

Prepared By

Md. Tamzidul Islam ID: 102-33-231

Md. Ferdous Wahid ID: 102-33-227

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

08 October 2013

Page | 2

DECLARATION

We hereby declare that, this project has been done by us under the supervision of Md.

Mahmudur Rahman, Senior Lecturer, Department of EEE, Daffodil International

University. We also declare that neither this project nor any part of this project has

been submitted elsewhere for award of any degree or diploma.

Supervised by:

Md. Mahmudur Rahman

Senior Lecturer

Department of EEE

Daffodil International University

Submitted by:

Md. Tamzidul Islam

ID: 102-33-231

Department of EEE

Daffodil International University

Md. Ferdous Wahid

ID: 102-33-227

Department of EEE

Daffodil International University

Page | 3

ACKNOWLEDGEMENT

First we express our heartiest thanks and gratefulness to almighty Allah for his divine

blessing makes us possible to complete this project successfully.

We are grateful and wish our profound indebtedness to supervisor Md. Mahmudur

Rahman, Senior Lecturer, Department of EEE Daffodil International University,

Dhaka. His endless patience , scholarly guidance, continual encouragement, constant

and energetic supervision, constructive criticism, valuable advice, reading many

inferior draft and correcting them at all stage have made it possible to complete this

project.

We would like to express our heartiest gratitude to Dr. M. Shamsul Alam, Professor,

and Head, Department of EEE, for his kind help to finish our project and also to other

faculty members of EEE department of Daffodil International University.

Finally, we must acknowledge with due respect the constant support and patients of

our parents.

_ _ _ _ _ Author

Page | 4

ABSTRACT

A digital clock is a type of clock that displays the time digitally, i.e. in ciphers, as

opposed to an analog clock, where the time is displayed by hands. Usually, digital

clocks are associated with electronic drives.

Digital clocks typically use the 50 or 60 hertz oscillator of AC power or crystal

oscillator as in a quartz clock to keep time. Internationally digital clocks display the

hours of the day in24 hour format but in our country a more commonly used hour

sequence is 12 hour format (with some indication of AM or PM).

In this project to represent the time, Seven-segment Display has been used for each of

four digit which shows hours and minutes and in order to represent seconds LED’s are

used for each and every seconds . Moreover, as they run on electricity, most digital

clocks must be reset every time they are moved or the power is cut off. To reduce the

problem, here a battery backup has been used to maintain the time during power

outages. In this project we have used RTC (Real Time Clock).

Two switches have been used, one for entering the time and second is for time

increment. This digital clock is inexpensive device that makes product designs more

popular.

This project uses regulated 5V & 1A power supply. 7805 three terminal voltage

regulator is used for voltage regulation. Bridge type full wave rectifier is used to

rectify AC output of secondary of 230/6V step down transformer.

Page | 5

DedicatedDedicatedDedicatedDedicated

ToToToTo

Our Beloved ParentsOur Beloved ParentsOur Beloved ParentsOur Beloved Parents

&&&&

Honorable TeachersHonorable TeachersHonorable TeachersHonorable Teachers

Page | 6

TABLE OF CONTENT

CONTENS PAGE

CHAPTERS

Chapter 1: 13-16

1.1 Introduction 14

1.2 The History 15

Chapter 2: 17-20

2.1 Design and Development 18

2.2 Flow charts 19

2.3 Circuit Diagram 20

Chapter 3: 21-41

3.1 Microcontroller IC AT MEGA8 22

3.1.1 Features 22

3.1.2 Pin Configurations 24

3.1.3 Overview 25

3.1.4 Block Diagram 25

3.2 Pin Descriptions 27

3.3 AVR CPU Core 29

3.3.1 Introduction 29

3.3.2 Architectural Overview 29

3.3.3 Arithmetic Logic Unit – ALU 30

Page | 7

3.3.4 Status Register 30

3.3.5 General Purpose Register File 30

3.3.6 The X-register, Y-register and Z-register 31

3.3.7 Stack Pointer 31

3.3.8 Instruction Execution Timing 31

3.3.9 Reset and Interrupt Handling 31

3.4 Memories 32

3.4.1 I/O Memory 32

3.5 System Clock and Clock Options 32

3.5.1 System Clock and Clock Options 32

3.5.2 CPU Clock – clk CPU 33

3.5.3 I/O Clock – clk I/O 34

3.5.4 Flash Clock – clk Flash 34

3.6 Crystal Oscillator 34

3.6.1 Figure 35

3.6.2 Table 35

3.6.3 Low-frequency Crystal Oscillator 35

3.6.4 Timer/Counter Oscillator 36

3.7 Power Management and Sleep Modes 37

3.7.1 Standby Mode 37

3.7.2 Minimizing Power Consumption 37

3.8 Analog-to-Digital Converter (ADC) 38

3.9 System Control and Reset 38

Page | 8

3.9.1 Resetting the AVR 38

3.9.2 Reset Sources 38

3.9.3 External Reset 39

3.10 Unconnected pins 39

3.11 Operation 39

3.12 Compatibility 40

3.13 Clock Generation 40

Chapter 4: 42-52

4.1 DS 1307 43

4.1.1 Features 43

4.1.2 Ordering Information 43

4.2 Pin Assignment 44

4.2.1 Pin Description 44

4.3 Description 45

4.4 Typical Operating Circuit 45

4.4.1 Operation 46

4.4.2 DS1307 Block Diagram 46

4.5 Signal Description 47

4.6 Clock Accuracy 48

4.6.1 RTC and RAM Address Map 49

4.6.2 DS1307 Address Map 49

4.7 Clock 50

4.8. DS1307 Timekeeper Register 50

Page | 9

4.8.1 Control Register 51

4.8.2 OUT (Output control): 51

4.8.3 SQWE (Square Wave Enable): 51

4.8.4 RS (Rate Select) 51

4.9 2- Wires Serial Data Bus 51

4.9.1 Typical 2-Wire Bus Configuration 52

4.10 Notes 52

Chapter 5: 53-58

5.1 Construction 54

5.1.1 Parts List 54

5.2 Input Power System 58

Chapter 6: 59-60

6.1 Conclusion 60

Program Code in C++ 61-78

REFERENCE 79

Page | 10

LIST OF FIGURES

FIGURES PAGE

Figure-2.1: Flow Chart 17

Figure-2.2: Circuit Diagram 29

Figure-3.1: Pin Configuration of PIC AT MEGA8 32

Figure-3.2: Block Diagram of PIC AT MEGA8 33

Figure-3.3: Block Diagram of the AVR MCU 37

Figure-3.4: The Clock System 41

Figure-3.5: Connection of Crystal oscillator 43

Figure-3.6: Clock Generation Logic 49

Figure-4.1: Pin Assignment of DS1307 51

Figure-4.2: Typical Operating Circuit 52

Figure-4.3: Block Diagram of DS1307 53

Figure-4.4: Layout for Crystal 55

Figure-4.5: Address Map of DS1307 56

Figure-4.6: Time keeper Resistor of DS1307 57

Figure-4.7: Bus Configuration 59

Page | 11

Figure-5.1: Display Section 61

Figure-5.2: Connection of Display Section 61

Figure-5.3: Control Section 62

Figure-5.4: Bridge Section 62

Figure-5.5: The Completed Project 63

Figure-5.6: Display Output 64

Figure-5.7: Bridge Circuit 64

Page | 12

LIST OF TABLES

TABLES PAGE

Table-3.1: Crystal oscillator details 43

Table-3.2: SUT1..0 Details 44

Table-4.1: Control Resister 58

Table-5.1: Parts List of Project 60

Page | 13

Chapter 1

Page | 14

Introduction

1.1 Introduction:

A digital clock is a type of clock that displays the time digitally, i.e. in numerals or

other symbols, as opposed to an analog clock, where the time is indicated by the

positions of rotating hands.

