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ABSTRACT

Silicon nanostructures have recently been a subject of interest demonstrating optical properties 

like luminescence. The Scientific community predicts quantum effects to be the predominant 

cause for such optical properties of silicon nanostructures. With this view as a motive, a 

simulation model of a 2D thin film quantum confined 2D p-n junction in silicon is developed in 

this work.

A thin film silicon layer is considered in the regime of strong confinement. A p-n junction in 

such a film is considered so that the carriers are confined in thickness dimension while they are 

quantum mechanically transported along the device length. The transverse dimension in 

considered infinitely wide for plane wave approximation. For device simulation, after a careful 

study of various schemes to incorporate quantum effects, it was decided to use self-consistent 

Schrodinger-Poisson method.

The simulation is done in MATLAB. For solution, instead of winger function or Green’s 

function, a more direct wave-function perspective is taken. First the equilibrium condition was 

simulated and then extension under externally applied voltage was carried out.
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CHAPTER-01

Introduction

Optical and optoelectronic properties of silicon nanostructures have recently been a subject of 

interest. Though bulk silicon is an indirect semiconductor and generally unsuitable for 

optoelectronic devices. Structures such as porous silicon or quantum dots have been reported to 

emit light. Some research has been done with lateral junctions in quantum wells which 

demonstrates high-frequency operation and is suggestive of the possibility of light generation. 

Hence instead of approximate analytical model, constructing a simulation model and exploring 

the possibility of direct recombination for such devices in silicon is in order.

1.1. Objective:

The primary objective of this work is to investigate a thin film silicon p-n junction incorporating 

quantum effects. As the thickness of the thin is reduced, it essentially becomes a quantum device 

with 2D electron gas (2=DEG) having 1D confinement, and a quantum mechanical approach 

becomes necessary to model such device. Models with approximate analysis are only suggestive

of features of such devices, so a numerical simulation model becomes necessary for a more 

comprehensive insight. Hence, a simulation model is constructed for such a device. Due to the 

requirement of unfeasibly huge computational resource required in direct discretized approach 

for a 2D device. It becomes prudent to such a device, in this wore decoupled set of 1D equation 

is applied to the 2D bipolar system.

1.2. Motivation

Recently conducted studies have resulted in the anticipation that a silicon nanostructure might be 

a sustainable source of light. But with simple nanostructures it is yet hard to achieve 

reproducibility and the search for a nanodevice in silicon for light emission is on the way. In this 

regard, a thorough analysis of such reduced dimensional device is sought for. Thin films of 

silicon are now possible on silicon on insulator (SOI) structure, and if thickness is reduced below 
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5nm then quantum confinement occur in that direction and this may pave the way towards 

silicon optoelectronic.

Reporting of simulation results of lateral p-n junction in quantum well in silicon is rare. Analytic 

studies on other material do indicate high-frequency operator of such a device. Other studies 

suggest that quantum effects could be the origin behind electroluminescence and light emission 

from silicon nanostructures. So a comprehensive simulation of a lateral p-n junction in silicon 

quantum well could help find a sustainable silicon light emitting structure.

1.3. Application

Most of the SOI structures are now being used for bipolar devices. But for photonics it becomes 

important to use a bipolar device for recombination of holes and electrons. In that regard, a thin 

film silicon p-n junction could offer a new possibility. Silicon light emitting device could find 

two very important uses:

1. Optical and electronic circuit integration to achieve integrated optoelectronics, which 

now in impossible as compound semiconductor alloys are used for optoelectronics.

2. Optical interconnect could replace slow electric interconnects, which remain a bottleneck 

towards high=speed integrated chips, which for a long time to come will continue to be 

fabricated in silicon.
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CHAPTER-02

Literature review

2.1 Semiconductor:

A semiconductor is a substance, usually a solid chemical element or compound that can conduct 

electricity under some conditions but not others, making it a good medium for the control of 

electrical current. Its conductance varies depending on the current or voltage applied to a control 

electrode, or on the intensity of irradiation by infrared (IR), visible light, ultraviolet (UV), or X 

rays.

The specific properties of a semiconductor depend on the impurities, or dopants, added to it. An 

N-type semiconductor carries current mainly in the form of negatively-charged electrons, in a 

manner similar to the conduction of current in a wire. A P-type semiconductor carries current 

predominantly as electron deficiencies called holes. A hole has a positive electric charge, equal 

and opposite to the charge on an electron. In a semiconductor material, the flow of holes occurs 

in a direction opposite to the flow of electrons.

Elemental semiconductors include antimony, arsenic, boron, carbon, germanium, selenium, 

silicon, sulfur, and tellurium. Silicon is the best-known of these, forming the basis of most 

integrated circuits (ICs).

2.1.1 Characteristics of silicon:

Physical:

Silicon is a solid at room temperature, with relatively high melting and boiling points of 1414 

and 3265 °C, respectively. Like water, it has a greater density in a liquid state than in a solid 

state, and so, like water but unlike most substances, it does not contract when it freezes, but 

expands. With a relatively high thermal conductivity of 149 W·m−1·K−1, silicon conducts heat 

well [1].

http://searchnetworking.techtarget.com/definition/conductance
http://searchcio-midmarket.techtarget.com/definition/current
http://searchcio-midmarket.techtarget.com/definition/voltage
http://searchnetworking.techtarget.com/definition/infrared-radiation
http://searchcio-midmarket.techtarget.com/definition/electron
http://whatis.techtarget.com/definition/hole
http://whatis.techtarget.com/definition/silicon-Si
http://searchcio-midmarket.techtarget.com/definition/integrated-circuit
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Thermal_conductivity
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Figure 2.1: Silicon crystallizes in a diamond cubic crystal structure

Chemical:

Silicon is a metalloid, readily either donating or sharing its four outer electrons and it typically 

forms four bonds. Like carbon, its four bonding electrons give it opportunities to combine with 

many other elements or compounds to form a wide range of compounds. Unlike carbon, it can 

accept additional electrons and form five or six bonds in a sometimes more labilesilicate form. 

Tetra-valent silicon is relatively inert, but still reacts with halogens and dilute alkalis, but most 

acids (except for some hyper-reactive combinations of nitric acid and hydrofluoric acid) have no 

known effect on it.

Figure 2.1.2: Silicon powder

Isotopes:

Naturally occurring silicon is composed of three stable isotopes, silicon-28, silicon-29, and 

silicon-30, with silicon-28 being the most abundant (92% natural abundance).[14] Out of these, 

only silicon-29 is of use in NMR and EPR spectroscopy.[15] Twenty radioisotopes have been 

characterized, with the most stable being silicon-32 with a half-life of 170 years, and silicon-31 

with a half-life of 157.3 minutes [2].

https://en.wikipedia.org/wiki/Metalloid
https://en.wikipedia.org/wiki/Labile
https://en.wikipedia.org/wiki/Labile
https://en.wikipedia.org/wiki/Inert
https://en.wikipedia.org/wiki/Halogen
https://en.wikipedia.org/wiki/Alkali
https://en.wikipedia.org/wiki/Nitric_acid
https://en.wikipedia.org/wiki/Hydrofluoric_acid
https://en.wikipedia.org/wiki/Isotope
https://en.wikipedia.org/wiki/Natural_abundance
https://en.wikipedia.org/wiki/Silicon#cite_note-NNDC-14
https://en.wikipedia.org/wiki/NMR
https://en.wikipedia.org/wiki/EPR_spectroscopy
https://en.wikipedia.org/wiki/Silicon#cite_note-15
https://en.wikipedia.org/wiki/Radioisotopes
https://en.wikipedia.org/wiki/Half-life
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2.2: Direct and indirect band gaps:

In semiconductor physics, the band gap of a semiconductor is always one of two types, a direct

band gap or an indirect band gap. The minimal-energy state in the conduction band and the 

maximal-energy state in the valence band are each characterized by a certain crystal momentum

(k-vector) in the Brillion zone. If the k-vectors are the same, it is called a "direct gap". If they are 

different, it is called an "indirect gap". The band gap is called "direct" if the momentum of 

electrons and holes is the same in both the conduction band and the valence band; an electron 

can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron 

must pass through an intermediate state and transfer momentum to the crystal lattice.

https://en.wikipedia.org/wiki/Semiconductor_physics
https://en.wikipedia.org/wiki/Band_gap
https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Conduction_band
https://en.wikipedia.org/wiki/Valence_band
https://en.wikipedia.org/wiki/Crystal_momentum
https://en.wikipedia.org/wiki/Brillouin_zone
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Conduction_band
https://en.wikipedia.org/wiki/Valence_band
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Figure 2.2: Energy vs. crystal momentum for a semiconductor with an indirect band gap.

