
©Daffodil International University

 AN ANDROID APPLICATION FOR BENGALI OPTICAL CHARACTER

RECOGNITION FROM IMAGE

BY

MD. MASUD KARIM

ID: 141-15-3368

AND

MD. REZWANUR RAHMAN

ID: 141-15-3357

This Report Presented in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in Computer Science and Engineering

Supervised By

Md. Zahid Hasan

Assistant Professor

Department of CSE

Daffodil International University

Co-Supervised By

Mr. Abdullah Al-Mamun

Senior Lecturer

Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

MAY 2018

ii

©Daffodil International University

iii

©Daffodil International University

DECLARATION

We hereby declare that, this project has been done by us under the supervision of

Md. Zahid Hasan, Assistant Professor, Department of Computer Science and

Engineering, Daffodil International University. We also declare that neither this project

nor any part of this project has been submitted elsewhere for award of any degree or

diploma.

Supervised by:

Md. Zahid Hasan

Assistant Professor
Department of Computer Science and Engineering

Daffodil International University

Submitted by:

Md. Masud Karim

ID: 141-15-3368

Department of Computer Science and Engineering

Daffodil International University

Md. Rezwanur Rahman

ID: 141-15-3357

Department of Computer Science and Engineering

Daffodil International University

iv

©Daffodil International University

ACKNOWLEDGEMENT

First we express our heartiest thanks and gratefulness to almighty God for His divine

blessing makes us possible to complete the final year project successfully.

We really grateful and wish our profound our indebtedness to Md. Zahid Hasan, Assistant

Professor, Department of Computer Science and Engineering, Daffodil International

University, Dhaka. Deep Knowledge & keen interest of our supervisor in the field of

“Bengali Optical Character Recognition for Android” to carry out this project. His endless

patience, scholarly guidance, continual encouragement, constant and energetic supervision,

constructive criticism, valuable advice, reading many inferior draft and correcting them at

all stage have made it possible to complete this project.

We would like to express our heartiest gratitude to prof. Dr. Syed Akhter Hossain, Head,

Department of Computer Science and Engineering for his kind help to finish our project

and also to other faculty member and the staff of Computer Science and Engineering

department of Daffodil International University.

We would like to thank our entire course mate in Daffodil International University, who

took part in this discuss while completing the course work.

Finally, we must acknowledge with due respect the constant support and patients of our

parents.

v

©Daffodil International University

ABSTRACT

This project is on “An Android Application for Bengali Optical Character Recognition

from Image”. An Optical Character Recognition system for Bengali language is proposed

here. This application can detect and recognize Bengali text that is captured by a mobile

device or selected from gallery and displays recognized text onto the phone screen. You

can edit the recognized text within this software and also can copy text for further use. For

developing this application, we have used the Tesseract Optical Character Recognition

(OCR) Engine which was developed by Google is an open source OCR application. The

output of the OCR is allowed to be edited or copied recognized text for further processing

like translate text via translator, save text file via different MSOffice Software. This project

is useful for the foreign tourists to navigate while they are traveling around this country.

This application will allow users to perform many actions in few minutes, such as copy

text and modify it, instead of wasting time on retyping it. UI of this application is user

friendly so that any user can use this application. This application is very much time

consuming and accurate than other existing Bengali OCR.