In this project, we have built a digital clock with 12 hour count time. The clock runs

from 00:00 to 11:59 and then back to 00:00. Our display has four digits, two digits for

minutes and two for hour. The specialty of this clock is that it has very low power

consumption and condensed layout.

Every 10 minutes, we add one on the ten’s digit of minute. After every 6 such cycles,

we add one on the unit’s digit of hour, and every 10 hours, we add one on tens digit of

hour. As soon as it reaches 1 on the ten’s digit of hour and 2 on unit’s digit of hour,

both the ten’s and the unit’s digit of hour are reset to 0. So, in practice, we do not see

12:00 displayed. We rather see a transition from 11:59 to 00:00.

We have used a Atmega8 Microcontroller and a DS1307 IC. Also used 8MHz crystal

oscillator, here we used AC power source so we take aback up power from a battery.

The outputs would be connected to LEDs and would make the LED glow for a high

output and vice-versa for a low output. We make a seven segment display by using

LEDs.

The requirements are:

● Use LED 7 segment displays.

● Display time.

● Buttons to set the time.

● Fit in a small red translucent box.

Page | 15

Digital clocks are often associated with electronic drives, but the "digital" description

refers only to the display, not to the drive mechanism. (Both analog and digital clocks

can be driven either mechanically or electronically, but "clockwork" mechanisms with

digital displays are rare.)

1.2 The History:

First digital pocket watch was the invention of Austrian engineer Josef Pallweber who

created his "jump-hour" mechanism in 1883. Instead of a conventional dial the jump-

hour featured two windows in an enamel dial, through which the hours and minutes

are visible on rotating discs. The second hand remained conventional. By 1885 Pall

Weber’s mechanism was already on the market in pocket watches by Corte Bert and

IWC; arguably contributing to the subsequent rise and commercial success of IWC.

The principles of Pall Weber’s jump-hour movement later appeared in wristwatches

by the 1920s (Corte Bert) and still used today (Chronoswiss Digiteur). While the

original inventor didn't have a watch brand at the time, his name has since been

resurrected by a newly established watch manufacturer.

Plato clocks used a similar idea but different layout. These spring-wound pieces

consisted of a glass cylinder with a column inside, affixed to which were small digital

cards with numbers printed on them, which flipped as time passed. The Plato clocks

were introduced at the St. Louis World Fair in 1904, produced by Ansonia Clock

Company. Eugene Fitch of New York patented the clock design in 1903.

The earliest patent for a digital alarm clock was registered by D.E Protzmann and

others on October 23, 1956 in the United States. D.E Protzmann and his associates

also patented another digital clock in 1970, which was said to use a minimal amount

of moving parts. Two side-plates held digital numerals between them, while an

electric motor and cam gear outside controlled movement.

In 1970, the first digital wristwatch with an LED display was mass-produced. Called

the Pulsar, and produced by the Hamilton Watch Company, this watch was hinted at

Page | 16

two years prior when the same company created a prototype digital watch for

Kubrick's 2001: A Space Odyssey. Throughout the 1970s, despite the initial hefty cost

of digital watches, the popularity of said devices steadily rose.

Over the years, many different types of digital alarm clocks have been developed. In

Soviet Russia the 7-segment digital clocks were known as Elektronika 7.

Page | 17

Chapter 2

Page | 18

Design and Development

2.1 Design and Development

This project creates a clock which displays the time on seven segment displays. The

project fits in a small box. The circuit uses seven outputs and four common

connections (com1, com2, com3, com4) for the segments. To allow the setting of the

time two buttons are provided. The first selects the digit and the second increments

the digits. The order is hours, minutes, second. When the setting mode is active only

the digits being set are displayed, all the others are shown as '--'. Before creating the

program we listed the steps the program requires:

• Initialize the PIC and set all digits to zero.

• Start the timer interrupts to count the seconds elapsed.

• When seconds reach 60 increment minutes and reset seconds.

• When minutes reach 60 increment hours and reset minutes.

• When hours reach 12 increments and reset hours.

• When the first button is pressed stop updating the clock, reset all digits to –

apart from the hours. If the button is pressed again set hours to – and display

the minutes. Each press moves through the digits.

• After the first button has been pressed the second button increments the

number on the digits. When the digit reaches its intended maximum it returns

back to its lowest value. For example, hours range from 00 to 12. When the

digit increments to 12 it returns to 00.

First version only in the program and this is reflected in the flow charts below. Based

on these steps we created a flow diagram to help create the program. The Main Flow

Diagram constitutes the main sub program. After setting up the ports and starting the

interrupt the main sub program polls the buttons. The interrupt flow diagram now

shows only the seconds being updated. Not shown in the flow charts, code is also

required to display the digits and to read the inputs. we found in use that the clock

Page | 19

gained time as the day went on. After a few days the time difference was noticeable. I

calculated that every day 16 seconds were being gained. I decided to setup a new

counter that was incremented each second and it would be used to lose a second at the

correct moment. I needed to lose 1 second every 24 / 16 = 1.5 hours. This was 5400

seconds (1.5x60x60). When the counter reached 5400 seconds the seconds counter

was decreased by 1 and the counter was reset. The clock now keeps very good time.

Outputs are used to turn the 7 segment and decimal points on and off. The displays

are common four anodes so a port set low turns the segment on and a port set high

turns it off.

Each of the digits is turned on sequentially. The segments for that digit are only on

while that digit is on

2.2 Flow chart:

Figure-2.1: Flow Chart

Page | 20

2.3 Circuit Diagram:

Figure-2.2: Circuit Diagram

Page | 21

Chapter 3

Page | 22

MICROCONTROLLER AT MEGA8:

3.1 MICROCONTROLLER AT MEGA8:

3.1.1 Features:

• High-performance, Low-power AVR 8-bit Microcontroller

• Advanced RISC Architecture

– 130 Powerful Instructions – Most Single-clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 16 MIPS Throughput at 16 MHz

– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory segments

– 8K Bytes of In-System Self-programmable Flash program memory

– 512 Bytes EEPROM

– 1K Byte Internal SRAM

– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

– Data retention: 20 years at 85°C/100 years at 25°C

– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program True Read-While-Write Operation

– Programming Lock for Software Security

• Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode

Page | 23

– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode

– Real Time Counter with Separate Oscillator

– Three PWM Channels

– 8-channel ADC in TQFP and QFN/MLF package

Eight Channels 10-bit Accuracy

– 6-channel ADC in PDIP package

Six Channels 10-bit Accuracy

– Byte-oriented Two-wire Serial Interface

– Programmable Serial USART

– Master/Slave SPI Serial Interface

– Programmable Watchdog Timer with Separate On-chip Oscillator

– On-chip Analog Comparator

• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection

– Internal Calibrated RC Oscillator

– External and Internal Interrupt Sources

– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and

Standby

• I/O and Packages

– 23 Programmable I/O Lines

– 28-lead PDIP, 32-lead TQFP, and 32-pad QFN/MLF

• Operating Voltages

Page | 24

– 2.7 - 5.5V (ATmega8L)

– 4.5 - 5.5V (ATmega8)

• Speed Grades

– 0 - 8 MHz (ATmega8L)

– 0 - 16 MHz (ATmega8)

• Power Consumption at 4 MHz, 3V, 25°C

– Active: 3.6 mA

– Idle Mode: 1.0 mA

– Power-down Mode: 0.5 µA

3.1.2 Pin Configurations:

Figure-3.1: Pin Configuration of PIC AT MEGA8

Page | 25

3.1.3 Overview:

The ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVR RISC

architecture. By executing powerful instructions in a single clock cycle, the ATmega8

achieves throughputs approaching 1 MIPS per MHz, allowing the system designed to

optimize power consumption versus processing speed.

