Faculty of Engineering
Department of Textile Engineering

REPORT ON

Industrial Attachment
At

The Delta Composite Knitting Industries Ltd.

Course Title: Industrial Attachment

Course Code: TE-431

Submitted By

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md. Tarikul Islam Tusher</td>
<td>141-23-3840</td>
</tr>
</tbody>
</table>

Supervised By

Fahmida Siddiqa
Senior Lecturer
Department of Textile Engineering
Faculty of Engineering
Daffodil International University

A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Textile Engineering
Advance in Wet Processing Technology

Duration: From May 10, 2018 to July 10, 201

©Daffodil International University
DECLARATION

We hereby declare that, this work has been done by us and not copied from elsewhere; we also declare that neither this report nor any part of this report has been submitted elsewhere for award of any degree or diploma.

SUBMITTED BY:

Md. Tarikul Islam Tusher ID- 141-23-3840

........................

Signature
LETTER OF APPROVAL

It is herewith certified that Md. Tarikul Islam Tusher, ID- 141-23-3840, Department of Textile Engineering, Daffodil International University, Dhaka, Bangladesh, has carried out their Industrial attachment at "The Delta Composite Knitting Industries Ltd." under my direct supervision. They have successfully carried out Their internship and ready to present Their report, which is required in partial fulfillment of Their B.Sc degree.

I have gone through the final draft of the report and recommend its submission for the degree of Bachelor of Science in Textile Engineering.

Supervisor:
Fahmida Siddiqa
Senior Lecturer
Department of Textile Engineering
Faculty of Engineering
Daffodil International University
ACKNOWLEDGEMENT

First of all, we would like to express our devotion to the most gracious and the most merciful Allah, Alhamdulillah, since we have been able to finish our Industrial attachment after two months long hardworking.

We wish to express our gratitude to our supervisor, Fahmida Siddiqa, Department of Textile Engineering, Daffodil International University, for giving us the opportunity, trust and freedom that allowed us to explore in the field of our industrial work. It is indeed a great pleasure for us to express our sincere and profound gratitude to her for her scholastic guidance, constructive suggestions and encouragement which we received from her in order to complete internship and to write this dissertation.

A very special gratitude goes to Dr. S.M. Mahbub Ul Haque Majumder, Founder and Professor, Department of Textile Engineering, Daffodil International University.

We are indebted to Dr. Md. Mahbubul Haque, Professor & Head, Department of Textile Engineering, Daffodil International University for his unremitting and valuable guidance and suggestions.

We also like to give special thanks to Engr. A K M Faruque Ahamed Chairman of The Delta Composite Knitting Industries Ltd who allowed us to do industrial attachment in his factory for 2 months.

We are also very much grateful to M. Shohag Ahmed for his suggestion and support. Many thanks for everything.

Our special thanks go to all production officers, supervisors and stuffs of The Delta Composite Knitting Industries Ltd for their helpful hands and cordial co-operation.

Finally, I/we are grateful to all of my teachers who have helped us all over the four years in this Textile Engineering Department.
DEDICATION

It is our genuine gratefulness and warmest regard that we dedicate this work to our beloved Parents & respected Teachers.
Table of Content

DECLARATION .. ii

LETTER OF APPROVAL .. iii

ACKNOWLEDGEMENT ... iv

DEDICATION ... v

1. EXECUTIVE SUMMARY ... 2

2. INFORMATION ABOUT FACTORY .. 4

 2.1 Introduction: ... 4

 2.2 General Information about the Factory: ... 5

 2.4 Organogram: .. 7

 2.5 Factory Location: ... 8

 2.9 Major Buyers: ... 9

 2.11 Company Business Motto, Mission and Vision: ... 9

 2.12 Production Capacity: ... 10

 2.13 Management system: .. 10

 2.14 Company Policy: .. 10

DESCRIPTION OF THE ATTACHMENT ... 12

ATTACHMENT .. 12

4. Description of the Attachment: ... 13

 4.1 Knitting Section: .. 13

 4.1.2 Section Layout: .. 14

 4.1.3 Raw Materials of Knitting Section: .. 14

 4.1.4 Yarn Collect From: .. 14

 4.1.5 Machine Used in Knitting Section: .. 15

 4.1.6 Yarn Path of Machine: .. 15

 4.1.7 Production Flow Chart of Knitting Section ... 16

 4.1.8 Description of Production Process: .. 16

 4.1.9 Production Parameter: .. 17

 4.1.10 Method of Increasing Production: ... 17

 4.1.11 Different parts of Circular Knitting machine: .. 18

 4.1.12 GSM depends on: ... 18

 4.1.13 Knitting Calculation: ... 19

 4.1.14 Inspection Procedure: ... 20
EXECUTIVE SUMMARY
1. EXECUTIVE SUMMARY:

We performed our internship on The Delta Composite Knitting Industries Ltd. By achieving practical knowledge from the industrial attachment it is possible to apply the theoretical knowledge in the technical field. For any technical education, practical experience is almost equally necessary in association with the theoretical knowledge. The industrial attachment is the most effective process of achieving the practical experiences.