vi

©Daffodil International University

TABLE OF CONTENTS

CONTENTS PAGE

Board of Examiners ii

Declaration iii

Acknowledgements iv

Abstract v

List of Figures viii

List of Tables viii

CHAPTER 1: INTRODUCTION 01-02

1.1 Introduction 01

1.2 Motivation 01

1.3 Objectives of the Software 01

1.4 Expected Outcome 02

1.5 Report Layout 02

CHAPTER 2: BACKGROUND 03-05

2.1 Introduction 03

2.2 Related Works 03

2.3 Comparative Studies 04

2.4 Scope of the Problem 04

2.5 Challenges 05

CHAPTER 3: REQUIREMENT SPECIFICATION 06-11

3.1 Business Process Modeling 06

3.2 Requirement Collection and Analysis 10

3.3 Use Case Modeling and Description 11

3.4 Design Requirements 11

vii

©Daffodil International University

CHAPTER 4: DESIGN SPECIFICATION 12-16

4.1 Front-end Design 12

4.2 Back-end Design 13

4.3 Interaction Design and UX 14

4.4 Implementation Requirements 15

CHAPTER 5: IMPLEMENTING AND TESTING 17-24

5.1 Implementation of Database 17

5.2 Implementation of Front-end Design 17

5.3 Implementation of Interactions 20

5.4 Testing Implementation 22

5.5 Test Results and Reports 23

CHAPTER 6: CONCLUSION AND FUTURE SCOPE 25

6.1 Discussion and Conclusion 25

6.2 Limitation 25

6.3 Scope for Further Developments 25

REFERENCES 26

APPENDICES 26

viii

©Daffodil International University

LISTS OF FIGURES

FIGURES PAGE

Figure 3.1 : System Flow Chart 06

Figure 3.2 : Use Case Model 11

Figure 4.1 : Chart of User Experience 15

Figure 5.1 : Welcome Page 18

Figure 5.2 : Instruction Page 18

Figure 5.3 : Instruction Page 18

Figure 5.4 : Add Image Using Gallery or Camera 19

Figure 5.5 : Option for Add Image 19

Figure 5.6 : Display Recognized Text 20

Figure 5.7 : Image View of Selected Image 21

Figure 5.8 : Text Button for Run OCR 22

LISTS OF TABLES

TABLES PAGE

Table 5.1 : Testing Objective of Our Application 22

Table 5.2 : Result of Test Objectives 23

©Daffodil International University 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

OCR means Optical Character Recognition that converts text image into editable text

format. An example of Optical Character Recognition (OCR) is ASCII code that the

computer can manipulate. We used Unicode which is considered as converted text in

our project. There are many recognition systems are available in play store for android.

OCR plays eminent role in computer science. Recognition system works frequently for

simple languages like English. Because English language has only 26 character sets.

For standard text there are 52 numbers of characters including capital and small letters

in English Language. Bengali is a complex language but organized language. But OCR

system for Bengali language is still in preliminary level for android. The reasons of its

complexities are its character shapes, its top bars and end bars more over it has some

modified, vowel and compound characters.

1.2 Motivation

Android is a very popular platform. Most of the smart phones use Android Operating

system. Now-a-days there are many OCR applications for android platform. Most of

them are already used. But unfortunately there is not a good application for Bengali

language which can fulfill the basic requirement. Google created an OCR engine, but

they didn’t make any android application for Bengali language. So, we tried to build

an Android based OCR application for solving this issue.

1.3 Objective

Objective of Bengali OCR for Android are given below:

 Converts an image to editable text

 Copy extracted text into clipboard for further use

 Edit extracted text

2

©Daffodil International University

 Save extracted text as pdf/word document via MSOffice Software

 Translate extracted text via translator application

1.4 Expected Outcomes

Our application can detect Bengali text from image more accurately than other

applications. Time complexity of this application will be very low. The user interface

will be very simple so that any user will be able to use this application very easily.

1.5 Report Layout

The entire project is composed by six chapters. In the report, layout is summarized that

five chapter. Discuss the summarized below:

Chapter 2 covers background of this project, related works, comparative studies, scope

of the problem and challenges. Chapter 3 contains business process modeling,

requirement collection and analysis, use case modeling and design requirements.

Chapter 4 contains front-end, back-end and interaction design and UX. Chapter 5 is

about implementation of project and testing results. Chapter 6 covers conclusion,

limitation and future development. And at last of this report there is references.

3

©Daffodil International University

CHAPTER 2

BACKGROUND

2.1 Introduction

OCR is the mechanical or electronic transformation of scanned digital images of

handwritten, typewritten or printed text into machine-encoded text for example

Unicode. It is largely used application for converting books and documents into text

files. Early optical character recognition may be traced to technologies involving

telegraphy and creating reading devices for the blind people. Emanuel Goldberg

implemented a machine that read characters and converted them into standard telegraph

code in 1914. Concurrently, Edmund Fournier d'Albe invented the Optophone which

is a handheld scanner that when moved across a printed page, produced tones that

corresponded to specific letters or characters. Since 1950, OCR has emerged a major

research field for its usefulness. All over the world there are many widely spoken

languages like English, Chinese, Arabic, Japanese, and Bengali etc. Bengali is ranked

5th as speaking language all over the world. Here we will present a total overview of

Bengali OCR and its existing challenge is to know the development procedure and to

estimate what more requires to do to create a complete Bengali OCR for making things

easier.

2.2 Related Works

Bengali OCR isn’t a recent work, but there are very few mentionable work in this field.