2.3 Doping:

Doping is the process of adding impurities to intrinsic semiconductors to alter their properties.

Normally Trivalent and Pentavalent elements are used to dope Silicon and Germanium. When a 

intrinsic semiconductor is doped with trivalent impurity it becomes a P-Type semiconductors. 

When a intrinsic semiconductor is doped with Pentavalent impurity it becomes a N-Type 

semiconductors.

Figure 2.3: N-Type and P-Type doped silicon.

https://en.wikipedia.org/wiki/Crystal_momentum
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2.4. How Doping Works:

Atoms follow a rule called Octet Rule. According to Octet-rule atoms are stable when there are 

eight electrons in their valence. If not atoms readily accept or share neighboring atoms to achieve 

eight electrons in their valance shell. In the silicon lattice each silicon atom is surrounded by four 

silicon atoms. Each silicon atom share one of its electron in the valance shell to its neighbor to 

satisfy the octet-rule. A schematic diagram of an intrinsic semiconductor is shown in image right 

(Figure: Intrinsic Silicon Lattice).

Now let’s see what will happen when we pop in a pentavalent element into the lattice. As you 

can see the image (Figure: N-type), we have doped the silicon lattice with Phosphorous, a 

pentavalent element. Now pentavalent element has five electrons, so it shares a electron with 

each of the four neighboring silicon atoms, hence four atoms are tied up with the silicon atoms in 

the lattice. This leaves an electron extra. This excess electron is free to move and is responsible 

conduction. Hence N-type (Negative Type) extrinsic semiconductor (silicon in this case) is made 

by doping the semiconductor with pentavalent element.

To create a P-type semiconductor, all we must do is to pop in a trivalent element into the lattice. 

A trivalent element has three electrons in its valence shell. It shares three electrons with three 

neighboring silicon atoms in the lattice, the fourth silicon atom demands an electron but the 

trivalent atom has no more electrons to share. This creates a void in lattice which we call it has 

hole. Since the electron is deficient, the hole readily accepts an electron; this makes it a P-type 

(Positive type) extrinsic semiconductor.

As you can see at image (Figure: P-type), we have popped in boron (trivalent element) in silicon 

lattice. This has created a hole making the semiconductor a P-type material.

The case is no different in Germanium. Its behaves same as silicon however some properties do 

differ which makes germanium based devices used in certain application and silicon based 

devices used in other applications.
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2.5. P-Type & N-Type Semiconductors: [3]

P-type:

In a pure (intrinsic) Si or Ge semiconductor, each nucleus uses its four valence electrons to form 

four covalent bonds with its neighbors (see figure below). Each ionic core, consisting of the 

nucleus and non-valent electrons, has a net charge of +4, and is surrounded by 4 valence 

electrons. Since there are no excess electrons or holes In this case, the number of electrons and 

holes present at any given time will always be equal.

Figure 2.5.1: An intrinsic semiconductor. Note each +4 ion is surrounded by four electrons.

Now, if one of the atoms in the semiconductor lattice is replaced by an element with three 

valence electrons, such as a Group 3 element like Boron (B) or Gallium (Ga), the electron-hole 

balance will be changed. This impurity will only be able to contribute three valence electrons to 

the lattice, therefore leaving one excess hole (see figure below). Since holes will "accept" free 

electrons, a Group 3 impurity is also called an acceptor.

http://solarwiki.ucdavis.edu/@api/deki/files/176/Intrinsic_semiconductor.jpg
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Figure 2.5.2: A semiconductor doped with an acceptor. An excess hole is now present.

Because an acceptor donates excess holes, which are considered to be positively charged, a 

semiconductor that has been doped with an acceptor is called a p-type semiconductor; "p" stands 

for positive. Notice that the material as a whole remains electrically neutral. In a p-type 

semiconductor, current is largely carried by the holes, which outnumber the free electrons. In this 

case, the holes are the majority carriers, while the electrons are the minority carriers.

N-type:

In addition to replacing one of the lattice atoms with a Group 3 atom, we can also replace it by 

an atom with five valence electrons, such as the Group 5 atoms arsenic (As) or phosphorus (P). 

In this case, the impurity adds five valence electrons to the lattice where it can only hold four. 

This means that there is now one excess electron in the lattice (see figure below). Because it 

donates an electron, a Group 5 impurity is called a donor. Note that the material remains

electrically neutral.

http://solarwiki.ucdavis.edu/@api/deki/files/178/P-type_semiconductor.jpg
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Figure 2.5.3: A semiconductor doped with a donor. A free electron is now present.

Donor impurities donate negatively charged electrons to the lattice, so a semiconductor that has 

been doped with a donor is called an n-type semiconductor; "n" stands for negative. Free 

electrons outnumber holes in an n-type material, so the electrons are the majority carriers and 

holes are the minority carriers.

2.6. P-N Junction:

P-n junctions are formed by joining n-type and p-type semiconductor materials, as shown below. 

Since the n-type region has a high electron concentration and the p-type a high hole

concentration, electrons diffuse from the n-type side to the p-type side.

In other world, if we join (or fuse) these two Semiconductor Materials together they behave in a 

very different way merging together and producing what is generally known as a “PN 

Junction“.

When the N-type semiconductor and P-type semiconductor materials are first joined together a 

very large density gradient exists between both sides of the PN junction. The result is that some 

of the free electrons from the donor impurity atoms begin to migrate across this newly formed 

junction to fill up the holes in the P-type material producing negative ions. However, because the 

electrons have moved across the PN junction from the N-type silicon to the P-type silicon, they 

leave behind positively charged donor ions ( ND ) on the negative side and now the holes from 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CC8QFjAD&url=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fsolids%2Fpnjun.html&ei=XlGWVeSIJtiJuAT_8oOgCQ&usg=AFQjCNGgBeN-R97iBDWTur0_CjBmLV8suQ&sig2=AzJFibJQ8gSZ3XKMYLex2g&bvm=bv.96952980,d.c2E
http://amazon.co.jp/s/?field-keywords=The+Essential+Guide+to+Semiconductors
http://solarwiki.ucdavis.edu/@api/deki/files/177/N-type_semiconductor.jpg
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the acceptor impurity migrate across the junction in the opposite direction into the region where 

there are large numbers of free electrons.

As a result, the charge density of the P-type along the junction is filled with negatively charged 

acceptor ions ( NA ), and the charge density of the N-type along the junction becomes positive. 