We performed our internship on The Delta Composite Knitting Industries Ltd. which is situated on Zarun (south), Kashimpur, Gazipur-1700 The length of our training period during two months. We were joining our training on May 10, 2018 and it finished on July 10, 2018. In a short span the company received the recognition as one of the market leaders. In this industry there are several sections such as Knitting, Dyeing, Dyeing Finishing, Garment wash, ETP, Sampling, Cutting, Sewing, Ironing & Finishing, Quality and IE section etc. All of this sections help us to improve our knowledge.

Their knitting section use various modern machineries for get better quality of fabric. They produce different types of knit fabric such as, Lycra, Rib, Interlock, Fleece, Terry, Jacquard etc. They use high tech machineries to produce a quality garments product. They also add new machineries to increase their production line. Their Dyeing section are more strong than any other textile industry.

The Delta Composite Knitting Industries Ltd. is a complete knit composite industry. They have a better garment section and they produce quality product for reputed buyer. They use modern machineries their all Section.
INFORMATION
ABOUT FACTORY
2. INFORMATION ABOUT FACTORY

2.1 Introduction:

Textile technology education is based on industrial ground. Theoretical background is not sufficient so, industrial training is an essential part of study to make a technologist technically sound in this field. Industrial training provides us that opportunity to gather practical knowledge. Textile and RMG (Ready Made Garments) are leading export-led industries in Bangladesh, in respect of foreign currency earning and employment. Recently, in the past-MFA era, the composite knitting industries are playing the crucial roles in country's RMG sector. Among Them, The Delta Composite Knitting Industries Ltd. has occupied a pivotal Place. It has been possible because of its multi-dimensional and epoch-making activities since its inception in 1998. The Delta Composite Knitting Industries Ltd. factory is located at Kashimpur, Gazipur - 30 minutes’ drive from the Zia International Airport, Dhaka. The total factory space is 2,56,332 sft, including two 6-storied, one 5-storied and one 3-storied buildings. The factory arena is highly protected with boundary walls and private security guards. A camp of Bangladesh Govt. Ansar force in also established within the premises to confirm cent per cent security.

The Delta Composite Knitting Industries Ltd. is truly integrated commitment. This Industry all division has the capability to offer a complete product range for the export & domestic textile markets. With high advanced technology & an emphasis on developing local human resources, this Industry has the potential to make an important contribution to the nation’s growing Knit garments export sector.

The rationale behind the existing structure & future expansion of the textile division is to capture value added at each stage of the Knitting process.

The Delta is a composite unit, having knitting, dyeing, finishing and sewing units under a single roof. Besides, they have our own printing, embroidery and washing units on the same premises. All these unit work as an integrated whole to meet the buyer's stipulated time and need based demands.