For example: CamScanner, Text fairy etc. For Bengali OCR ‘BORCA and Alpona-

Pathok’ was made publicly all over the world in 2006. But They were not open source.

In 2007 the Center for Research on Bengali Language Processing (CRBLP) released

BengaliOCR – the first open source OCR software for Bengali language. BengaliOCR

is a complete OCR framework and has a recognition rate of up to 98%(in limited

domains) but it also has many limitations.

4

©Daffodil International University

2.3 Comparative Studies

In existing software there is many complications and limitations. The user interface is

not much user friendly. The accuracy and time consumption of software is very

annoying. But in our software we have used the most accurate OCR engine Tesseract

which was developed by Google. So it’s accuracy and time consumption is better than

other existing softwares. And we have tried our level best to make this software user

friendly.

2.4 Scope of the Problem

Each author has used their own set of data to build system. As a result, comparative

analysis does not produce a really meaningful result in this project. Some authors

addressed noise detection and cleaning phase in their works to make system convenient.

However, a comprehensive solution for elimination of all types of noise for Bengali

OCR system is not available. The reader has already understood that Bengali has not

only basic characters; but also rich with modifiers and compound characters. Placement

of modifiers may happen on the upper, lower, left or right side of original characters

which generates a lot of complications. Rarely authors could confidently claim that a

particular segmentation and classification scheme has dealt perfectly with all of them.

Again lack of standard or benchmark samples do not allow one to make a

comprehensive testing of their application. Existing applications are built up for printed

documents where complex structure of documents is assumed not to present. Also these

applications do not have any good quality page layout analyzer which could

automatically identify picture and text paragraph of an input image. These have some

limitations on line segmentation for newspaper document images because of the

appearance of joining problem between two lines in the digital images. Existing OCR

does not perform well for medium quality printed low resolution document images.

Many of the existing applications are doing well but not user friendly and very complex

user interface. There is some good quality application available, but they need premium

subscription.

5

©Daffodil International University

2.5 Challenges

Characters in Bengali are not alphabetical as in English where the characters largely

have one-sound one-symbol characteristics. It is a mixture of syllabic and alphabetic

characters. The use of modified and compound characters is also very common in

Bengali language. This project presents methods for recognizing Bengali printed

characters based on view-based approach.

6

©Daffodil International University

CHAPTER 3

REQUIREMENT SPECIFICATION

3.1 Business Process Modeling

This model not only provides a clear view about the software that has been developed

but also helps to achieve the goal. In this model when user need he or she will be update

easily in his/her system or software and in this model are also useful for the developers.

Fig 3.1: System Flow Chart

Start

Instruction

Camera Gallery

Recognized Text

Run OCR

Show Picture

End

Add

Image

Permission

 Yes

No

7

©Daffodil International University

 Architecture

Tesseract assumes that its input is a binary image with optional polygonal text regions

defined. Processing follows a traditional step-by-step pipeline, but some of the stages

were unusual in their day, and possibly remain so even now. The first step is a

connected component analysis in which outlines of the components are stored. This

was a computationally expensive design decision at the time, but had a significant

advantage: by inspection of the nesting of outlines, and the number of child and

grandchild outlines, it is simple to detect inverse text and recognize it as easily as black-

on-white text. Tesseract was probably the first OCR engine able to handle white-on-

black text so trivially. At this stage, outlines are gathered together, purely by nesting,

into Blobs. Blobs are organized into text lines, and the lines and regions are analyzed

for fixed pitch or proportional text. Text lines are broken into words differently

according to the kind of character spacing. Fixed pitch text is chopped immediately by

character cells. Proportional text is broken into words using definite spaces and fuzzy

spaces.

Recognition then proceeds as a two-pass process. In the first pass, an attempt is made

to recognize each word in turn. Each word that is satisfactory is passed to an adaptive

classifier as training data. The adaptive classifier then gets a chance to more accurately

recognize text lower down the page.

Since the adaptive classifier may have learned something useful too late to make a

contribution near the top of the page, a second pass is run over the page, in which words

that were not recognized well enough are recognized again.

A final phase resolves fuzzy spaces, and checks alternative hypotheses for the x-height

to locate small-cap text.