3.1.4 Block Diagram:

Figure-3.2: Block Diagram of PIC AT MEGA8

Page | 26

The AVR core combines a rich instruction set with 32 general purpose working

registers. All the 32 registers are directly connected to the Arithmetic Logic Unit

(ALU), allowing two independent registers to be accessed in one single instruction

executed in one clock cycle. The resulting architecture is more code efficient while

achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8K bytes of In-System Programmable

Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM,

23 general purpose I/O lines, 32 general purpose working registers, three flexible

Timer/Counters with compare modes, internal and external interrupts, a serial

programmable USART, a byte oriented Two wire Serial Interface, a 6-channel ADC

(eight channels in TQFP and QFN/MLF packages) with 10-bit accuracy, a

programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five

software selectable power saving modes. The Idle mode stops the CPU while

allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue

functioning. The Power down mode saves the register contents but freezes the

Oscillator, disabling all other chip functions until the next Interrupt or Hardware

Reset. In Power-save mode, the asynchronous timer continues to run, allowing the

user to maintain a timer base while the rest of the device is sleeping. The ADC Noise

Reduction mode stops the CPU and all I/O modules except asynchronous timer and

ADC, to minimize switching noise during ADC conversions. In Standby mode, the

crystal/resonator Oscillator is running while the rest of the device is sleeping. This

allows very fast start-up combined with low-power consumption. The device is

manufactured using Atmel’s high density non-volatile memory technology. The Flash

Program memory can be reprogrammed In-System through an SPI serial interface, by

a conventional non-volatile memory programmer, or by an On-chip boot program

running on the AVR core. The boot program can use any interface to download the

application program in the Application Flash memory. Software in the Boot Flash

Section will continue to run while the Application Flash Section is updated, providing

true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System

Self-Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful

microcontroller that provides a highly-flexible and cost-effective solution to many

embedded control applications. The ATmega8 AVR is supported with a full suite of

program and system development tools, including C compilers, macro assemblers,

program debugger/simulators, In-Circuit Emulators, and evaluation kits.

Page | 27

3.2 Pin Descriptions:

VCC: Digital supply voltage.

GND: Ground.

Port B (PB7..PB0) XTAL1/XTAL2/TOSC1/ TOSC2:

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for

each bit). The Port B output buffers have symmetrical drive characteristics with both

high sink and source capability. As inputs, Port B pins that are externally pulled low

will source current if the pull-up

Resistors are activated. The Port B pins are tri-stated when a reset condition becomes

active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the

inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the

inverting Oscillator amplifier. If the Internal Calibrated RC Oscillator is used as chip

clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2

if the AS2 bit in ASSR is set.

Port C (PC5..PC0) :

Port C is an 7-bit bi-directional I/O port with internal pull-up resistors (selected for

each bit). The Port C output buffers have symmetrical drive characteristics with both

high sink and source capability. As inputs, Port C pins that are externally pulled low

will source current if the pull-up resistors are activated. The Port C pins are tri-stated

when a reset condition becomes active, even if the clock is not running.

PC6/RESET:

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the

electrical characteristics of PC6 differ from those of the other pins of Port C. If the

RSTDISBL Fuse is un-programmed, PC6 is used as a Reset input. A low level on this

pin for longer than the minimum pulse length will generate a Reset, even if the clock

is not running. Shorter pulses are not guaranteed to generate a Reset.

Page | 28

Port D (PD7..PD0):

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for

each bit). The Port D output buffers have symmetrical drive characteristics with both

high sink and source capability. As inputs, Port D pins that are externally pulled low

will source current if the pull-up resistors are activated. The Port D pins are tri-stated

when a reset condition becomes active, even if the clock is not running.

RESET:

Reset input. A low level on this pin for longer than the minimum pulse length will

generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to

generate a reset.

AVCC:

AVCC is the supply voltage pin for the A/D Converter, Port C (3..0), and ADC (7..6).

It should be externally connected to VCC, even if the ADC is not used. If the ADC is

used, it should be connected to VCC through a low-pass filter. Note that Port C (5..4)

use digital supply voltage, VCC.

AREF:

 AREF is the analog reference pin for the A/D Converter.

ADC7..6 (TQFP and QFN/MLF Package Only):

In the TQFP and QFN/MLF package, ADC7..6 serve as analog inputs to the A/D

converter. These pins are powered from the analog supply and serve as 10-bit ADC

channels.

Page | 29

3.3 AVR CPU Core:

3.3.1 Introduction:

This section discusses the AVR core architecture in general. The main function of the

CPU core is to ensure correct program execution. The CPU must therefore be able to

access memories, perform calculations, control peripherals, and handle interrupts.

3.3.2 Architectural Overview:

In order to maximize performance and parallelism, the AVR uses a Harvard

architecture – with separate memories and buses for program and data. Instructions in

the Program memory are executed with a single level pipelining. While one

instruction is being executed, the next instruction

is pre-fetched from the Program memory. This concept enables instructions to be

executed in every clock cycle. The Program memory is In-System Reprogrammable

Flash memory.

Block Diagram of the AVR MCU Architecture:

Figure-3.3: Block Diagram of the AVR MCU

Page | 30

3.3.3 Arithmetic Logic Unit – ALU:

The high-performance AVR ALU operates in direct connection with all the 32 general

purpose working registers. Within a single clock cycle, arithmetic operations between

general purpose registers or between a register and an immediate are executed. The

ALU operations are divided into three main categories – arithmetic, logical, and bit-

functions. Some implementations of the architecture also provide a powerful

multiplier supporting both signed/unsigned multiplication and fractional format. See

the “Instruction Set” section for a detailed description.

3.3.4 Status Register:

The Status Register contains information about the result of the most recently

executed arithmetic instruction. This information can be used for altering program

flow in order to perform conditional operations. Note that the Status Register is

updated after all ALU operations, as specified in the Instruction Set Reference. This

will in many cases remove the need for using the dedicated compare instructions,

resulting in faster and more compact code. The Status Register is not automatically

stored when entering an interrupt routine and restored when returning from an

interrupt. This must be handled by software.

3.3.5 General Purpose Register File:

The Register File is optimized for the AVR Enhanced RISC instruction set. In order

to achieve the required performance and flexibility, the following input/output

schemes are supported by the

Register File:

• One 8-bit output operand and one 8-bit result input.

• Two 8-bit output operands and one 8-bit result input.

• Two 8-bit output operands and one 16-bit result input.

• One 16-bit output operand and one 16-bit result input.

Page | 31

3.3.6 The X-register, Y-register and Z-register:

The registers R26..R31 have some added functions to their general purpose usage.

These registers are 16-bit address pointers for indirect addressing of the Data Space.

3.3.7 Stack Pointer:

The Stack is mainly used for storing temporary data, for storing local variables and

for storing return addresses after interrupts and subroutine calls. The Stack Pointer

Register always points to the top of the Stack. Note that the Stack is implemented as

growing from higher memory locations to lower memory locations. This implies that

a Stack PUSH command decreases the Stack Pointer.