Mainly they export T-shirt and different types of men's, women's and kid's knit apparels made from various kinds of knit fabrics.
2.2 General Information about the Factory:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>The Delta Composite Knitting Industries Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman of Company</td>
<td>Engr. A K M Faruque Ahamed</td>
</tr>
<tr>
<td>Corporate Office</td>
<td>House: 389, Road: 6 (East)</td>
</tr>
<tr>
<td></td>
<td>DOHS, Baridhara, Dhaka-1216, Bangladesh</td>
</tr>
<tr>
<td></td>
<td>Telephone: +880-2-8813636-7, 8824092</td>
</tr>
<tr>
<td></td>
<td>Fax : +880-2-9297746</td>
</tr>
<tr>
<td>Factory Location</td>
<td>Zarun (South), Kashimpur, Gazipur-1700, Dhaka, Bangladesh</td>
</tr>
<tr>
<td>Covered Area of Factory</td>
<td>2,56,332 square feet</td>
</tr>
<tr>
<td>Year of Establishments</td>
<td>January 1998</td>
</tr>
<tr>
<td>Business Line</td>
<td>Manufacturing and Marketing of high Quality Fabrics</td>
</tr>
<tr>
<td>Listing Status</td>
<td>Private listed company</td>
</tr>
<tr>
<td>Paid up Capital</td>
<td>10 million</td>
</tr>
<tr>
<td>Average Annual Turn Over</td>
<td>36 million US $</td>
</tr>
<tr>
<td>Total Work Force</td>
<td>5,000 persons</td>
</tr>
<tr>
<td>Daily Working Hours</td>
<td>09:00 AM – 05:00 PM</td>
</tr>
<tr>
<td>Main Market</td>
<td>Western Europe</td>
</tr>
<tr>
<td>Factory Equipment’s</td>
<td>Different types of Knitting, Dyeing, Cutting, Sewing, Finishing and Generator machines supplied by mostly Sweden, USA, Italy, Switzerland, Germany, Spain, Japan, China and Turkey.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Product/Service</td>
<td>T-shirt, Polo shirt, Legging, Hoody, Tank top, Jacket, Long pants, Ladies wear and SWEAT etc.</td>
</tr>
<tr>
<td>Certification Achievement</td>
<td>ACCORD, Alliance, WRAP, ETI, BSCI, ISO 9001 - 2008 & OEKO-TEX-100.</td>
</tr>
<tr>
<td>Buyer Name</td>
<td>Zara, Next, Piazza, Ernsting’s Family, Asmara, France SCO, Aldi, Knit Radix, Inter Sports, Norma, C&A, Walmart, Carrefour-Kiabi, Viva Cotton, Tom Tailor, Gymboree, Sams, Matalan and Tema etc.</td>
</tr>
</tbody>
</table>
| **Bank Information** | 1. Islami Bank Bangladesh Ltd.
2. Janata Bank Ltd. |
| **Web site** | http://www.deltageoupbd.com |

2.3 Company Allied:
- Lily cosmetics Ltd.
- The Delta Apparels Ltd.
- The Delta Automobiles
- The Delta Accessories
- The Delta Spinning Mills Ltd.
- The Delta Carton Industries Ltd. The Delta Blended Yarn Mills Ltd.
- The Delta Yarn Dyeing Industries Ltd. The Delta Composite Knitting
- Ind. Ltd
2.4 Organogram:
2.5 Factory Location:
2.9 Major Buyers:

<table>
<thead>
<tr>
<th>Buyer Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymboree, Xanaka, Viva Cotton, Sams Club, Kids H/Q</td>
<td>USA</td>
</tr>
<tr>
<td>C&A, Tom Tailor</td>
<td>GERMANY</td>
</tr>
<tr>
<td>Pimkie, Monoprix, Carrefour Kiabi, Spring Field</td>
<td>FRANCE</td>
</tr>
<tr>
<td>Zara</td>
<td>SPAIN</td>
</tr>
<tr>
<td>Matalan</td>
<td>UK</td>
</tr>
<tr>
<td>Terranova</td>
<td>ITALY</td>
</tr>
<tr>
<td>Tema</td>
<td>TURKEY</td>
</tr>
<tr>
<td>Wal-Mart</td>
<td>CANADA</td>
</tr>
<tr>
<td>New Wave Group</td>
<td>SWEEEDEN</td>
</tr>
</tbody>
</table>

2.11 Company Business Motto, Mission and Vision:

Business Motto
We source quality, we make quality and we deliver quality. Nothing delights us more than the customer’s satisfaction.

Mission
Quality is always the combination of the highest intent, sincerest effort with an accurate execution.

Vision
To reach the zenith or be the market leader in providing knit garments to our valued customers around the globe.
2.12 Production Capacity:

<table>
<thead>
<tr>
<th>Section</th>
<th>Production per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knitting</td>
<td>15-18 ton</td>
</tr>
<tr>
<td>Dyeing</td>
<td>30-33 ton</td>
</tr>
<tr>
<td>Finishing</td>
<td>20-22 ton</td>
</tr>
<tr>
<td>Sewing</td>
<td>90,000 pieces</td>
</tr>
</tbody>
</table>

2.13 Management system:
- Intercom telephone
- Fax
- E-mail
- Written letters
- Oral

2.14 Company Policy:

1. **Recruitment Policy:**
 Recruitment is done as per following systems. Serving notice/poster in important locations. Personal contacts by own employees. Head hunting for manager/executive.

2. **Selection:**
 During the selection of the workers following factors are considered:
 - Good physical appearance/fitness
 - Age 18 years minimum must be supported by certificate from educational institution or local govt. authorities and confirmed by medical officer.
 - Educational qualification as per job profile. Skill ness (practical for operators).
 - Wages/salary negotiation.
3. Joining:
Selected workers/trainees submit the followings to personal department on joining:

- Prescribed application form duly filled. Two passport size photographs.
- Educational certificate.
- Experience certificate (if any).
- Medical fitness certificate mentioning age.