 Line and Word Finding

Line Finding

The line finding algorithm is one of the few parts of Tesseract that has previously been

published. The line finding algorithm is designed so that a skewed page can be

recognized without having to de-skew, thus saving loss of image quality. The key parts

8

©Daffodil International University

of the process are blob filtering and line construction. Assuming that page layout

analysis has already provided text regions of a roughly uniform text size, a simple

percentile height filter removes drop-caps and vertically touching characters. The

median height approximates the text size in the region, so it is safe to filter out blobs

that are smaller than some fraction of the median height, being most likely punctuation,

diacritical marks and noise. The filtered blobs are more likely to fit a model of non-

overlapping, parallel, but sloping lines. Sorting and processing the blobs by x-

coordinate makes it possible to assign blobs to a unique text line, while tracking the

slope across the page, with greatly reduced danger of assigning to an incorrect text line

in the presence of skew. Once the filtered blobs have been assigned to lines, a least

median of squares fit is used to estimate the baselines, and the filtered-out blobs are

fitted back into the appropriate lines. The final step of the line creation process merges

blobs that overlap by at least half horizontally, putting diacritical marks together with

the correct base and correctly associating parts of some broken characters.

Baseline Fitting

Once the text lines have been found, the baselines are fitted more precisely using a

quadratic spline. This was another first for an OCR system, and enabled Tesseract to

handle pages with curved baselines, which are a common artifact in scanning, and not

just at book bindings. The baselines are fitted by partitioning the blobs into groups with

a reasonably continuous displacement for the original straight baseline. A quadratic

spline is fitted to the most populous partition, (assumed to be the baseline) by a least

squares fit. The quadratic spline has the advantage that this calculation is reasonably

stable, but the disadvantage that discontinuities can arise when multiple spline

segments are required. A more traditional cubic spline might work better.

Fixed Pitch Detection and Chopping

Tesseract tests the text lines to determine whether they are fixed pitch. Where it finds

fixed pitch text, Tesseract chops the words into characters using the pitch, and disables

the chopper and associator on these words for the word recognition step.

9

©Daffodil International University

Proportional Word Finding

Non-fixed-pitch or proportional text spacing is a highly non-trivial task. Tesseract

solves most of the problems by measuring gaps in a limited vertical range between the

baseline and mean line. Spaces that are close to the threshold at this stage are made

fuzzy, so that a final decision can be made after word recognition.

 Word Recognition

Part of the recognition process for any character recognition engine is to identify how

a word should be segmented into characters. The initial segmentation output from line

finding is classified first. The rest of the word recognition step applies only to non-

fixed pitch text.

Chopping Joined Characters

While the result from a word is unsatisfactory, Tesseract attempts to improve the result

by chopping the blob with worst confidence from the character classifier. Candidate

chop points are found from concave vertices of a polygonal approximation of the

outline, and may have either another concave vertex opposite, or a line segment. It may

take up to 3 pairs of chop points to successfully separate joined characters from the

ASCII set.

Chops are executed in priority order. Any chop that fails to improve the confidence of

the result is undone, but not completely discarded so that the chop can be re-used later

by the associator if needed.

Associating Broken Characters

When the potential chops have been exhausted, if the word is still not good enough, it

is given to the associator. The associator makes an A* (best first) search of the

segmentation graph of possible combinations of the maximally chopped blobs into

candidate characters. It does this without actually building the segmentation graph, but

instead maintains a hash table of visited states. The A* search proceeds by pulling

candidate new states from a priority queue and evaluating them by classifying

unclassified combinations of fragments.

10

©Daffodil International University

It may be argued that this fully-chop-then-associate approach is at best inefficient, at

worst liable to miss important chops, and that may well be the case. The advantage is

that the chop-then-associate scheme simplifies the data structures that would be

required to maintain the full segmentation graph.

When the A* segmentation search was first implemented in about 1989, Tesseract’s

accuracy on broken characters was well ahead of the commercial engines of the day.

An essential part of that success was the character classifier that could easily recognize

broken characters.

3.2 Requirement Collection and Analysis

Requirement collection and analysis is an important part of SDLC. Our system is based

on Tesseract OCR engine. As we implemented our system for Bengali Language, so

we need Bengali language data and trained data to make our system working. Google

is working in this sector from 2006 and they made their source files open source for all.

To make this software we need

 Tesseract OCR Engine

 Bengali language data

 Bengali trained data set

As Google already made this files open source and these files are also verified, so we

used these files to make our system. Bengali trained data is the most important part of

our system. So we carefully stored these data.