3.3.8 Instruction Execution Timing:

This section describes the general access timing concepts for instruction execution.

The AVR CPU is driven by the CPU clock clk CPU, directly generated from the

selected clock source for the chip. No internal clock division is used.

3.3.9 Reset and Interrupt Handling:

The AVR provides several different interrupt sources. These interrupts and the

separate Reset Vector each have a separate Program Vector in the Program memory

space. All interrupts are assigned individual enable bits which must be written logic

one together with the Global Interrupt Enable bit in the Status Register in order to

enable the interrupt. Depending on the Program Counter value, interrupts may be

automatically disabled when Boot Lock Bits BLB02 or BLB12 are programmed. This

feature improves software security. The lowest addresses in the Program memory

space are by default defined as the Reset and Interrupt Vectors. The list also

determines the priority levels of the different interrupts. The lower the address the

higher is the priority level. RESET has the highest priority, and next is INT0 – the

External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the

boot Flash section by setting the Interrupt Vector Select (IVSEL) bit in the General

Interrupt Control Register (GICR). The Reset Vector can also be moved to the start of

the boot Flash section by programming the BOOTRST Fuse.

Page | 32

3.4 Memories:

This section describes the different memories in the ATmega8. The AVR architecture

has two main memory spaces, the Data memory and the Program Memory space. In

addition, the ATmega8 features an EEPROM Memory for data storage. All three

memory spaces are linear and regular.

3.4.1 I/O Memory:

All ATmega8 I/Os and peripherals are placed in the I/O space. The I/O locations are

accessed by the IN and OUT instructions, transferring data between the 32 general

purpose working registers and the I/O space. I/O Registers within the address range

0x00 - 0x1F are directly bit accessible

using the SBI and CBI instructions. In these registers, the value of single bits can be

checked by using the SBIS and SBIC instructions. Refer to the instruction set section

for more details. When using the I/O specific commands IN and OUT, the I/O

addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space

using LD and ST instructions, 0x20 must be added to these addresses. For

compatibility with future devices, reserved bits should be written to zero if accessed.

Reserved I/O memory addresses should never be written. Some of the Status Flags are

cleared by writing a logical one to them. Note that the CBI and SBI instructions will

operate on all bits in the I/O Register, writing a one back into any flag read as set, thus

clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F

only.

3.5 System Clock and Clock Options:

3.5.1 System Clock and Clock Options:

All of the clocks need not be active at a given time. In order to reduce power

consumption, the clocks to modules not being used can be halted by using different

sleep modes. The clock systems are detailed in Figure3.4

Page | 33

Figure-3.4: The Clock System

3.5.2 CPU Clock – clk CPU:

The CPU clock is routed to parts of the system concerned with operation of the AVR

core. Examples of such modules are the General Purpose Register File, the Status

Register and the Data memory holding the Stack Pointer. Halting the CPU clock

inhibits the core from performing general operations and calculations.

Page | 34

3.5.3 I/O Clock – clk I/O:

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI,

and USART. The I/O clock is also used by the External Interrupt module, but note

that some external interrupts are detected by asynchronous logic, allowing such

interrupts to be detected even if the I/O clock is halted. Also note that address

recognition in the TWI module is carried out asynchronously when clk I/O is halted,

enabling TWI address reception in all sleep modes.

3.5.4 Flash Clock – clk Flash:

The Flash clock controls operation of the Flash interface. The Flash clock is usually

active simultaneously with the CPU clock.

3.6 Crystal Oscillator:

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier

which can be configured for use as an On-chip Oscillator. Either a quartz crystal or a

ceramic resonator may be used. The CKOPT Fuse selects between two different

Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output will

oscillate a full rail-to rail swing on the output. This mode is suitable when operating in

a very noisy environment or when the output from XTAL2 drives a second clock

buffer. This mode has a wide frequency range. When CKOPT is un-programmed, the

Oscillator has a smaller output swing. This reduces power consumption considerably.

This mode has a limited frequency range and it cannot be used to drive other clock

buffers. For resonators, the maximum frequency is 8 MHz with CKOPT un-

programmed and 16 MHz with CKOPT programmed. C1 and C2 should always be

equal for both crystals and resonators. The optimal value of the capacitors depends on

the crystal or resonator in use, the amount of stray capacitance, and the

electromagnetic noise of the environment. Some initial guidelines for choosing

capacitors for use with crystals are given in Table. For ceramic resonators, the

capacitor values given by the manufacturer should be used.

Page | 35

3.6.1 Figure:

Figure-3.5: Connection of Crystal oscillator

3.6.2 Table:

CKOPT CKSEL3..1 Frequency

Range(MHz)

Recommended Range for

Capacitors C1 and C2 for Use

with Crystals (pF)

1 101 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

Table-3.1: Crystal oscillator details

3.6.3 Low-frequency Crystal Oscillator:

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-

frequency Crystal Oscillator must be selected by setting the CKSEL Fuses to “1001”.

The crystal should be connected as shown in Figure-6. By programming the CKOPT

Fuse, the user can enable internal capacitors on XTAL1 and XTAL2, thereby

removing the need for external capacitors. The internal capacitors have a nominal

Page | 36

value of 36 pF. When this Oscillator is selected, start-up times are determined by the

SUT Fuses as shown in Table-2.

Table:

SUT1...0 Start-up Time from

Power-down and

Power-save

Additional Delay

From Reset (VCC

= 5.0V)

Recommended

Usage

00 1K CK 4.1 ms Fast rising power

or BOD enabled

01 1K CK 65ms Slowly rising

power

10 32K CK 65ms Stable frequency

at start-up

11 Reserved

Table-3.2: SUT1...0 Details

3.6.4 Timer/Counter Oscillator:

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2),

the crystal are connected directly between the pins. By programming the CKOPT

Fuse, the user can enable internal capacitors on XTAL1 and XTAL2, thereby

removing the need for external capacitors. The Oscillator is optimized for use with a

32.768 kHz watch crystal. Applying an external clock source to TOSC1 is not

recommended. Note: The Timer/Counter Oscillator uses the same type of crystal

oscillator as Low-Frequency Oscillator and the internal capacitors have the same

nominal value of 36 pF.

Page | 37

3.7 Power Management and Sleep Modes:

Sleep modes enable the application to shut down unused modules in the MCU,

thereby saving power. The AVR provides various sleep modes allowing the user to

tailor the power consumption to the application’s requirements. To enter any of the

five sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP

instruction must be executed. The SM2, SM1, and SM0 bits in the MCUCR Register

select which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or

Standby) will be activated by the SLEEP instruction. If an enabled interrupt occurs

while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for

four cycles in addition to the start-up time; it executes the interrupt routine, and

resumes execution from the instruction following SLEEP. The contents of the

Register File and SRAM are unaltered when the device wakes up from sleep. If a reset

occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

Note that the Extended Standby mode present in many other AVR MCUs has been

removed in the ATmega8, as the TOSC and XTAL inputs share the same physical

pins.

3.7.1 Standby Mode:

When the SM2..0 bits are 110 and an external crystal/resonator clock option is

selected, the SLEEP instruction makes the MCU enter Standby mode. This mode is

identical to Power-down with the exception that the Oscillator is kept running. From

Standby mode, the device wakes up in 6 clock cycles.