This charge transfer of electrons and holes across the PN junction is known as diffusion. The 

width of these P and N layers depends on how heavily each side is doped with acceptor density 

NA, and donor density ND, respectively.

This process continues back and forth until the number of electrons which have crossed the 

junction

have a large enough electrical charge to repel or prevent any more charge carriers from crossing 

over the junction. Eventually a state of equilibrium (electrically neutral situation) will occur 

producing a “potential barrier” zone around the area of the junction as the donor atoms repel the 

holes and the acceptor atoms repel the electrons.

Since no free charge carriers can rest in a position where there is a potential barrier, the regions 

on either sides of the junction now become completely depleted of any more free carriers in 

comparison to the N and P type materials further away from the junction. This area around the 

PN Junction is now called the Depletion Layer.
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Figure 2.6: P-N junction

The total charge on each side of a PN Junction must be equal and opposite to maintain a neutral 

charge condition around the junction. If the depletion layer region has a distance D, it therefore 

must therefore penetrate into the silicon by a distance of Dp for the positive side, and a distance 

of Dn for the negative side giving a relationship between the two of Dp.NA = Dn.ND in order to 

maintain charge neutrality also called equilibrium.
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2.7. P-N Junction Distance:

As the N-type material has lost electrons and the P-type has lost holes, the N-type material has 

become positive with respect to the P-type. Then the presences of impurity ions on both sides of 

the junction cause an electric field to be established across this region with the N-side at a

positive voltage relative to the P-side. The problem now is that a free charge requires some extra 

energy to overcome the barrier that now exists for it to be able to cross the depletion region 

junction.

This electric field created by the diffusion process has created a “built-in potential difference” 

across the junction with an open-circuit (zero bias) potential of

Where: Eo is the zero bias junction voltage, VT the thermal voltage of 26mV at room 

temperature, ND and NA are the impurity concentrations and ni is the intrinsic concentration.



14
©Daffodil International University

2.8. Junction Diode Symbol and Static I-V Characteristics. [4]

Figure 2.8: I-V Characteristics

But before we can use the PN junction as a practical device or as a rectifying device we need to 

firstly bias the junction, ie connect a voltage potential across it. On the voltage axis above, 

“Reverse Bias” refers to an external voltage potential which increases the potential barrier. 

External voltages which decrease the potential barrier is said to act in the “Forward Bias” 

direction.

There are two operating regions and three possible “biasing” conditions for the standard 

Junction Diode and these are:

∑ 1.Zero Bias – No external voltage potential is applied to the PN junction diode
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∑ 2. Reverse Bias – The voltage potential is connected negative, (-ve) to the P-type material 

and positive, (+ve) to the N-type material across the diode which has the effect of 

Increasing the PN junction diode’s width.

∑ 3. Forward Bias – The voltage potential is connected positive, (+ve) to the P-type 

material and negative, (-ve) to the N-type material across the diode which has the effect 

of Decreasing the PN junction diodes width.

2.9. Zero Biased Junction Diode:

When a diode is connected in a Zero Bias condition, no external potential energy is applied to 

the PN junction. However if the diodes terminals are shorted together, a few holes (majority 

carriers) in the P-type material with enough energy to overcome the potential barrier will move 

across the junction against this barrier potential. This is known as the “Forward Current” and is 

referenced as IF

Likewise, holes generated in the N-type material (minority carriers), find this situation favorable 

and move across the junction in the opposite direction. This is known as the “Reverse Current” 

and is referenced as IR. This transfer of electrons and holes back and forth across the PN junction 

is known as diffusion, as shown below.
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Figure 2.9: Zero Biased PN Junction Diode

The potential barrier that now exists discourages the diffusion of any more majority carriers 

across the junction. However, the potential barrier helps minority carriers (few free electrons in 

the P-region and few holes in the N-region) to drift across the junction.

Then an “Equilibrium” or balance will be established when the majority carriers are equal and 

both moving in opposite directions, so that the net result is zero current flowing in the circuit. 

When this occurs the junction is said to be in a state of “Dynamic Equilibrium“.

The minority carriers are constantly generated due to thermal energy so this state of equilibrium 

can be broken by raising the temperature of the PN junction causing an increase in the generation 

of minority carriers, thereby resulting in an increase in leakage current but an electric current 

cannot flow since no circuit has been connected to the PN junction.
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2.10.1. Reverse Biased PN Junction Diode:

When a diode is connected in a Reverse Bias condition, a positive voltage is applied to the N-

type material and a negative voltage is applied to the P-type material.

The positive voltage applied to the N-type material attracts electrons towards the positive 

electrode and away from the junction, while the holes in the P-type end are also attracted away 

from the junction towards the negative electrode.

The net result is that the depletion layer grows wider due to a lack of electrons and holes and 

presents a high impedance path, almost an insulator. The result is that a high potential barrier is 

created thus preventing current from flowing through the semiconductor material.

Increase in the Depletion Layer due to Reverse Bias:

Figure 2.10.1: Reverse Bias
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This condition represents a high resistance value to the PN junction and practically zero current 

flows through the junction diode with an increase in bias voltage. However, a very small leakage 

current does flow through the junction which can be measured in micro-amperes, ( μA ).

One final point, if the reverse bias voltage Vr applied to the diode is increased to a sufficiently 

high enough value, it will cause the diode’s PN junction to overheat and fail due to the avalanche 

effect around the junction. This may cause the diode to become shorted and will result in the 

flow of maximum circuit current and this shown as a step downward slope in the reverse static 

characteristics curve below.

Reverse Characteristics Curve for a Junction Diode:

Sometimes this avalanche effect has practical applications in voltage stabilising circuits where a 

series limiting resistor is used with the diode to limit this reverse breakdown current to a preset 

maximum value thereby producing a fixed voltage output across the diode. These types of diodes 

are commonly known as Zener Diodes and are discussed in a later tutorial.

http://www.electronics-tutorials.ws/diode/diode_7.html
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2.10.2. Forward Biased PN Junction Diode:

When a diode is connected in a Forward Bias condition, a negative voltage is applied to the N-

type material and a positive voltage is applied to the P-type material. If this external voltage 

becomes greater than the value of the potential barrier, approx. 0.7 volts for silicon and 0.3 volts 

for germanium, the potential barriers opposition will be overcome and current will start to flow.

This is because the negative voltage pushes or repels electrons towards the junction giving them 

the energy to cross over and combine with the holes being pushed in the opposite direction 

towards the junction by the positive voltage. This results in a characteristics curve of zero current 

flowing up to this voltage point, called the “knee” on the static curves and then a high current 

flow through the diode with little increase in the external voltage as shown below.

Forward Characteristics Curve for a Junction Diode

Figure 2.10.2: Forward Characteristics Curve for a Junction Diode
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The application of a forward biasing voltage on the junction diode results in the depletion layer 

becoming very thin and narrow which represents a low impedance path through the junction 

thereby allowing high currents to flow. The point at which this sudden increase in current takes 

place is represented on the static I-V characteristics curve above as the “knee” point.

Reduction in the Depletion Layer due to Forward Bias

This condition represents the low resistance path through the PN junction allowing very large 

currents to flow through the diode with only a small increase in bias voltage. The actual potential 

difference across the junction or diode is kept constant by the action of the depletion layer at 

approximately 0.3v for germanium and approximately 0.7v for silicon junction diodes.

Since the diode can conduct “infinite” current above this knee point as it effectively becomes a 

short circuit, therefore resistors are used in series with the diode to limit its current flow. 