4. Service Confirmation:
On completion of 3 months’ satisfactory job performance, company confirms the employees' service permanently. Trainees who fail to show satisfactory performance within this time his/her he/she cannot cope-up within this given period then his/her service is term innate.

5. Daily Working Hours and Over Times:
Eight hours a day from 8.30 am to 5.30 pm with one-hour lunch break (maximum 48 hours per week). Maximum two hours’ overtime per day (maximum 12 hours per week) with one-hour Tiffin break in the afternoon/evening. Friday is weekly holiday.

6. Medical:
Medical facilities are as follows:

- Each worker provided medical allowance @ Tk.150/= per month.
- First Aid facilities with trained first aider are available for each employee. Accident register for injured person is being maintained.
DESCRIPTION OF THE

ATTACHMENT
4. Description of the Attachment:

4.1 Knitting Section:

Knitting is considered to be the second most frequently used method of fabric construction, after weaving. It is one of the several ways to turn thread or yarn into cloth. It is similar to crochet in the sense that it consists of loops pulled through other loops. In other words, knitting is the process of construction of a fabric made of interlocking loops of yarn by means of needles. The loops may be either loosely or closely constructed, according to the purpose of the fabric. The loops or stitches are interlocked using a needle which holds the existing loop and a new loop is formed in front of the old loop. The old loop is then brought over the new loop to form the knitted fabric. Knitting is different from weaving in the sense that a single piece of yarn can be used to create fabric. The knitted fabric consists of horizontal rows known as courses and vertical columns of loops known as Wales. Today, knitting is practiced manually, or with the help of machines. Knitted fabric has certain special characteristics that make it suitable for creating a wider range of garments and accessories like tights, gloves, underwear and other close-fitting garments. The structure of the loop of knitted fabric stretches and molds to fit body shapes. The air trapped by the interlocking loops keeps the wearer warm. The popularity of knitting has grown a lot within the recent years owing to the adaptability of various man-made fibers, the increased versatility of knitting techniques and the growth in demand for wrinkle-resistant, stretchable, snug-fitting fabrics (particularly in the range of sportswear and other casual apparels). Today, knitted fabrics form an integral part of hosiery, underwear, slacks, sweaters, suits and coats, rugs and other home furnishing items. Knitting industry has two main divisions: One division produces knitted goods for apparel manufacturers, for sewing centers, for consumers and for others. Other division produces completed apparel like hosiery, sweaters and underwear.
4.1.2 Section Layout:

4.1.3 Raw Materials of Knitting Section:

1. Yarn:
 - 100% Cotton
 - Polyester
 - CD
 - PC
 - CVC
 - CB

4.1.4 Yarn Collect From:

1. Padma Spinning Mill (Beximco).
2. Advance Spinning Mill.
3. Square Yarn Mill.
4. Beximco Synthetics Ltd.
5. JK Cotton Mills Ltd.
6. Jamuna CVC Yarn
7. Shameem Cotton Yarn

4.1.5 Machine Used in Knitting Section:

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Quantity</th>
<th>Brand Name</th>
<th>Origin</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Jersey</td>
<td>57</td>
<td>Pailung</td>
<td>Taiwan</td>
<td>127</td>
</tr>
<tr>
<td>Rib</td>
<td>16</td>
<td>Pailung</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>Interlock</td>
<td>12</td>
<td>Hangxing</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Fleece</td>
<td>22</td>
<td>Hangxing</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Jacquard</td>
<td>5</td>
<td>Pailung</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>Flat Bed Knitting</td>
<td></td>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.6 Yarn Path of Machine:
4.1.7 Production Flow Chart of Knitting Section

Sample fabric

↓

Design analysis

↓

Machine selection

↓

Setting the machine for the specific design

↓

Sample Knitting

↓

Sample approval

↓

Bulk Production

↓

Grey fabric inspection

4.1.8 Description of Production Process:

1. Firstly, knitting manager gets a production shit from the merchandiser as accordance as consumer requirements then he informs or orders production officer about it.

2. Production officer informs technical in charge and knows about machine in which the production will be running.

3. Technical in charge calls for leader of mechanical fitter troops, they two take decision about machine for production considering machine condition, production capacity, maintenance complexity, etc.

4. Production officer with experienced mechanical fitter adjusts required stitch length and grey GSM for required final GSM.