3.7.2 Minimizing Power Consumption:

There are several issues to consider when trying to minimize the power consumption

in an AVR controlled system. In general, sleep modes should be used as much as

possible, and the sleep mode should be selected so that as few as possible of the

device’s functions are operating. All functions not needed should be disabled. In

particular, the following modules may need special consideration when trying to

achieve the lowest possible power consumption.

Page | 38

3.8 Analog-to-Digital Converter (ADC):

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC

should be disabled before entering any sleep mode. When the ADC is turned off and

on again, the next conversion will be an extended conversion.

3.9 System Control and Reset:

3.9.1 Resetting the AVR:

During Reset, all I/O Registers are set to their initial values, and the program starts

execution from the Reset Vector. If the program never enables an interrupt source, the

Interrupt Vectors are not used, and regular program code can be placed at these

locations. This is also the case if the Reset Vector is in the Application section while

the Interrupt Vectors are in the boot section or vice versa. The I/O ports of the AVR

are immediately reset to their initial state when a reset source goes active. This does

not require any clock source to be running. After all reset sources have gone inactive,

a delay counter is invoked, stretching the internal reset. This allows the power to

reach a stable level before normal operation starts. The time-out period of the delay

counter is defined by the user through the CKSEL Fuses

3.9.2 Reset Sources:

The ATmega8 has four sources of Reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on

Reset threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for

longer than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and

the Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the

Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.

Page | 39

3.9.3 External Reset:

An External Reset is generated by a low level on the RESET pin. Reset pulses longer

than the minimum pulse width will generate a reset, even if the clock is not running.

Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches

the Reset Threshold Voltage – VRST on its positive edge, the delay counter starts the

MCU after the time-out period tTOUT has expired.

3.10 Unconnected pins:

If some pins are unused, it is recommended to ensure that these pins have a defined

level. Even though most of the digital inputs are disabled in the deep sleep modes as

described above, floating inputs should be avoided to reduce current consumption in

all other modes where the digital inputs are enabled (Reset, Active mode and Idle

mode). The simplest method to ensure a defined level of an unused pin, is to enable

the internal pull-up. In this case, the pull-up will be disabled during reset. If low

power consumption during reset is important, it is recommended to use an external

pull-up or pull-down. Connecting unused pins directly to VCC or GND is not

recommended, since this may cause excessive currents if the pin is accidentally

configured as an output.

3.11 Operation:

The counting direction is always up (incrementing), and no counter clear is

performed. The counter simply overruns when it passes its maximum 8-bit value

(MAX = 0xFF) and then restarts from the bottom (0x00). In normal operation the

Timer/Counter Overflow Flag (TOV0) will be set in the same timer clock cycle as the

TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth bit, except

that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV0 Flag, the timer resolution can be increased by

software. A new counter value can be written anytime.

Page | 40

3.12 Compatibility:

The 16-bit Timer/Counter has been updated and improved from previous versions of

the 16-bit AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with

the earlier version regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer

Interrupt Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt

Registers.

• Interrupt Vectors.

The following control bits have changed name, but have same functionality and

register location:

• PWM10 is changed to WGM10.

• PWM11 is changed to WGM11.

• CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• FOC1A and FOC1B are added to TCCR1A.

• WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some

special cases.

3.13 Clock Generation:

The clock generation logic generates the base clock for the Transmitter and Receiver.

The USART supports four modes of clock operation: normal asynchronous, double

speed asynchronous, Master synchronous and Slave Synchronous mode. The UMSEL

bit in USART Control and Status Register C (UCSRC) selects between asynchronous

and synchronous operation.

Page | 41

Double speed (Asynchronous mode only) is controlled by the U2X found in the

UCSRA Register. When using Synchronous mode (UMSEL = 1), the Data Direction

Register for the XCK pin (DDR_XCK) controls whether the clock source is internal

(Master mode) or external (Slave mode). The XCK pin is only active when using

Synchronous mode.

Figure-3.6 shows a block diagram of the clock generation logic.

Figure:

Figure-3.6: Clock Generation Logic

Page | 42

Chapter 4

Page | 43

IC DS 1307

4.1 IC DS 1307:

4.1.1 Features:

• Real-time clock (RTC) counts seconds, minutes, hours, date of the month,

month, day of the week, and year with leap-year compensation valid up to

2100

• 56-byte, battery-backed, nonvolatile (NV) RAM for data storage

• Two-wire serial interface

• Programmable square wave output signal

• Automatic power-fail detect and switch circuitry

• Consumes less than 500nA in battery backup mode with oscillator running

• Optional industrial temperature range:

-40°C to +85°C

• Available in 8-pin DIP or SOIC

• Underwriters Laboratory (UL) recognized

4.1.2 Ordering Information:

• DS1307 8-Pin DIP (300-mil)

• DS1307Z 8-Pin SOIC (150-mil)

• DS1307N 8-Pin DIP (Industrial)

• DS1307ZN 8-Pin SOIC (Industrial)

Page | 44

4.2 Pin Assignment

Figure-4.1: Pin Assignment of DS1307

4.2.1 Pin Description:

VCC - Primary Power Supply

X1, X2 - 32.768kHz Crystal Connection

VBAT - +3V Battery Input

GND - Ground

SDA - Serial Data

SCL - Serial Clock

SQW/OUT - Square Wave/Output Driver

Page | 45

4.3 Description:

The DS1307 Serial Real-Time Clock is a low-power, full binary-coded decimal

(BCD) clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred

serially via a 2-wire, bi-directional bus. The clock/calendar provides seconds,

minutes, hours, day, date, month, and year information. The end of the month date is

automatically adjusted for months with fewer than 31 days, including corrections for

leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM

indicator. The DS1307 has a built-in power sense circuit that detects power failures

and automatically switches to the battery supply.

4.4 Typical Operating Circuit:

Figure-4.2: Typical Operating Circuit

Page | 46

4.4.1 Operation:

The DS1307 operates as a slave device on the serial bus. Access is obtained by

implementing a START condition and providing a device identification code followed

by a register address. Subsequent registers

can be accessed sequentially until a STOP condition is executed. When VCC falls

below 1.25 x VBAT the device terminates an access in progress and resets the device

address counter. Inputs to the device will

not be recognized at this time to prevent erroneous data from being written to the

device from an out of tolerance system. When VCC falls below VBAT the device

switches into a low-current battery backup mode. Upon power-up, the device switches

from battery to VCC when VCC is greater than VBAT + 0.2V and recognizes inputs

when VCC is greater than 1.25 x VBAT. The block diagram in Figure 1 shows the

main elements of the serial RTC.

4.4.2 DS1307 Block Diagram:

Figure-4.3: Block Diagram of DS1307

Page | 47

4.5 Signal Description:

VCC, GND:

DC power is provided to the device on these pins. VCC is the +5V input. When 5V is

applied within normal limits, the device is fully accessible and data can be written and

read. When a 3V battery is connected to the device and VCC is below 1.25 x VBAT,

reads and writes are inhibited. However, the timekeeping function continues

unaffected by the lower input voltage. As VCC falls below VBAT the RAM and

timekeeper are switched over to the external power supply (nominal 3.0V DC) at

VBAT.

VBAT:

Battery input for any standard 3V lithium cell or other energy source. Battery voltage

must be held between 2.0V and 3.5V for proper operation. The nominal write protect

trip point voltage at which access to the RTC and user RAM is denied is set by the

internal circuitry as 1.25 x VBAT nominal. A lithium battery with 48mAhr or greater

will back up the IC DS1307 for more than 10 years in the absence of power at 25ºC.

UL recognized to ensure against reverse charging current when used in conjunction

with a lithium battery.