11

©Daffodil International University

3.3 Use Case Modeling and Description

Use case model different types of users of a system and their fields of activities. In

the following model the activities of admin and users are indicated.

3.4 Design Requirements

Design of our system will make our system unique. To expected output in an easy way

we have designed our system carefully and in a decorative way.

When the system will open first time, it will show welcome note and instructions to use

the system. Then next skin will show to add image. After selecting image, it will show

the image and ask for continue. After pressing Run OCR, it will show the recognized

text which is our system’s output.

Design requirement for user:

 Welcome Skin

 Instruction Skin

 Gallery

 Camera

 Permission

 Confirm Skin

 Output Skin

Fig 3.2 Use Case Model

User

Add Image

from Gallery Add Image

from Camera

Run OCR

Edit Recognized

Text

Copy Output

Text

12

©Daffodil International University

CHAPTER 4

DESIGN SPECIFICATION

4.1 Front-end Design

 Linear Layout

Linear Layout is a view group that aligns all children in a single direction, vertically

or horizontally. It can be specified the layout direction with the android:orientation

attribute. Linear Layout is used for viewing ImageView, TextView, Button etc.

 Relative Layout

Relative Layout displays child views in relative positions and is a view group. The

position of each view can be specified as relative to sibling elements (such as to the

left-of or below another view) or in positions relative to the parent Relative Layout

area (such as aligned to the bottom, left or center). For arranging our interface in

relative position we used Relative Layout.

 ImageView

We use ImageView class to display image files in our application. Image file is

easy to use but hard to master in Android, because of the various screen sizes in

Android devices. An android is enriched with some of the best UI design widgets

which allows us to build good looking and attractive user interface based

application.

 TextView

For displaying text to the user of the application we use TextView. Its optionally

allows them to edit it to make application user friendly. A TextView is a complete

text editor, however the basic class is configured to not allow editing.

 Button

A button consists of text or an icon or both text and an icon that communicates what

action occurs when the user presses it. For Selecting Image and processing image

in OCR engine we used Button in this application.

13

©Daffodil International University

 Frame Layout

Frame Layout is designed to block out an area on the screen to display a single item

in android application. Generally, Frame Layout should be used to hold a single

child view, because it can be difficult to organize child views in a way that's

scalable to different screen sizes without the children overlapping each other. We

use Frame Layout for blocking the area of loaded image on the screen to display

selected image to the user which is important in our application to confirm the

image is perfectly selected. We also used this method for many other purposes in

this project.

 Fragment

We used Fragment activity for enabling more modular activity design. Because a

Fragment is a piece of activity which enables more modular activity design to the

application. It won’t be wrong if we say, a fragment is a kind of sub-activity.

4.2 Back-end Design

 Tesseract OCR engine:

Tesseract is an optical character recognition engine for various operating systems.

It is free software and open source, released under the Apache License, Version

2.0, and development has been sponsored by Google since 2006. Tesseract was

considered one of the most accurate open-source optical character recognition

engine than available in 2006. We used Tesseract engine for recognizing Bengali

text and display it for further use. It is very easy to install Tesseract optical character

recognition (OCR) engine in android project.

 Trained dataset for Bengali Language:

After an analysis of Tesseract, we found, that to integrate the Bengali script

recognition support in Tesseract, we need a complete set of training data. This

training data is dependent on the output of the script segment which will be included

during test data recognition. It also depends on the nature of the segment that is

included in the Tesseract engine; the engine has its own segment to detect lines,

words and characters. Since Tesseract is a complete OCR package, once it is trained

14

©Daffodil International University

with the training data, we do not need to be concerned about feature extraction and

recognition in order to recognize the characters in the Bengali script.

The entire task is divided into two parts:

1.Training data generation

2.Test data processing

4.3 Interaction Design and UX

Welcome Page Design:

 Welcome Page

 User Instructions

 Go to Add Image

OCR Page Design:

 Add Image (Camera/Gallery)

 Display Image to user

 Run OCR for recognizing text

 Display recognized text to user

 Copy text

UX

UX means User Experience. This system design should be user friendly for good user

experience. Now figure 4.1 can show proof that this system design satisfies its users.

In figure 4.1 you can see that real users who are using this application provided their

opinion about this application. Here, 19 real user’s opinion is available where most of

them that means 17 users voted very satisfied after using this application. Only 1 user

voted that this application needs improvement or satisfactory for us. And 1 user voted

not satisfied and added that this application needs more functionality.