5. Supervisor checks daily production regularity and make operator conscious about finishing due time.
6. Operators operate machine in high attention as if there were no faults in the fabrics. If he thinks or sure about any fabric fault, then he calls for the mechanical fitters in duty. Mechanical fitter then fixes it if he can or he informs technical in charge. Then he comes in spot.

7. After required production and final inspection in 4-point system, they sent in dyeing section.

4.1.9 Production Parameter:

- Machine Diameter
- Machine rpm (revolution per minute)
- No. of feeds or feeders in use
- Machine Gauge
- Count of yarn
- Required time (M/C running time)
- Machine running efficiency

4.1.10 Method of Increasing Production:

1. By increasing m/c speed:
 Higher the m/c speed faster the movement of needle and ultimately production will be increased.

2. By increasing the number of feeder: If the number of feeder is increased in the circumference of cylinder, then the number of courses will be increased in one revolution at a time.

3. By using machine of higher gauge: The more the machine gauge, the more the production is. So by using machine of higher gauge production can be increased.

4. By imposing automation in the m/c:
 a) Quick starting & stopping for efficient driving system.
 b) Automatic m/c lubrication system for smoother operation.
 c) Photo electric fabric fault detector.

5. By imposing other developments:
 a) Using creel-feeding system.
 b) Applying yarn supply through plastic tube that eliminates the possibilities of yarn damage.
 c) Using yarn feed control device.
 d) Using auto lint removal.
4.1.11 Different parts of Circular Knitting machine:

1. Creel: Creel is a part of the knitting machine. Here, yarn packages are stored for yarn feeding in the machine.
2. VDQ Pulley: This part is used to control stitch length and GSM of the knitted fabric.
3. Pulley belt: It transfers the motion.
4. Yarn guide pipe: It helps yarn to feed in the feeder and also reduces ply.
5. Inlet & outlet stop motion: It is an important part of the machine. It stops the machine instantly when the yarn breaks.
6. Feederring: It is a ring where all feeders are placed together.
7. Feeder: Feeder is a device where yarn passes through the knitting section.
8. Brush: It cleans the pulley belt.
9. Sinker: It is the most important element of the machine. It helps to loop formation, hold down the loop, knocking over the loop.
10. Cam: Cam is a device which converts rotary machine drive into a suitable reciprocating action for the needles and other elements. The cams are carefully profiled to produce precisely-time movement and dwell periods and are two types, engineering and knitting cams.
11. Needle: It creates the loops.
12. Yarn tensioner: This part gives proper tension to yarn for proper knitting.
13. Adjustable Fan: This part removes lint, hairy fiber from yarn and others.
14. Take up Roller: This part is used to take up the fabric from cylinder.
15. Cloth Roller: The final product i.e. cloth is wound on this roller.
16. Expander: This part is used to control the width of fabric.
17. Knit cam: This cam helps needle to form knit loops.
18. Tuck cam: This cam helps needle to form tuck loops.
19. Miss cam: This cam helps needle to form miss loops.
20. Needle Detector: This part detects any type of faults of needles.
21. Fabric Detector: This part detects any fault of fabric.

4.1.12 GSM depends on:

- Type of yarn
- Yarn Count
- Stitch length
- Fabric Structure.
• Finishing process.
• Depth of shade.
• Stitch density.
• Machine gauge.

4.1.13 Knitting Calculation:

• WPI: Wales per inch is called WPI.
• CPI: Course per inch is called CPI.

Needle calculation:

Single jersey circular knitting machine needle = ΠDG

Rib/Inter lock /Double jersey circular knitting machine needle = ΠDG×2 (two needle bed is here)

Single bed flat knitting m/c needle = width× gauge

V bed flat knitting m/c needle = 2× width× gauge

Here, D = cylinder diameter, G = Machine gauge, Needle pitch = 1/G.

GSM: Grams per square meter of the fabric are called GSM.

GSM = \(\frac{\text{WPI} \times \text{CPI} \times \text{stitch length (mm)} \times 0.9155}{\text{Count(Ne)}}\)

Stitch density = \((\text{WPI} \times \text{CPI}) \text{ inch}^2 = (\text{WPC} \times \text{CPC}) \text{ cm}^2\)

No of sinker = No of needle

No Wales = No of needle

No of course = No of feeders = No of yarn (per revolution of cylinder)

Course per minutes = No of feeders × cylinder rpm

Course length = yarn required for each course.