Exceeding its maximum forward current specification causes the device to dissipate more power 

in the form of heat than it was designed for resulting in a very quick failure of the device.
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2.11. Junction Diode Summary:

The PN junction region of a Junction Diode has the following important characteristics:

∑ Semiconductors contain two types of mobile charge carriers, Holes and Electrons.

∑ The holes are positively charged while the electrons negatively charged.

∑ A semiconductor may be doped with donor impurities such as Antimony (N-type 

doping), so that it contains mobile charges which are primarily electrons.

∑ A semiconductor may be doped with acceptor impurities such as Boron (P-type doping), 

so that it contains mobile charges which are mainly holes.

∑ The junction region itself has no charge carriers and is known as the depletion region.

∑ The junction (depletion) region has a physical thickness that varies with the applied 

voltage.

∑ When a diode is Zero Biased no external energy source is applied and a natural 

Potential Barrier is developed across a depletion layer which is approximately 0.5 to 

0.7v for silicon diodes and approximately 0.3 of a volt for germanium diodes.

∑ When a junction diode is Forward Biased the thickness of the depletion region reduces 

and the diode acts like a short circuit allowing full current to flow.

∑ When a junction diode is Reverse Biased the thickness of the depletion region increases 

and the diode acts like an open circuit blocking any current flow, (only a very small 

leakage current).

We have also seen above that the diode is two terminal non-linear device whose I-V 

characteristic are polarity dependent as depending upon the polarity of the applied voltage, VD

the diode is either Forward Biased, VD > 0 or Reverse Biased, VD < 0. Either way we can model 

these current-voltage characteristics for both an ideal diode and for a real diode.
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CHAPTER-03

Quantum Mechanics for Nanodevices

The purely mathematical postulations that make quantum mechanics the tool for actually 

describing nature is too intricate and exceed the scope of this report. The more used 

Schrodinger’s version of the mechanics is adopted as it gives a better insight to the subject, and 

provides for the practical means of modeling a nanodevice.

3.1. Translate the Schrödinger Equation to Three Dimensions:

In quantum physics, you can break the three-dimensional Schrödinger equation into three one-

dimensional Schrödinger equations to make it easier to solve 3D problems. In one dimension, the 

time-dependent Schrödinger equation (which lets you find a wave function) looks like this:

And you can generalize that into three dimensions like this:

Using the Laplacian operator, you can recast this into a more compact form. Here’s what the 

Laplacian looks like:

And here’s the 3D Schrödinger equation using the Laplacian:
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To solve this equation, when the potential doesn’t vary with time, break out the time-dependent 

part of the wave function:

Here, 

is the solution of the time-independent Schrödinger equation, and E is the energy:

So far, so good. But now you’ve run into a wall — the expression

is in general very hard to deal with, so the current equation is in general very hard to solve.

So what should you do? Well, you can focus on the case in which the equation is separable —

that is, where you can separate out the x, y, and z dependence and find the solution in each 

dimension separately. In other words, in separable cases, the potential, V(x, y, z), is actually the 

sum of the x, y, and z potentials:

V(x, y, z) = Vx(x) + Vy(y) + Vz(z)

Now you can break the Hamiltonian in

into three Hamilitonians, Hx, Hy, and Hz:
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Where,

When you divide up the Hamiltonian as in 

you can also divide up the wave function that solves that equation. In particular, you can break 

the wave function into three parts, one for x, y, and z:

Where X(x), Y(y), and Z(z) are functions of the coordinates x, y, and z and are not to be confused 

with the position operators. This separation of the wave function into three parts is going to make 

life considerably easier, because now you can break the Hamiltonian up into three separate 

operators added together:

E = Ex + Ey + Ez

So you now have three independent Schrödinger equations for the three dimensions:
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This system of independent differential equations looks a lot easier to solve than 

In essence, you’ve broken the three-dimensional Schrödinger equation into three one-

dimensional Schrödinger equations. That makes solving 3D problems tractable.

3.2. Poisson's equation:

In mathematics, Poisson's equation is a partial differential equation of elliptic type with broad 

utility in electrostatics, mechanical engineering and theoretical physics. It is used, for instance, to 

describe the potential energy field caused by a given charge or mass density distribution. The 

equation is named after the Frenchmathematician, geometer, and physicistSiméon Denis Poisson.

Statement of the equation

Poisson's equation is

where is the Laplace operator, and f and φ are real or complex-valued functions on a manifold. 

Usually, f is given and φ is sought. When the manifold is Euclidean space, the Laplace operator 

is often denoted as ∇2 and so Poisson's equation is frequently written as

In three-dimensional Cartesian coordinates, it takes the form

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Electrostatics
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Theoretical_physics
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Geometer
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Laplace_operator
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Cartesian_coordinate
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When = 0 we retrieve Laplace's equation.

Poisson's equation may be solved using a Green's function.

3.3. Models of quantum devices:

∑ The density gradient (DG) method

∑ Quantum hydro-dynamic model (QHD)

∑ Van Dort model

∑ Self-consistent Schrodinger-Poisson model

∑ Non equilibrium Greens Function (NEGF) formalism

3.4. Self-consistent Schrodinger-Poisson model:

This model is more accurate model of the actual quantum mechanical phenomena as it 

does not approximate any correction potential, rather self-consistently solves the basic 

Schrodinger’s equation with Poisson’s equation. The only semi-classical point is the effective 

mass and extension of a single electron wave function to many body theorems. One particular 

formation of the method adopted in SILVACO simulator is given below,

Self-consistent model is vastly used to analyze the behavior of nanoscale devices. It is long been 

adopted for n-type inversion layer in silicon MOS structure for energy level, population and 

https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Green%27s_function
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charge distribution analysis. The same self-consistent approach has been assumed to describe a 

cylindrical quantum wire for considering electronic confinement.

3.5. Non equilibrium Greens Function (NEGF) formalism:

This review deals with the non-equilibrium Green's function (NEGF) method applied to the 

problems of energy transport due to atomic vibrations (phonons), primarily for small junction 

systems. For quantum mechanical modeling of nanodevices, two formalisms are often used to 

avoid the huge computational burden of direct solution of the Schrodinger-Poisson approach. 

One is the Wigner equation commonly solved by finite difference method. A recent study of this 

equation with Monte Carlo method has shown to resolve both quantum interference and 

dissipation effect due to scattering. This method has been compared with NEGF formalism based 

simulator, and found to be equally effective for solving resonant tunneling diodes. This indicates 

that NEGF is an alternative choice to solving S-P method in quantum devices.
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CHAPTER-04

Developing the model

4.1. Numerical analysis:

Numerical analysis is the area of mathematics and computer science that creates, analyzes, and 

implements algorithms for solving numerically the problems of continuous mathematics. Such 

problems originate generally from real-world applications of algebra, geometry, and calculus, 

and they involve variables which vary continuously. These problems occur throughout the 

natural sciences, social sciences, medicine, engineering, and business.

Many problems in continuous mathematics do not possess a closed-form solution. In these 

situations, one has two options left: either one tries to find an approximate solution using seeks a 

numerical solution. Some problems can be solved exactly by direct methods. However, no direct 

methods exist for most problems. In such cases it is sometimes possible to use an iterative 

method. Such a method starts form a guess and finds successive approximations that hopefully 

coverage to the solution.

4.1.1. Numerical linear and nonlinear algebra:

This refers to problems involving the solution of systems of linear and nonlinear equations, 

possibly with a very large number of variables. Many problems in applied mathematics involve 

solving systems of linear equations, with the linear system occurring naturally in some cases and 

as a part of the solution process in other cases. Linear systems are usually written using matrix-

vector notation, Ax = b, with A the matrix of coefficients for the system, x the column vector of 

the unknown variables x1, . . . ,xn, and b a given column vector.