SCL (Serial Clock Input):

SCL is used to synchronize data movement on the serial interface.

SDA (Serial Data Input /Output):

SDA is the input/output pin for the 2-wire serial interface. The SDA pin is open drain

which requires an external pull-up resistor.

SQW/OUT (Square Wave/Output Driver):

When enabled, the SQWE bit set to 1, the SQW/OUT pin outputs one of four square

wave frequencies (1Hz, 4kHz, 8kHz, 32kHz). The SQW/OUT pin is open drain and

requires an external pull-up resistor. SQW/OUT will operate with either Vcc or Vbat

applied.

X1, X2 :

Page | 48

Connections for a standard 32.768kHz quartz crystal. The internal oscillator circuitry

is designed for operation with a crystal having a specified load capacitance (CL) of

12.5pF. The DS1307 can also be driven by an external 32.768kHz oscillator. In this

configuration, the X1 pin is connected to the external oscillator signal and the X2 pin

is floated.

RECOMMENDED LAYOUT FOR CRYSTAL:

Figure-4.4: Layout for Crystal

4.6 Clock Accuracy:

The accuracy of the clock is dependent upon the accuracy of the crystal and the

accuracy of the match between the capacitive load of the oscillator circuit and the

capacitive load for which the crystal was trimmed. Additional error will be added by

crystal frequency drift caused by temperature shifts. External circuit noise coupled

into the oscillator circuit may result in the clock running fast.

Page | 49

4.6.1 RTC and RAM Address Map:

The address map for the RTC and RAM registers of the DS1307 is shown in Figure 2.

The RTC registers are located in address locations 00h to 07h. The RAM registers are

located in address locations 08h to 3Fh. During a multi-byte access, when the address

pointer reaches 3Fh, the end of RAM space, it wraps around to location 00h, the

beginning of the clock space.

4.6.2 DS1307 Address Map:

Figure-4.5: Address Map of DS1307

Page | 50

4.7 Clock:

The time information is obtained by reading the appropriate register bytes. The RTC

registers are illustrated in Figure 4.6. The time and calendar are set or initialized by

writing the appropriate register bytes. The contents of the time and calendar registers

are in the BCD format. Bit 7 of register 0 is the clock halt (CH) bit. When this bit is

set to a 1, the oscillator is disabled. When cleared to a 0, the oscillator is enabled.

The DS1307 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register

is defined as the 12- or 24-hour mode select bit. When high, the 12-hour mode is

selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM. In

the 24-hour mode, bit 5 is the second 10 hour bit (20- 23 hours).

On a 2-wire START, the current time is transferred to a second set of registers. The

time information is read from these secondary registers, while the clock may continue

to run. This eliminates the need to reread the registers in case of an update of the main

registers during a read.

4.8 DS1307 Timekeeper Register:

Figure-4.6: Time keeper Resistor of DS1307

Page | 51

4.8.1 Control Register:

The DS1307 control register is used to control the operation of the SQW/OUT pin.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Out 0 0 SQWE 0 0 RS1 RS0

Table-4.1: Control Resister

4.8.2 OUT (Output control):

This bit controls the output level of the SQW/OUT pin when the square wave output

is disabled. If SQWE = 0, the logic level on the SQW/OUT pin is 1 if OUT = 1 and is

0 if OUT = 0.

4.8.3 SQWE (Square Wave Enable):

This bit, when set to a logic 1, will enable the oscillator output. The frequency of the

square wave output depends upon the value of the RS0 and RS1 bits. With the square

wave output set to 1Hz, the clock registers update on the falling edge of the square

wave.

4.8.4 RS (Rate Select) :

These bits control the frequency of the square wave output when the square wave

output has been enabled. Table 1 lists the square wave frequencies that can be

selected with the RS bits.

4.9 2- Wires Serial Data Bus:

The DS1307 supports a bi-directional, 2-wire bus and data transmission protocol. A

device that sends data onto the bus is defined as a transmitter and a device receiving

data as a receiver. The device that controls the message is called a master. The

devices that are controlled by the master are referred to as slaves. The bus must be

controlled by a master device that generates the serial clock (SCL), controls the bus

access, and generates the START and STOP conditions. The DS1307 operates as a

Page | 52

slave on the 2- wire bus. A typical bus configuration using this 2-wire protocol is

show in Figure 4.7.

4.9.1 Typical 2-Wire Bus Configuration:

Figure-4.7: Bus Configuration

4.10 Notes:

• ICCS specified with VCC = 5.0V and SDA, SCL = 5.0V.

• VCC = 0V, VBAT = 3V.

• After this period, the first clock pulse is generated.

• A device must internally provide a hold time of at least 300ns for the SDA

signal (referred to the VIHMIN of the SCL signal) in order to bridge the

undefined region of the falling edge of SCL.

• The maximum tHD: DAT has only to be met if the device does not stretch the

LOW period (tLOW) of the

• SCL signal.

• CB – Total capacitance of one bus line in pF.

• ICCA – SCL clocking at max frequency = 100kHz.

• VPF measured at VBAT = 3.0V.

Page | 53

Chapter 5

Page | 54

Construction

5.1 Construction

5.1.1 Parts List

This project was constructed using Vero strip board, as it is quick to work with. A

parts list is shown below:

Description Quantity

Vero Strip Board 3 pc (7cm*9cm)(22cm*10cm)(5cm*9cm)

PIC MEGA8 1 pc

DS 1307 1 pc

32768Hz Crystal Oscillator 1 pc

4K7 Resistor 3 pc

4.7Ω Resistor 8 pc

104 pf Capacitor 3 pc

4700µF25V Capacitor 1 pc

1N4007 Diode 4 pc

L7805CV 1 pc

Lithium Cell Battery 1 pc

Push Switch 2 pc

Red LED 73 pc

220V/6V 1A Transformer 1 pc

28 Pin DIL Socket 1 pc

8 Pin DIL Socket 1 pc

Table-5.1: Parts List of Project

Page | 55

I used a crystal as the timing source because of its accuracy. However I did notice that

a certain amount of seconds were gained during the day.

This project is constructed on three circuit boards. The top one contains the displays.

There is not enough room on the boards to link the displays on the top so the displays

are linked together on the copper side using stranded insulated wire.

Figure-5.1: Display Section

This is back part of display board where we connect these segment each others with

insulated wire.

Figure-5.2: Connection of Display Section

Page | 56

Once the top board was complete I started on the lower board. This contains all other

components including the programmed PIC MEGA8, DS1307, Battery, Capacitor,

Switches and the transistors. Usually the resistors are soldered first as they are less

prone to damage by excess heat. Finally solder in the rest of the components.

Figure-5.3: Control Section

The other board contains the bridge circuit including 4700µF25V capacitor, 1N4007

diode and L7805CV controller. The transistor is separate from all circuit board,

Figure-5.4: Bridge Section

Page | 57

The three boards are gapped and then connected each others.

Figure-5.5: The Completed Project

Before plugging in the IC’s the other components should be tested. This is done using

the following procedure.

1. Connect 5v Power supply

2. Measure the voltage and polarity of the pins that supply power to the IC’s.

3. Connect the Segment pins to PIC MEGA8

All that was left to do was to plug in the PIC MEGA8 and connect the 5V supply to

test. Set the time to an accurate clock and check periodically to see if it gains or loose

time.