Fabric width = wale spacing ×Total no of Wales = \((1/\text{WPI} \times \text{No of Needles}) \text{ inch} = (\text{No of Needles}/\text{WPI} \times 39.37) \text{ meter}\)

For single jersey fabric = \((\Pi \text{DG}/\text{WPI} \times 39.37) \text{ meter (open width)} = (\Pi \text{DG}/\text{WPI} \times 39.37) \text{ meter/2(Folded/Tubular width)}\)

For double jersey fabric = \((2 \times \Pi \text{DG}/\text{WPI} \times 39.37) \text{ meter (open width)} = (2\times\Pi \text{DG}/\text{WPI} \times 39.37) \text{ meter/2(Folded/Tubular width)}\).

Fabric Length = Course spacing ×Total course per hour = \(\{(\text{Feeder} \times \text{cylinder rpm} \times 60)/\text{CPI}\}\)

Production calculation:
Production per hour = \[
\frac{\text{IIDG} \times \text{S.L(mm)} \times \text{No. of Feeder} \times \text{RPM} \times \text{Eff} \times 60}{2.54 \times 36 \times 840 \times \text{Ne} \times 2.2046} \text{kg}
\]

4.1.14 Inspection Procedure:

Generally, a fabric roll is cut when it reaches its ‘set cut length’ in the circular knit m/c but the roll might cut before reaching the pre-set length if required and weight is recorded other number, quantity, GSM, Knitter, Shift, Style, Yarn lot, Roll Quantity, Machine Revs, m/c no. etc. are written on the knit card. All rolls are kept in front of the inspection m/c time to time and are inspected over the inspection visually in a pre-set speed (m/min) against light. For any major/ minor faults like thick-thin place, barre mark, fall out, contamination / fly, holes, oil lines, needle lines, slubs etc. are recorded in inspection report to classify the fabric based on the four point system. In case of fly and contamination, fabric is approved for color while minor needle lines or minor stripes, fabric is approved for white. The concerned inspector records all the details of inspection result on the knit card and inspection report. Collar and cuff is cut when it reaches its ‘set cut no of pieces’ in the flat knit m/c. and kept in front of the inspection table. These are inspected visually under the light box. Any major or minor faulty collar / cuff like having wrongly design, first round problem etc. are properly counted and recorded.

4.1.15 Investigation:

The four-point system is followed to inspect the body and rib fabric. The defects found and points given against them are recorded in the daily body and rib inspection report and daily collar and cuff inspection report. Following tables shows the four-point grading system followed by inspection of DCKIL:

<table>
<thead>
<tr>
<th>Size of Defects</th>
<th>Penalty points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3”</td>
<td>1</td>
</tr>
<tr>
<td>Over 3”- Not over 6”</td>
<td>2</td>
</tr>
<tr>
<td>Over 6” – Not over 9”</td>
<td>3</td>
</tr>
</tbody>
</table>
4.1.16 Fabric Fault in Knitting and Their Causes:

1. **Holes or cracks:** Bad needle, take down mechanism too light, high tension on yarn, bad yarn, needle too tight in their slots, dial height too high or too low, badly tied knots, improper stitch setting.

2. **Drop stitches or cloth fall out:** Take down mechanism too loose, defective needles, wrong needle timing set and needle tricks closed.

3. **Vertical lines:** Defective needle, dirt in needle slots, needle to lose or too tight in the slots, needles not enough lubricated.

4. **Barre or horizontal stripes:** Bad yarn, uneven tension, yarn slippage in positive feed, improper stitch cam setting.

5. **Oil lines:** Fibers & fluff accumulated in the needle tricks, which remain soaked with oil. Excessive oiling of the, needle beds.

6. **Needle Lines:** Bent Latches, Needle Hooks & Needle stems. Tight Needles in the grooves. Wrong Needle selection (Wrong sequence of needles, put in the Cylinder or Dial)

7. **Sinker Lines:** Bent or Worn out Sinkers. Sinkers being tight in, the Sinker Ring grooves.

8. **Contamination:** Presence of dead fibers & other foreign materials, such as; dyed fibers, husk & synthetic fibers etc.

9. **Broken Needle:** High Yarn Tension Bad Setting of the Yarn Feeders Old & Worn out Needle set.

10. **Rust marks:** Rusty needle Rust in tricks.