Linear systems are categorized according to many properties (e.g. A may be symmetric about its 

main diagonal), and specialized methods have been developed for problems with these special 

properties;[2]

http://www.scholarpedia.org/article/Algorithm
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Nonlinear problems are often treated numerically by reducing them to a sequence of linear 

problems. As a simple but important example, consider the problem of solving a nonlinear 

equation f(x) = 0. Approximate the graph of y = f(x) by the tangent line at a point x(0) near the 

desired root, and use the root of the tangent line to approximate the root of the original nonlinear 

function f(x).

4.1.2. Solving differential and integral equations:

Most mathematical models used in the natural sciences and engineering are based on ordinary 

differential equations, partial differential equations, and integral equations. The numerical 

methods for these equations are primarily of two types. The first type approximates the unknown

function in the equation by a simpler function, often a polynomial or piecewise polynomial

function, choosing it to satisfy the original equation approximately. Among the best known of 

such methods is the finite element method (FEM) for solving partial differential equations; see 

[1].

4.2. Finite Element Method (FEM) formation:

The most important factor in numerical solution to Schrodinger’s equation is the formation of 

Hamiltonian matrix. Once done that, the rest part becomes rather trivial to solve. It happens that 

a quantum system about always constitutes of a number of different energy eigenstates, which in 

the end gives rise to its own set of system equations. This results effectively in a system of 

equations. The Hamiltonian in quantum mechanics becomes a matrix for the whole state space 

and finding the diagonal representation of Hamiltonian remains the major problem. Here gives 

an example to explain the situation.

When we dealing with a 1D infinite quantum well where an electron is trapped inside, the 

electron energy will be quantum well will be quantized and it will have a finite probability 

distribution of occupancy in different eigenstates. But to describe the whole system, all the 
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eigenstates has to be considered. Each eiganstate gives rise to its own wave function which is a 

solution of the Schrodinger’s equation.

Where

,

= Planck's constant,

= mass of the particle,

=wavefunction

is a function describing the potential energy at each point x, and

is the energy, a real number, sometimes called eigenenergy.

For the case of the particle in a 1-dimensional box of length L, the potential is zero inside the 

box, but rises abruptly to a value at x = -L/2 and x = L/2. The wavefunction is considered to be 

made up of different wave functions at different ranges of x, depending on whether x is inside or 

outside of the box. Therefore the wavefunction is defined such that:

Thus the Hamiltonian that describes the Whole system is formed.

https://en.wikipedia.org/wiki/Plancks_constant
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Wavefunction
https://en.wikipedia.org/wiki/Energy


31
©Daffodil International University

The situation is not resolved. Still a way to discrete the 2nd order differential operator into finite 

space is needed. A number of ways remain, but the most widely accepted method is Finite 

Element Method.

As it is considered to be a 1D case only, x is the space dimension. In this case, the function can 

be expressed as a vector given by:

Then the FEM method finds the 2nd derivative as

For a 2D case, first a 2D (n+1) by (n+1) grid is created, where h=1/(n+1)is the grid spacing. So 

the function U becomes discrete and the elements U(I,j) becomes approximate solutions at x=i*h

and y=j*h

.

The formulation of the 2nd derivative of the point in the middle and the formula is:

The above linear equation relating U(I,j) and the value at its must hold for 1≤i,j≤n, giving N= n2

equation in N unknowns. When (I,j) is adjacent to a boundary (i=1 or i= n or j=n), one or more 

of the U(i±1,j±1) values is on the boundary and therefore has a value.
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4.3. Single Band Effective Mass:

The single-band effective mass Schrödinger equation to calculate the envelope functions is 

described and its grounds are shown. These envelope functions are used to multiply periodic part 

of the Bloch functions to obtain approximate eigenfunctions of the Hamiltonian of a 

nanostructure semiconductor. The Bloch functions, which are the product of a periodic function 

and a plane wave, constitute the exact solution of a homogeneous semiconductor; they are taken 

as a basis to represent the nanostructure Hamiltonian. The conditions that make possible the use 

of this single band effective mass Schrödinger equation are explained. The method is applied to 

the calculation of the energy spectrum of quantum dots for wave functions belonging to the

conduction band.

We shall see that the effective mass equation is only of application when we are dealing with 

electrons in a single semiconductor band, namely the conduction band. Therefore, the bipolar 

behavior, in which both electrons and holes enter into or in other words, when electrons in the 

CB and in the VB.

In the envelope-function method of the wavefunction is written as

ψ(z)= ΣFn(z)Un(z)
n

Where Un(z) are a complete set of functions with the periodicity of the Bravais lattice,and

Fn(z)is envelope functions with a plane-wave expansion restricted to the firstBrillouin zone. The 

functions Un(z) are the same throughout the entire structure, hence they cannot be eigenstates of 

all the local Hamiltonians, and in fact, do not need to. Thewave functions are the solutions of the 

stationary Schrödinger equation:

When m the electron mass and V(z) the atomic potential of the semiconductor structure. In the k-

space, the Schrodinger equation become,
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In this case, the Ben Daniel-Duke Hamiltonian is used and the resulting equation is

Where Fc(z) is the envelope function for the conduction band, Vc(z) is the potential defining the 

structure and mc(z) is the effective mass at z, which in this case is constant within each layer of 

the basis.

4.4. Effective mass for Hamiltonian for Hole:

The full-band approach, resulting in multi-band Hamiltonian for holes in the valance band work 

well for a bulk device. But as it is very much involved with different dimensions, the 

consequence of using this approach for a nano-device is still somewhat unclear and matter of 

current research. So far a coarser approximation, one uses the already given effective mass of 

holes in silicon and constructs an effective mass Hamiltonian for holes to get:

Where Uvis the valance band energy and depending upon the particular band, m* can be for light 

and heavy hole. The spin interaction band split is ignored for the present purpose.

4.5. Decoupled set of 1D equation:

In direct discretization, the 2D Schrodinger’s equation is considered and using FEM the 2D 

Hamiltonian matrix is directly created. For example in the case of electron gas, becomes:

This time instead of trying to directly expand the differential operator according to 2D FEM, the 

method involves decoupling of dimension variance in an attempt to separate the dimensional 

dependence.
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First a dimension is chosen to start with x. Then starting from one end, say i=1 mesh points are 

gradually considered from U(1,1) to U(1,7) and this 1D system is solved as an eigenvalue 

problem. This is repeated for every value of i till the other end. Then the position dependent 

eigenvalue (E1,E2…………ect.) is used as the system potential for 1D systems starting from j=1 

and is solved for points U(1,1) to U(1,7) and go up to j=7. This gives the total 2D solution.

Figure 4.5: Using the discrete 2D mesh for the decoupled 1D system of equations.

As before the starting point is the 2D Schrodinger’s equation (the two dimensions being x and z)

Then the differential equation is expanded in orthonormal basis function such as:

This actually is quite similar to Fourier analysis.

For thin body, this is about always a good assumption in nano regime, quantum confinement in a 

particular direction introduces subbands, and only a few subbands are usuallyeffectively 

occupied. Accordingly, wavefunction is expanded in the already mentioned orthonormal basis. 
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The eigenfunctions and the associated eigenenergies are obtained by solving a one-dimensional 

wave equation in the z direction within each x’ valued slice.

It should be noted here that the position dependent eigenvalue is not the eigenstate of the system, 

as eigenstate does not differ with position in the system.