15

©Daffodil International University

4.4 Implementation Requirement

To implement our project, we need Android Studio for Build Android application and

Tesseract OCR engine and trained data set for Bengali language. We need XML code

to design UI/UX for our Application. To implement other thing, we need Java

programming language to do Add image and reorganizing text. We need to install

Tesseract OCR engine in our project to build this application. We need all the tool to

work with this project already I have discussed above.

Software Requirements for our application

 Windows 7 or higher/ Linux (Ubuntu, Fedora)

 Android Studio 2.3 or higher

 Java Development Kit 1.5 or higher

 Java Runtime Environment 1.5 or higher

 Android Operating System

Hardware Requirements for our application

 Windows

 Microsoft Windows 7/8/10 (32/64bit)

Fig 4.1 Chart of user experience

80%

10%

10%

Users

Very Satisfied Satisfied Not Satisfied

16

©Daffodil International University

 8GB RAM recommended, Min: 3GB and 1 GB for the Android Emulator

 Minimum 2 GB of available disk space, Recommended 4 GB

 Screen Resolution: 1280 x 800 minimum

 Linux

 GNOME or KDE Desktop

 Tested on Ubuntu 14.04 LTS,

 64-bit distribution capable of running 32-bit applications

 GNU C Library 2.19 or later

 8 GB RAM recommended; 3 GB minimum and 1 GB for the Android

Emulator

 Minimum 2 GB of available disk space, Recommended 4 GB

 Screen Resolution: 1280 x 800 minimum

17

©Daffodil International University

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation of Database

Database implementation is a very difficult part of a system. But this application is a

OCR application which is implemented by using Tesseract OCR engine. So here we

don’t need any kind of database in this application. For Bengali OCR we need some

trained data set to recognize text from image using Tesseract OCR engine. Google

already released a verified trained data set for Bengali language which will be used in

this application.

5.2 Implementation of Front-end Design

Figure 5.1, 5.2, 5.3 is welcome, description and instruction page of our application. It

will be shown once when the application will be installed. After first time use this page

won’t be shown to user. These pages will make the user interface easy to understand

and use. There is also skip button in the pages. If users think these pages are boring,

then he/she can skip these pages by pressing the skip button. After using this

application, user added in their opinion that for using these pages this application

become very attractive and user friendly.

18

©Daffodil International University

 Fig 5.1: Welcome Screen

Fig 5.2: Camera Instruction Screen

Fig 5.3: Gallery Instruction Screen

19

©Daffodil International University

Figure 5.4, 5.5 is the selecting image page of this application. User can add image using

camera or gallery from it. After click on Add image, a pop up will show two options. One

is gallery and another one is camera. If user click on camera, then the phone camera will

be opened and he/she can take pictures which he/she want to process. In other hand, if user

click on gallery, the phone gallery will be opened and he/she can be able to select picture

from storage.

Figure 5.6 is the final output page of this application. After pressing the Run OCR button,

it will display the recognized text in the below of the page. It will take a very small amount

of time to process the image depends on the text size, noise, different shapes, resolution

and other things in the image. Then user can edit or copy text from here.

Fig 5.4: Add Image Screen Fig 5.5: Camera/Gallery Option Screen

20

©Daffodil International University

5.3 Implementation of Interactions

To make this application interactive we have implemented responsive UI for better user

experience. To make things easy we have used image view, Text button, confirm page.

The UI design of this application is user friendly.

Figure 5.7 is the image view of selected image of this application to make sure that user

have selected the right image.

Fig 5.6: Show Recognized Text Screen

21

©Daffodil International University

Figure 5.8 is the page where text button is used as Run OCR to make it easy to the user

to understand use this application.

Fig 5.7: Image View Screen

22

©Daffodil International University

5.4 Testing Implementation

System Testing is a level of the software testing where complete and integrated

software is tested. To evaluate the system’s compliance with the specified requirements

is the purpose of this test.

Table 5.1 : Testing Objective of Our Application

Serial No Test Objective

01 To check whether the programs run or not

02 To check display all option

03 To check all option are working or not

04 To check whether asked for media permission or not

05 To check whether camera option working or not

06 To check whether gallery option working or not

Fig 5.8: OCR Processing Screen

23

©Daffodil International University

Table 5.1 is the testing objective of this application. When we tested this application

by real time user, we asked these questions to every user. Based on these objectives we

have created our test results and reports.