11. **Mixed yarn:** Different yarns are feed.
4.1.17 Picture of Defect fabric:
2.1.18 Type of Knit Fabrics Produced:

1. Single Jersey
2. Single Jersey Lycra
3. 1×1 rib
4. 2×2 rib
5. 2×1 rib
6. Interlock
7. Terry
8. Fleece
9. Jacquard
10. Baby Terry
11. etc.
4.2 Dyeing Section:

4.2.1 Dyeing Section Layout
4.2.2 Organogram of Dyeing Section:

Chairman
↓
Executive Director (ED)
↓
Director (Production/Finance)
↓
General Manager (GM)
↓
Deputy General Manager (DGM)
↓
Assistant General Manager (AGM)
↓
Manager (Dyeing/Finishing)
↓
Assistant Manager (Dyeing/Finishing)
↓
Senior Production Officer (SPO)
↓
Production Officer (PO)
↓
Assistant Production Officer (APO)
↓
Dyeing Master
↓
Shift In – Charge
↓
Floor In Charge
↓
Supervisor
↓
Above managerial system is must for better management. But it is very rare because all of the industries are not same in volume and not interested to main all of the class of the managerial system. For this reason, some part of the managerial system could be absent.

4.2.3 Process Flow Chart of Dyeing:

- Grey Textile Materials (Fiber, Yarn or fabric)
- Singeing
- Desizing
- Scouring
- Bleaching
- Mercerizing
- Dyeing/Printing
- Finishing
- Marketing

Now I like to discuss shortly about the different terms of the flow chat. Here, grey textile materials are fiber, yarn or fabric which is also consider as the raw materials for dyeing.

Singeing is the first steps of pre-treatment. The process by which loose, hairy and projecting fibers are removed is called Singeing.

Desizing is the second steps of pre-treatment. By this process gummy materials are removed.
Also size materials removed by this process.

Scouring is the third steps of pre-treatment. This process is performed for removing impurities of the textile materials.

Bleaching is another important step which is used to reduce natural color of the raw materials. Dyeing performance depends on it much more.

Mercerizing is the special types of treatment. It performs if buyer wants. It is an additional treatment. It increases the strength and luster of the materials.

Dyeing is the main process where a white material becomes decorated by different colors. We have to know about the depth of shade of the materials.

Printing is called as localized dyeing. Different types of printing are done for giving special appearance on colored or white fabric.

Finishing is the last treatment of wet processing. Different types of properties can be added to the materials by different finishing effects.

Marketing is our main goal. Say, if we done everything but there have no buyer then everything is waste. So we should have a strong marketing department.

So, all of this is about flow chart of Dyeing.

4.2.4 Loading Capacity of Dyeing Machines:

<table>
<thead>
<tr>
<th>M/C No</th>
<th>Brand</th>
<th>Capacity</th>
<th>Fluroscnent</th>
<th>Loading Capacity on the basis of GSM Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65%</td>
</tr>
<tr>
<td>1</td>
<td>Thies</td>
<td>720</td>
<td>468</td>
<td>540</td>
</tr>
<tr>
<td>2</td>
<td>Thies</td>
<td>720</td>
<td>468</td>
<td>540</td>
</tr>
<tr>
<td>3</td>
<td>Thies</td>
<td>540</td>
<td>351</td>
<td>405</td>
</tr>
<tr>
<td>4</td>
<td>Thies</td>
<td>350</td>
<td>228</td>
<td>263</td>
</tr>
<tr>
<td>5</td>
<td>Dilmenler</td>
<td>700</td>
<td>455</td>
<td>525</td>
</tr>
<tr>
<td>6</td>
<td>Dilmenler</td>
<td>1050</td>
<td>683</td>
<td>788</td>
</tr>
<tr>
<td>7</td>
<td>Dilmenler</td>
<td>700</td>
<td>455</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATYC</td>
<td>800</td>
<td>520</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>8</td>
<td>Dilmenler</td>
<td>150</td>
<td>98</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>Dilmenler</td>
<td>1050</td>
<td>683</td>
<td>788</td>
</tr>
<tr>
<td>10</td>
<td>Dilmenler</td>
<td>1050</td>
<td>683</td>
<td>788</td>
</tr>
<tr>
<td>11</td>
<td>Dilmenler</td>
<td>1500</td>
<td>975</td>
<td>1125</td>
</tr>
<tr>
<td>12</td>
<td>Dilmenler</td>
<td>1500</td>
<td>975</td>
<td>1125</td>
</tr>
<tr>
<td>13</td>
<td>Dilmenler</td>
<td>1050</td>
<td>683</td>
<td>788</td>
</tr>
<tr>
<td>14</td>
<td>Dilmenler</td>
<td>1050</td>
<td>683</td>
<td>788</td>
</tr>
<tr>
<td>15</td>
<td>Dilmenler</td>
<td>1500</td>
<td>975</td>
<td>1125</td>
</tr>
<tr>
<td>16</td>
<td>Dilmenler</td>
<td>1500</td>
<td>975</td>
<td>1125</td>
</tr>
<tr>
<td>17</td>
<td>Dilmenler</td>
<td>350</td>
<td>228</td>
<td>263</td>
</tr>
<tr>
<td>18</td>
<td>Dilmenler</td>
<td>350</td>
<td>228</td>
<td>263</td>
</tr>
<tr>
<td>19</td>
<td>Dilmenler</td>
<td>150</td>
<td>98</td>
<td>113</td>
</tr>
<tr>
<td>20</td>
<td>Dilmenler</td>
<td>150</td>
<td>98</td>
<td>113</td>
</tr>
</tbody>
</table>