So algorithm could be described stepwise as follows:

1. Discretize the 2D space coordinates according to the system.

2. Choose a particular direction as the basis function coordinate and expand the 

wavefunction as below:

3. Solve for each slice of the chosen coordinate as individual 1D system and the problem 

reduces to 1D eigenvalue problem:

4. Using the position dependant eigenvalue from the previous as the potential profile for the 

other dimension, solve the following equation as another eigenvalue problem:

5. Finally find the overall wave function from the orthonormal basis function expansion 

given is step 2.

4.6. Green’s function:

A significant advancement with the decoupled approach could be attained if the solution method 

is instead of direct, is the Green’s function method. But its advantages are only apparent in 

complex systems where non ballistic transport is considered with incoherent scattering effects 

and for a more rigorous contact analysis. It also comes into help if we are trying to simulate a 3D 

system. But for simpler situation like a 2D infinite potential well, it becomes unnecessarily 

overburdened.
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4.7. Self energy matrix:

For the device the carriers are confined in the lateral direction so that the boundary condition 

assumes that the carrier concentrations, i.e their wave functions become zero in the silicon-oxide 

interface. But the longitudinal direction, there are two contacts which in fact inject electrons and 

holes to the system and have to maintain equilibrium condition for any supplied current. So to 

incorporate these contacts into the actual device, some modeling method has to be adopted. A 

very suitable candidate in this case is the self energy matrix modeling the semi-infinite leads.[6]

Figure 4.7: Coupling between the contacts (seen as reservoirs of carriers) and the actual device.

The concept of self-energy is used in many-body physics to describe electron-electron and 

electron-phonon interactions. In the present context, however, it can be used to describe the 

effect of a semi-infinite contact. In general, a device connected to a large reservoir and has an 

overall Hamiltonian matrix of

Where the dimension of Hamiltonian for the contact HRis huge compared to that of the device H.

The overall Green’s function has the form  
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Here G is related to the device, while GR is related to the reservoir. The other two are interactions 

among the two. Because the concern is only about the details inside the device and not inside the 

reservoir for analysis purposes, only G is of interest (and not in GR or GDR or GRD). It then 

becomes is straightforward to show that

Where

This shows that the effect of the coupling to the reservoir can be accounted for by adding a self-

energy matrix ∑ to the Hamiltonian H. This is a very general concept that allows eliminating the 

huge reservoir and working solely within the device whose dimensions are much smaller. 

Arbitrary reservoir coupling can be calculated from coupling matrices. [6] So to find the self 

energy matrix ∑, a huge inversion is required:

The indices m, n refer to points within the device while µ, v refer to points inside the reservoir, 

so that gR(µ,v) for points (µ,v) that are on the surface is needed. This surface Green’s function 

con often be calculated analytically assuming a given reservoir model.

4.8. Bordering effect

If a nano-device is so small that the carriers get confined, then there exit quantized energy states. 

In itself, this energy distribution can be calculated and accounted for in that device. But 

whenever a device is mentioned, it is always implied that corresponding contacts are there, as 

without the contact of the device, which remain the connection of the device to the outer world, 

the device is of no use. But in the confined nano-device, there is an inherent effect of the contacts 

on that device. It broadens whatever energy levels the device might have had and must be 

correctly accounted for device modeling. Depending upon the physical nature of the contact, the 
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coupling becomes strong or weak, which determines how the levels inside the device will be 

broadened. It so happens that self-energy method correctly addresses this issue. 
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CHAPTER-05

Simulation: formulating the model

As the theoretical basis of the device model is gradually constructed, it then remains to 

implement the model in a simulator to evaluate the performance of the model. The 

considerations include from choosing of the software to detailed implementation method for 

different parts.

5.1 Choice of software

Whenever the equation of numerically solving some system of equations arises, the choices 

become obvious. The effective choice was in choosing one of the mathematical software. The 

practical choice was in MATLAB, FEMLAB, MATHEMATICA and MAPLE. Among these, 

the first two are adept to handling floating point operator of complex and huge matrices, while 

the later two only pose good option for symbolic mathematics. FEMLAB do better job in 

physical situation involving different systems, as only the Schrodinger’s equation has to be 

solved, MATLAB is as good.

One other important consideration, usually in more practical cases, a device problem should be 

solved self-consistently, that is iteratively and simultaneously solving Schrodinger’s equation 

with Poisson’s equation which at the moment is not possible with FEMLAB.

5.2. Device structure

The device in question is essentially a 2D device. The longitudinal direction is considered to be 

the x-direction, while the lateral dimension is in the z-direction. y-dimension is the transverse 

direction and the device is so wide in this direction that the carriers in this direction are free to 

move and characterized by plane wave. So in essence, the device is distributed in the x-z plane. 

In the longitudinal direction, the device ends in two contacts, the Anode and the Cathode from 

where electrons and holes are injected into the device. In the lateral dimension silicon device is 

sandwiched between two layers of oxide, ensuring confinement in both sides. Half of the device 

is p type and rest half is n type, so the metallurgical junction is at the middle. Doping is 

considered to be step type so the junction is abrupt, so that the basic physical effects become 
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clear. As for device is fabricated in silicon, for confinement, the z-dimension is 5nm wide, while 

in the longitudinal direction, it has a length of 100nm. In y-direction, the device is several 

micrometers wide so effectively it becomes large.

Figure 5.2: Schematic diagram of the device structure in 2D.

5.3. Meshing

Two meshing schemes were considered, the triangular meshing and the rectangular meshing. For 

triangular meshing, the formulation of 2D Laplacian and the 1D Hamiltonianbecomes involved 

and the basis physical aspects are curtained, while the rectangular meshing in general has a 

resolution problem. But the fact that the device is strictly rectangular in shape, made the case for 

rectangular meshing.

This is for the fact that the actual dispersion relation between energy and discretized

momentum of carrier given by

E=2(1-coska)

is well approximated by the continuous dispersion relation

Contact Contact
N-type material P-type material
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5.4. Lateral dimensional Hamiltonian

In MATHLAB, with rectangular meshing for a 1D case in the z-direction, an n by n Hamiltonian 

matrix is in order, where n is the number of discrete points in that direction. So if the lateral 

width is z nm and the grid spacing is a nm, then n=z/a. As n is increased, the size of the matrix 

also increases and requires more and more computational resource. The coupling constant for the 

equation is 

Where ∆� is the differential distance between mesh points and mz* is the z-directed effective 

mass of concerned carrier, (electron or hole). This is the onsite energy that every particle feels 

due to lattice, accordingly discredited into FEM formalism. 

The device is first sliced into vertical slices of width a so that we have Lx/a vertical slices. It is 

assumed that all quantities are constant in x-direction within each slice, and a lateral Hamiltonian 

is constructed for each slice. So for a particular slice, the actual Hamiltonian both for electron 

and hole becomes:

For example, with n=5 at the 10th slice, the total Schrodinger’s equation in matrix form becomes:
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For the practical device in consideration, the size is n=10.

5.5. Energy Grid

In the longitudinal x-direction, the device is coupled with two contacts, each injecting a 

particular type of carrier (anode injecting hole and cathode injecting electron). So the 

Schrodinger’s equation is no longer an eigenvalue problem in this dimension, rather the wave 

functions for given eigenenergy has to be found for a corresponding longitudinal energy. The 

longitudinal energy is the energy of a carrier in relevant contact that can be injected to the 

device. Since the device is degenerately doped, the thermal equilibrium Fermi energy lies well 

within the corresponding band, and particles with any energy between Fermi energy and the 

band edge can be injected with high probability. So to account for this the longitudinal energy 

has to be discretized and solution has to be found for all such energy. For longitudinal 

Hamiltonian, a grid in the energy has to be defined.