Page | 58

The display section

Figure-5.6: Display Output

5.2 Input Power System

The digital clock operate in DC power source, so we decide input power

Supply source is Bridge Rectifier (e.g. ac to dc converter). That’s why we make a

bridge rectifier. Here needed a 4700µF25V capacitor and 1N4007 diode. Then we

supply ac power throw a 220V/6V transformer. Finally we connect a L7805CV

controller to ensure 5V supply to the system.

Figure-5.7: Bridge Circuit

Page | 59

Chapter 6

Page | 60

Conclusion

6.1 Conclusion

We have designed a unique PIC and seven segments based intelligent Digital clock

successfully. Its required power is very low. To make it user friendly we have kept

different button for second, minute, hour to operate the device.

The accuracy of the clock is dependent upon the accuracy of the crystal and the

accuracy of the match between the capacity load of the oscillator circuit and the

capacitive load for which the crystal was trimmed. Additional error will be added by

crystal frequency drift caused by temperature shifts. External circuit noise coupled

into the oscillator circuit may result in the running fast.

This project provided significant information that will enable to build a complete

Digital Clock. Overall we are very hopeful about our proposed device

Page | 61

Program Code in C++:

/*

 mega8 pinout

 _____ +---------------+

 pc6/reset | 1 28 | pc5

 pd0 | 2 27 | pc4

 pd1 | 3 26 | pc3

 pd2 | 4 25 | pc2

 pd3 | 5 24 | pc1

 pd4 | 6 23 | pc0

 VCC | 7 22 | GND

 GND | 8 21 | AREF

 pb6/xtal1| 9 20 | AVCC

 pb7/xtal2| 10 19 | ISP/pb5

 pd5 | 11 18 | ISP/pb4

 pd6 | 12 17 | ISP/pb3

 pd7 | 13 16 | pb2

 pb0 | 14 15 | pb1

 +---------------+

*/

// Includes

#include <inttypes.h>

Page | 62

#include <avr/interrupt.h>

#include "avr\iom8.h"

#include <avr/io.h>

#include <util/delay.h>

#include <avr/eeprom.h>

#include <avr/wdt.h>

#include <compat/twi.h>

#include <avr/signal.h>

// constants

#define FCPU 8000000 /* CPU speed */

uint8_t min;

uint8_t hour;

uint8_t sec;

uint8_t ms_125;

uint8_t delay=2; //delay variable for display

refersh rate control

uint8_t key_time; // Save & Exit from sub menu

uint8_t blink;

uint8_t seconds,minutes,hours,day,date,month,year,am_pm;

uint8_t key,key_time_out, time_set;

Page | 63

#define DS1307ADR 104

#definesg1 PB0

#define sg2 PB1

#define sg3 PB2

#define sg4 PB3

#define set PC1

#defineup PC2

#definedn PC3 //Look up table for seven segment driver

uint8_t segment[43] =

{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x80,0x00,0x77,0x7C,0x5

8,0x39,0x5E,0x79,0x71,0x3D,0x76,0x74,0x30,0x1E,0x70,0x28,0x55,0x54,0x5C,0x7

3,0x6B,0x50,0x64,0x78,0x3E,0x1C,0x2A,0x6A,0x49,0x6E,0x52,0x10,0x40};

void Timer0_init(void)

{

 TCNT0=0x06;

 TCCR0|=_BV(CS02); //prescaller 1024 interrupts/s

 TIMSK|=_BV(TOIE0); //Enable Timer0 Overflow interrupts

 TIFR|=_BV(TOV0); //Enable Timer0 Overflow flag

}

ISR(TIMER0_OVF_vect)

{

 TIMSK&=~_BV(TOIE0); //Enable Timer0 Overflow interrupts

 TCNT0=0x06; // Reload value for next count

Page | 64

 ms_125++;

 if(ms_125>=125) {ms_125 = 0; key_time++;}

//display();

 TIMSK|=_BV(TOIE0); //Enable Timer0 Overflow interrupts

 wdt_reset(); // Reset WDT

}

void twi_init(void)

{

 TWSR = 0x00;

 //TWSR |= (1 << TWPS1) | (1 << TWPS0); Prescaler=1

 TWBR = 152; // SCL=100KHz @ 8 MHz

 //TWCR |= (1 << TWEN); //TWI aktivieren

}

void twi_start(void)

{

 TWCR = (1 << TWSTA) | (1 << TWEN) | (1 << TWINT);

 while(!(TWCR & (1 << TWINT)));

}

void twi_writeadr(uint8_t adr, uint8_t wr) //W=0 R= alles außer 0

{

 adr=(DS1307ADR << 1);

 if(wr)

Page | 65

 adr |= 1; //Beim lesen SLA+R übertragen ansonsten LSB auf 0

lassen (SLA+W)

 TWDR=adr;

 TWCR = (1 << TWEN) | (1 << TWINT);

 while(!(TWCR & (1 << TWINT)));

}

void twi_writedata(uint8_t data)

{

 TWDR=data;

 TWCR = (1 << TWEN) | (1 << TWINT);

 while(!(TWCR & (1 << TWINT)));

}

void twi_stop(void)

{

 TWCR = (1 << TWEN) | (1 << TWSTO) | (1 << TWINT);

 while(TWCR & (0 << TWSTO));

}

uint8_t twi_readdata(void)

{

 uint8_t data;

 TWCR = (1 << TWEN) | (1 << TWINT);

 while(!(TWCR & (1 << TWINT)));

 data = TWDR;

Page | 66

 return data;

}

void ds1307_writereg(uint8_t adr,uint8_t data)

{

 twi_start();

 twi_writeadr(DS1307ADR,TW_WRITE);

 twi_writedata(adr);

 twi_writedata(data);

 twi_stop();

}

uint8_t ds1307_readreg(uint8_t adr)

{

 uint8_t data;

 //_delay_us(60);

 twi_start();

 twi_writeadr(DS1307ADR,TW_WRITE);

 twi_writedata(adr);

 twi_stop();

 _delay_us(60);

 twi_start();

 twi_writeadr(DS1307ADR,TW_READ);

 data=twi_readdata();

 twi_stop();

Page | 67

 return data;

}

void ds1307_gettime(void)

{

 seconds = ds1307_readreg(0);

 minutes = ds1307_readreg(1);

 hours = ds1307_readreg(2);

 day = ds1307_readreg(3);

 date = ds1307_readreg(4);

 month = ds1307_readreg(5);

 year = ds1307_readreg(6);

}

void display(void)

{

 if(blink<3)

{

 /////////////////////// Hour ////////////////////////////////

 hours = ds1307_readreg(2);

 if(blink == 1)

{

 if(ms_125<90)

 {

Page | 68

 PORTB &=~_BV(sg1); //Turn on

Digit 1

 if((hours >> 4) & 0x01) PORTD |= segment[1];

 else PORTD |= segment[11]; // show null

 _delay_ms(delay);

 PORTB |=_BV(sg1);

 //Turn off Digit 1

 PORTD = 0x00;

 _delay_us(150);

 PORTB &=~_BV(sg2);

 //Turn on Digit 2

 PORTD |= segment[hours & 0x0f];

 _delay_ms(delay);

 PORTB |=_BV(sg2);

 //Turn off Digit 2

 PORTD = 0x00;

 _delay_us(150);

 }

 else

 {

 PORTB &=~_BV(sg1); //Turn on Digit 1

 PORTD |= segment[11]; // show null

 _delay_ms(delay);

Page | 69

 PORTB |=_BV(sg1); //Turn off Digit 1

 PORTD = 0x00;

 _delay_us(150);

 PORTB &=~_BV(sg2); //Turn on Digit 2

 PORTD |= segment[11];