5.5 Test Results and Reports

Table 5.2 shows the test results depending on the test cases implemented in the previous

section of this chapter.

Table 5.2 : Result of Test Objectives

Serial

No

Test Objective Results

01 To check whether the programs run or not Successfully

02 To check display all option Successfully

03 To check all option are working or not Successfully

04 To check whether asked for media permission or not Successfully

05 To check whether camera option working or not Successfully

06 To check whether gallery option working or not Successfully

07 To check whether the OCR engine working or not Successfully

08 To check whether image change stopped it or not Successfully

09 To check output text can be edited or not Successfully

10 To check output text can be copied or not Successfully

We found the test results quite successful. This application is satisfied by the user.

Usability testing examines the following features of this application.

 How easy it is to use this application?

 How easy it is to learn this application?

07 To check whether the OCR engine working or not

08 To check whether image change stopped it or not

09 To check output text can be edited or not

10 To check output text can be copied or not

24

©Daffodil International University

 How convenient it is to the user?

 How accurate it is to recognize text?

So at the end of the development we can carry out the results as the benefits of usability

testing to the end of the user.

 Better application

 User friendly with great UI

 More understandability accepted by users

 Good accuracy

25

©Daffodil International University

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Discussion and Conclusion

We have successfully met the aims and objectives of our project. Our project

“An Android Application for Bengali Optical Character Recognition from Image”

is completed by using Android Studio, Tesseract OCR engine and trained data set for

Bengali language. The application will take image as an input and return recognized

Bengali text from image as output. This application is more accurate than other existing

application. We have tried our level best to make this application simple so that any

user can use this application easily. Basically this application is made to make our daily

life easy. It is difficult to type Bengali language in mobile. Using this application, it

will be very easy to copy text from existing photo. It will help tourists a lot to make

their journey easy in Bangladesh. This application will reduce complexity of Bengali

language. It is very simple and time consuming. Hopefully it will be a breakthrough in

Bengali optical character recognition system for android operating system.

6.2 Limitations

As we are introducing a beta version of this application, it has some limitations.

 It doesn’t support all Bengali fonts.

 It works slowly in big images where is so much text.

 Its accuracy is low for multi-language images.

Our team is working very hard to overcome these limitations in future.

6.3 Scope for Further Developments

We are planning to release this application in Play Store. So we have already figure out

some future development features to make this application stable and popular to user.

 It will support all Bengali fonts.

 It will support image cropping. So it will be more time consuming and accurate.

 One click copy recognized text.

 Translate recognized text in other languages.

 Save recognized text in different format like text file, pdf, word document etc.

 Instant live translate from camera.

26

©Daffodil International University

References:

[1] Learn about Tesseract (software), available at https://en.wikipedia.org/wiki/Tesseract_(software) , last accessed

on 25 November 2017 at 11:30pm.

[2] Learn about android, available at https://www.tutorialspoint.com/android , last accessed on 1 December 2017 at

10:20pm.

[3] Learn about Android development, available at https://developer.android.com/develop/index.html , last accessed

on 25 February 2018 at 12:45am.

[4] Learn about Android Studio, available at https://developer.android.com/studio/index.html , last accessed on 22

March 2018 at 09:17pm.

 [5] Mohit Gupt, Optical Character Recognition On Android – OCR, available at

http://www.truiton.com/2016/11/optical-character-recognition-android-ocr/ , last accessed on 15 March 2018 at 01:32am.

[6] Ravi Tamada, Android How to Build Intro Slider for your App, available at

https://www.androidhive.info/2016/05/android-build-intro-slider-app/ , last accessed on 20 Februany 2018 at 11:47pm.

[7] Pick Image From Gallery or Camera On Android, available at http://droidmentor.com/pick-image-from-gallery-or-

camera/ , last accessed on 20 February 2018 at 03.22am.

https://en.wikipedia.org/wiki/Tesseract_(software)
https://www.tutorialspoint.com/android
https://developer.android.com/develop/index.html
https://developer.android.com/studio/index.html
http://www.truiton.com/2016/11/optical-character-recognition-android-ocr/
https://www.androidhive.info/2016/05/android-build-intro-slider-app/
http://droidmentor.com/pick-image-from-gallery-or-camera/
http://droidmentor.com/pick-image-from-gallery-or-camera/

27

©Daffodil International University

Plagiarism

Checked by: https://plagramme.com

https://plagramme.com/