For the device in hand, the reference energy is the conduction band energy Ecn in the n side. 

Taking Ecn=0 then the energy range for electrons remain from 0 to EFn.Similarly the energy 

range for the holes is from EFnto Evp. The energy grid spacing is taken to be 0.5meV, which is 

quite typical for such calculations. In equilibrium, EFn=EFpwhile for a bias of V, it is given by 

EFn=EFp+qV.



43
©Daffodil International University

Figure 5.5: The schematic diagram of a p-n junction under equilibrium condition with no 

bias. 

5.6. Open boundary condition and carrier injection

Semi-infinite contacts are attached to the device as anode and cathode. Because the potential in 

the contacts is assumed to be uniform, the solutions in the semi-infinite contacts are plane waves. 

If a unit amplitude wave is injected from the cathode (electron), then some portion reflects from 

the device and some transmits across and exits the perfectly absorbing anode contact

and

Where rmand tm are reflection and transmission coefficients for cathode injection into mode m 

and Lxis the length of the active device.

By solving all equation, the wave function due to the injection of a unit amplitude wave from the 

cathode is found. This translated to the matrix formation gives the self energy matrices of 

dimension n by n with only one non-zero term
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For carrier injection o source vector term ϒ1 is required of n by I dimension. It has only one non-

zero term is accounting for carrier injection, and also the level broadening.

So for longitudinal direction the equation that is solved is 

Similar arguments also account for holes that are injected from anode.

5.7. Steady state carrier density

Electron density for a confined mode m and with injected wave vector kx is obtained from 

summing all transverse (y-directed) mode with wave vector ky:

Here Kx refers to the X-component of the wave vector of an electron with total energy E in 

the cathode contact and the probability that the state with total energy E is occupied within 

the contact is given by the Fermi-Dirac distribution fFD. This is valid because the contacts are 

always under thermal equilibrium.

The longitudinal summation can also be changed into integral and the final result can be 

expressed as [].
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Considering the conduction band (valance band while considering hole calculations) as 

infinitely wide it can be shown that (including spin delegacy) []

Here F-1/2 is the Fermi integral of order -1/2 and Ae
mis the local density of state:

5.8. Self-consistent analysis

Self consistency is achieved as the successive potential profile difference becomes lower than the 

preset allowed difference. As the energy grid has been set with a resolution of 0.5meV, this in 

fact sets the limit to the maximum achievable accuracy and any error resulting is lesser value is 

deemed acceptable. This then sets the convergence criteria.

First an initial guess was made for the system potential. The initial guess only plays a part in 

achieving convergence faster, and for a well formulated problem does not significantly pose a 

problem. With the guess potential, the quantum transport equations are solved to get the overall 

carrier density. Then along with the doping profile, this is inputted to the Poisson’s equation to 

get the potential of the system. Then the new potential is compared with the previous potential, 

and if the difference is larger than the allowed error, the new potential replaces the old one and 

quantum transport is solved again with the new potential. The process goes on until self-

consistent.
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5.9. Flowchart

The overall algorithm can be described as follow:

1. Guess a potential profile for the whole system.

2. With this potential profile, calculate the vertical slice confined 1D system equation to 

get the confined wave function and position dependant eigenenergy.

3. Using the position dependant eigenenergy as the effective local potential, solve the 

longitudinal system equation with Green’s function formation to incorporate contacts 

and carrier injection.

4. Calculate the carrier density in the device.

5. Using the carrier density and the doping profile, solve Poisson’s equation in 2D to 

find the system potential.

6. Check whether the new calculated potential differs within the given range with the 

initial potential.

7. If self-consistent is not achieved, repeat above steps.

8. Once self-consistent is achieved, we calculate relevant properties from carrier density 

and potential profile.
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Figure 5.9: Flow chart of the decoupled system of 1D equation.
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CHAPTER-06

Results: Equilibrium potential profile

Built-in potential

A longitudinal section is selected along the device length through the midpoint of the thickness 

and self-consistent potential is plotted. It can be seen that the difference in potential is plotted. It 

can be seen that the difference in the n-side and the p-side is the built in potential, Vbi, and as for 

any degenerately doped junction, the magnitude is larger than the band gap energy.

Figure 6.1: Built-in Potential along the device axis (energy vs. device length curve).

In equilibrium, a degenerately doped n-type material will have equilibrium Fermi level within 

the conduction band. So the Fermi level is situated above the conduction band edge. On the other 

side, a degenerately doped p-type material will have equilibrium Fermi level within the valance 

band, hence it will be situated below the valance band edge. Now in equilibrium, it is required 

that the device the Fermi energy be same, so Fermi energy in the n-type material is exactly equal 

to the Fermi energy in the p-type material. So the p-type material valance band edge will have 
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higher energy than the n-type conduction band edge. The p-type conduction band being above 

the p-type valance band by band gap energy, Eg, the difference in conduction band edge between 

the two sides is given by

∆� =Ecn+EFn+EFp+Eg

So the built in potential is given by

Vbi=EFn+EFp+Eg

Depletion region:

Rise in potential which is equal to the built in potential, is in fact the depletion region, where the 

material is depleted of free carriers. The length of the depletion region is calculated from the 

point where the potential starts to rise till the point where the potential becomes constant again. It 

can be seen that the value of the depletion region width is about one order more than predicted 

by 3D equations

Figure 6.2: Conduction band of the 2D p-n junction in silicon (3D).
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CONCLUSION

There has been considerable work on developing quantum transport model for unipolar device 

structures like MOS, but not on bipolar devices. Most of these works concentrate on electron as 

carrier and at least, sometimes consider holes as the sole carrier. But in p-n junction, both 

electrons and holes exit and create junction with associated depleted region, which then creates 

the basis device.

It could be pointed out that the contribution of this work could be listed as follows:

∑ The 2D Schrodinger’s equation is decoupled for a bipolar system into a set of 1D 

equation and applied simultaneously to electrons.

∑ A simulation model of 2D p-n junction in silicon is developed.

∑ Simulation is carried for both equilibrium and biased condition.
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APPENDIX

Sample MATLAB code:

clc; clear all;
Length=1e-7;  %Device length in x direction
Thickness=5e-9;  % Device thickness in z direction
Width=5e-6;     %Device width in y direction
Oxide=5e-9;  % oxide thickness in z direction

a=5e-10;    %slice width
b=5e-10;    %Mesh point distance in each verticle slice
c=5e-10;     %mesh point distance in oxide
mode= 5;     % number of subbands to be consider
Volt= 1.4; % applied voltage

%  constant....
K=8.61735E-5;     %Boltzman constant
q=1.6e-19;         %electronic charge
hbar=1.0544e-34;   %Reduced Plank's conostant
mex=0.916;         %Effective electron mass in X direction
mey=0.916;         %Effective electron mass in Y direction
mez=0.916;         %Effective electron mass in Z direction
mpx=0.916;         %Effective hole mass in X direction

mpy=0.916;         %Effective hole mass in Y direction
mpz=0.916;         %Effective hole mass in Z direction

melec=9.1e-31;     % Electron rest mass in kg
T=300;
epsilon0=8.8542e-12; %permittivity of free space
epsilonr=11.8;       %relative permittivity of silicon
epsilonox=12.8;      %relative permittivity of oxide