 _delay_ms(delay);

 PORTB |=_BV(sg2); //Turn off Digit 2

 PORTD = 0x00;

 _delay_us(150);

 }

 }

 else

 {

 PORTB &=~_BV(sg1); //Turn on Digit 1

 if((hours >> 4) & 0x01) PORTD |= segment[1];

 else PORTD |= segment[11]; // show null

 _delay_ms(delay);

 PORTB |=_BV(sg1); //Turn off Digit 1

 PORTD = 0x00;

 _delay_us(150);

 PORTB &=~_BV(sg2); //Turn on Digit 2

 PORTD |= segment[hours & 0x0f];

 _delay_ms(delay);

Page | 70

 PORTB |=_BV(sg2); //Turn off Digit 2

 PORTD = 0x00;

 _delay_us(150);

 }

////////////////////////////////// minutes //////////////////////

 minutes = ds1307_readreg(1);

 if(blink==2)

 {

 if(ms_125<90)

 {

 PORTB &=~_BV(sg3); //Turn on Digit 3

 PORTD |= segment[minutes >> 4];

 _delay_ms(delay);

 PORTB |=_BV(sg3); //Turn off Digit 3

 PORTD = 0x00;

 _delay_us(150);

 PORTB &=~_BV(sg4); //Turn on Digit 4

 PORTD |= segment[minutes & 0x0f];

 _delay_ms(delay);

 PORTB |=_BV(sg4); //Turn off Digit 4

 PORTD = 0x00;

 _delay_us(150);

Page | 71

 }

 else

 {

 PORTB &=~_BV(sg3); //Turn on Digit 3

 PORTD |= segment[11];

 _delay_ms(delay);

 PORTB |=_BV(sg3); //Turn off Digit 3

 PORTD = 0x00;

 _delay_us(150);

 PORTB &=~_BV(sg4); //Turn on Digit 4

 PORTD |= segment[11];

 _delay_ms(delay);

 PORTB |=_BV(sg4); //Turn off Digit 4

 PORTD = 0x00;

 _delay_us(150);

 }

 }

 else

 {

 PORTB &=~_BV(sg3); //Turn on Digit 3

 PORTD |= segment[minutes >> 4];

 _delay_ms(delay);

 PORTB |=_BV(sg3); //Turn off Digit 3

Page | 72

 PORTD = 0x00;

 _delay_us(150);

 PORTB &=~_BV(sg4); //Turn on Digit 4

 PORTD |= segment[minutes & 0x0f];

 _delay_ms(delay);

 PORTB |=_BV(sg4); //Turn off Digit 4

 PORTD = 0x00;

 _delay_us(150);

 }

 }

 else

 {

 /////////////////////////// seconds //////////////////////

 seconds = ds1307_readreg(0);

 PORTB &=~_BV(sg1); //Turn on Digit 5

 PORTD |= segment[42];

 _delay_ms(delay);

 PORTB |=_BV(sg1); //Turn off Digit 5

 PORTD &= 0x80;

 _delay_us(150);

 PORTB &=~_BV(sg2); //Turn on Digit 6

 PORTD |= segment[42];

 _delay_ms(delay);

Page | 73

 PORTB |=_BV(sg2); //Turn off Digit 6

 PORTD &= 0x80;

 _delay_us(150);

 PORTB &=~_BV(sg3); //Turn on Digit 5

 PORTD |= segment[(seconds>>4) & 0x07];

 _delay_ms(delay);

 PORTB |=_BV(sg3); //Turn off Digit 5

 PORTD &= 0x80;

 _delay_us(150);

 PORTB &=~_BV(sg4); //Turn on Digit 6

 PORTD |= segment[seconds & 0x0f];

 _delay_ms(delay);

 PORTB |=_BV(sg4); //Turn off Digit 6

 PORTD &= 0x80;

 _delay_us(150);

 }

 }

// CPU Initialization

void init_cpu(void)

 {

 DDRB = 255; // oooooooo

 PORTB = 255; // iiiiiiii

Page | 74

 DDRC = 0b11100001; // -iiioiii

 //DDRC |= _BV(PC6);

 PORTC = 0b00001110; // -iiiiiii

 DDRD = 255; // oooiiiii

 PORTD = 0; // iiiiiooo

 }

void key_check(void)

 {

 key = 0;

 // if set key pressed

 if(bit_is_clear(PINC, set))

 {

 loop_until_bit_is_set(PINC, set);

 _delay_ms(250);

 key = 1;

 key_time = 0;

}

 // if up key pressed

 if(bit_is_clear(PINC, up))

 {

 loop_until_bit_is_set(PINC, up);

 _delay_ms(250);

 key = 2;

Page | 75

 key_time = 0;

 }

 // if down key pressed

 if(bit_is_clear(PINC, dn))

 {

 loop_until_bit_is_set(PINC, dn);

 _delay_ms(250);

 key = 3;

 key_time = 0;

 }

 }

// Main program

int main(void)

{

 init_cpu();

 wdt_enable(WDTO_2S);

 Timer0_init();

 sei(); // enable global intertupt

 twi_init();

 _delay_us(50);

 ds1307_writereg(0x07,0x10);

 _delay_us(50);

 _delay_ms(500);

Page | 76

 while(1)// forever

 {

 display();

 if((key_time>=30) &&(blink<3)) {blink = 0; time_set = 0;}

 // key time out for 30 seconds

 if(key == 1) {time_set = 1; key_time = 0; blink ++; if(blink==4) blink=1;}

 if(key==1 && blink==3 && key_time>=30) {blink = 0; time_set = 0;}

 // hour set

 if(time_set==1 && blink==1 && key==2)

 {

 key_time = 0;

 hours = ds1307_readreg(2);

 hour = (((hours >> 4) & 0x01)*10) + (hours & 0x0f);

 hour ++;

 if(hour==12)

 {

 if(am_pm == 16) am_pm = 32;

 else am_pm = 16;

 }

 if(hour>12) hour -= 12;

 hour = ((hour/10)<<4) + (hour%10);

 if(am_pm==16) hour |= 0x40;

 else hour |= 0x60;

Page | 77

 ds1307_writereg(2,hour);

 }

 // minutes set up

 if(time_set==1 && blink==2 && key==2)

 {

 key_time = 0;

 minutes = ds1307_readreg(1);

 min = ((minutes >> 4)*10) + (minutes & 0x0f);

 min ++;

 if(min>59) min = 0;

 min = ((min/10)<<4) + (min%10);

 ds1307_writereg(1,min);

 }

 // minutes set down

 if(time_set==1 && blink==2 && key==3)

 {

 key_time = 0;

 minutes = ds1307_readreg(1);

 min = ((minutes >> 4)*10) + (minutes & 0x0f);

 if(min>0) min --;

 if(min==0) min = 59;

 min = ((min/10)<<4) + (min%10);

 ds1307_writereg(1,min);

Page | 78

 }

 }

 return 0;

}Ω

Page | 79

REFERENCE

[1] wineyard.in/wp-content/uploads/2012/12/WYARD9.pdf

[2] http://www.pelnet.co.uk/elect/projects/clock/Clock_a.pdf

[3] http://en.wikipedia.org/wiki/Digital_clock

[4] www.ee.duke.edu/~jmorizio/ece261/F09/projects/clk.pdf

[5] https://www.hni.uni-paderborn.de/uploads/media/doc2486_01.pdf

[6] datasheets.maximintegrated.com/en/ds/DS1307.pdf