Nx=round(Length/a);  % number of vertical slices
Nz=round(Thickness/b);  %number of nodes in device slice
Nox=round(Oxide/c);   %number of oxide
Nthick=Nz+2*Nox;      %number of nodes in each vertical slice
kt=K*T;
Ae=2*mez*melec/(hbar)^2;   %coefficient of electron Schrodinger eq.
Ap=2*mpz*melec/(hbar)^2;    %coefficient of hole Schrodinger eq.
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tez=(hbar^2)/(2*mez*melec*b^2*q);  %electron coupling conostant
tex=(hbar^2)/(2*mex*melec*a^2*q);  %electron coupling conostant
tpz=(hbar^2)/(2*mpz*melec*b^2*q);  %hole coupling conostant
tpx=(hbar^2)/(2*mpx*melec*a^2*q);  %hole coupling conostant

Efn=0.4;                     %Fermi energy of anode(referance value)
Ecn=0.001;                  %conduction band of cathode side
Efp=Efn-Volt;   %Fermi energy of cathod(referance value)
Ecp=0.001;                   %conduction band edge of n side
Em=zeros(Nx,mode);           %energy in each vertical side
U=zeros(Nthick,Nx);        %protential profile
Eleamax=0.125;           % maximum injection energy for electron from anode
Eleamin=Ecn;            % minimum injection energy for electron from anode
Elecmax=0.125;         %maximum injection energy for electron from cathode
Elecmin=Ecp;           %minimum injection energy for electron from cathode
Eldiff=5e-4;          %energy grid spacing
Elp_max=0.8*tpx;
Elp_min=0.001;
Elp_diff= 5e-4;
sigma1=zeros(Nx);
sigma2=zeros(Nx);
gama1=zeros(Nx,1);
nelec=zeros(Nx,mode);   %electron concentration in the device
nhole=zeros(Nx,mode);
NE_anode=round((Eleamax-Eleamin)/Eldiff);

NE_cathode= round((Elecmax-Elecmin)/Eldiff);

NP=round((Elp_max-Elp_min)/Elp_diff);

%Eigenfunction in each vertical slice

phiz=zeros(Nx,Nz,mode);
phixa=zeros(round((Eleamax-Eleamin)/Eldiff),Nx,mode);
phixc=zeros(round((Elecmax-Elecmin)/Eldiff),Nx,mode);
nanodemode=zeros(Nx,mode);
nanodem=zeros(Nx,Nz,mode);
nanode=zeros(Nz,Nx)';
ncathodemode=zeros(Nx,mode);
ncathodem=zeros(Nx,Nz,mode);
ncathode=zeros(Nz,Nx)';
eprob=zeros(Nz,Nx)';
nelec=zeros(Nx,Nz);          %2 dimensional density
nhole2D=zeros(Nx,Nz,mode);
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nhole3D=zeros(Nz,Nx)';
phole3D=zeros(Nz,Nx)';
u =U;
epsilon=epsilon0*epsilonr;
epsilonx=epsilon0*epsilonox;

%  2dpoisson' Eqation

d=zeros(Nthick+2,Nx+2);
ind=1;
forjj=2:Nthick+1;
for ii=2:Nx+1;
d(jj,ii)=ind;
ind=ind+1;
end
end
d=-delsq(d);

% Nx, Nox, Nz
for ii=(Nx*Nox)+1:Nx:Nx*(Nox+Nz);
d(ii,ii)=-3;
d(ii,ii-1)=0;
d(ii+Nx-1,ii+Nx-1)=-3;
ifii+Nx<4001
d(ii+Nx-1,ii+Nx)=0;
end
end

dinv=inv(d);

%Energy grid for longitudinal Energy

Elea=linspace(Eleamin,Eleamax,round((Eleamax-Eleamin)/Eldiff));
Elec=linspace(Elecmin,Elecmax,round((Elecmax-Eleamin)/Eldiff));

%Doping profile calculation

Ndevice=-(1e21)*ones(Nz,Nx);
for ii=1:Nx/2;
Ndevice(:,ii)=1e21;
end
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% self consistent solution

for mm=1.4:1.4;
Volt=mm;

itteration=1;
error=inf;
check=1;
while error>Eldiff
Uold=U;
%Device Potential

Udevice(:,:)=U(Nox+1:Nox+Nz,:);
Uave=mean(Udevice);      %for carrier injection
%Hamiltonian matrix for each vertical slice

for ii=1:Nx;
hz=2*tez*diag(ones(1,Nz))-(tez*diag(ones(1,Nz-1),1))-(tez*diag(ones(1,Nz-1),-

1))+diag(Udevice(:,ii));
[V,D]=eig(hz);

forjj=1:mode; %For each mode in a particle slice...

phiz(ii,:,jj)=V(:,jj); %eigenenergy of each mode at different slices
Em(ii,jj)=D(jj,jj);
eprobm=abs(phiz(ii,:,jj)).^2;
end
end

% Hamiltonnian matrix in longitudinal direction
for ii=1:round((Eleamax-Eleamin)/Eldiff);  %for each energy
coska=1-((Elea(ii)-Uave(1))/(2*tex));
ka=acos(coska);
sigma1(1,1)=-tex*exp(i*ka);
coska=1-((Elea(ii)-Uave(Nx))/(2*tex));
ka=acos(coska);
sigma2(Nx,Nx)=-tex*exp(i*ka);

gama1=diag(i*(sigma1-sigma1'));
gama2=diag(i*(sigma2-sigma2'));

forjj=1:mode;
hx=(2*tex*diag(ones(1,Nx))+diag(Em(:,jj)))-(tex*diag(ones(1,Nx-1),1))-

(tex*diag(ones(1,Nx-1),-1));
G=Elea(ii)*eye(Nx)-hx-sigma1-sigma2;

phixa(ii,:,jj)=-i*G\gama1;
G2=Elec(ii)*eye(Nx)-hx-sigma1-sigma2;

phixc(ii,:,jj)=-i*G2\gama2;
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n(:,jj)=((sqrt(2*mey*melec*kt/pi))*(abs(phixa(ii,:,jj)).^2)*(fermi((Efn-Elea(ii)),-
0.5)))/(hbar*2*pi*gama1(1,1));

p(:,jj)=((sqrt(2*mpz*melec*kt/pi))*(abs(phixc(ii,:,jj)).^2)*(fermi((Elec(ii)-Efp),-
0.5)))/(hbar*2*pi*gama2(200,1));

end
nanodemode=n+nanodemode;
ncathodemode=p+ncathodemode;
end

%Calculating 2D electron density

for ii=1:Nx;
forjj=1:mode;
nanodem(ii,:,jj)=nanodemode(ii,jj)*((abs(phiz(ii,:,jj))).^2);

ncathodem(ii,:,jj)=ncathodemode(ii,jj)*((abs(phiz(ii,:,jj))).^2);

end
end
for ii=1:mode;
nanode=nanodem(:,:,ii)+nanode;
ncathode=ncathodem(:,:,ii)+ncathode;
end

%Poisson's equation

rho=[zeros(Nox,Nx);(nanode'-ncathode'-Ndevice);zeros(Nox,Nx)];
rhovect=reshape(rho',[],1);

u=dinv*rhovect;
beta=-q*a^2/epsilon;

u=beta*u;

U=reshape(u,[],Nthick)'./[epsilonx*ones(Nox,Nx);epsilon*ones(Nz,Nx);epsilonx*ones(Nox,Nx)
];
error=max(abs(U-Uold));
end
end

% x=U(:,Nx);
% y=U(:,Nox);
% [xx,yy]=meshgrid(x,y);
x=(0:1:Nx-1)*a;
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y=(0:1:Nthick-1)*c;

surf(x,y,U);

% figure;
% surf(xx,yy);
% xlabel('U_x axis')
% ylabel('U_y axis')
% axis tight
% shading interp
% colorbar

END