Note: For Turquoise combination & Royal colour loading should not be more than 80% of m/c

<table>
<thead>
<tr>
<th></th>
<th>AVG X 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>13930</td>
<td>9055</td>
</tr>
</tbody>
</table>

Note: For Turquoise combination & Royal colour loading should not be more than 80% of m/c

AVG X 2 = 24182
4.2.5 Bulk Dyeing Machine Specification:

<table>
<thead>
<tr>
<th>Machine No.</th>
<th>Brand</th>
<th>Capacity (kg)</th>
<th>Origin</th>
<th>Unit</th>
<th>Qty.</th>
<th>Total Capacity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>Thies</td>
<td>720</td>
<td>Germany</td>
<td>1</td>
<td>2</td>
<td>1440</td>
<td>HTHP</td>
</tr>
<tr>
<td>3</td>
<td>Thies</td>
<td>540</td>
<td>Germany</td>
<td>1</td>
<td>1</td>
<td>540</td>
<td>HTHP</td>
</tr>
<tr>
<td>4</td>
<td>Thies</td>
<td>350</td>
<td>Germany</td>
<td>1</td>
<td>1</td>
<td>350</td>
<td>HTHP</td>
</tr>
<tr>
<td>5,7</td>
<td>Dilmene r</td>
<td>700</td>
<td>Turkey</td>
<td>1</td>
<td>2</td>
<td>1400</td>
<td>HTHP</td>
</tr>
<tr>
<td>6</td>
<td>Dilmene r</td>
<td>1050</td>
<td>Turkey</td>
<td>1</td>
<td>1</td>
<td>1050</td>
<td>HTHP</td>
</tr>
<tr>
<td>8</td>
<td>ATYC</td>
<td>800</td>
<td>Spain</td>
<td>1</td>
<td>1</td>
<td>800</td>
<td>HTHP</td>
</tr>
<tr>
<td>9</td>
<td>Dilmene r</td>
<td>150</td>
<td>Turkey</td>
<td>1</td>
<td>1</td>
<td>150</td>
<td>HTHP</td>
</tr>
<tr>
<td>11,12,15,16</td>
<td>Dilmene r</td>
<td>1050</td>
<td>Turkey</td>
<td>2</td>
<td>4</td>
<td>4200</td>
<td>HTHP</td>
</tr>
<tr>
<td>13,14</td>
<td>Dilmene r</td>
<td>1500</td>
<td>Turkey</td>
<td>2</td>
<td>2</td>
<td>3000</td>
<td>HTHP</td>
</tr>
<tr>
<td>17,18</td>
<td>Dilmene r</td>
<td>350</td>
<td>Turkey</td>
<td>2</td>
<td>2</td>
<td>700</td>
<td>HTHP</td>
</tr>
<tr>
<td>19,20</td>
<td>Dilmene r</td>
<td>150</td>
<td>Turkey</td>
<td>2</td>
<td>2</td>
<td>300</td>
<td>HTHP</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13930</td>
<td></td>
</tr>
</tbody>
</table>

Machine Type 01

Name of the machine: Winch Dyeing Machine (HTHP Jumbo Jet Flow)

Brand Name: Thies

No. of machines: 4
Manufacturer: Germany.
Capacity: 350, 540, 720, 720 Kg
Year of manufacturing: 2000

Specification:
- Maximum operating temp – 135°C
- Maximum operating pressure – 3.5 bar

Machine Type 02
Name of the machine: Winch Dyeing Machine (HTHP Jumbo Jet Flow)
No. of machine: 10
Brand Name: DILMENLER
Manufacturer: Turkey
Capacity: 150 (3), 350 (2), 700 (2), 1050, 1500 (2) Kg
Year of manufacturing: 2003

Specification:
- Maximum operating temp – 135°C
- Maximum operating pressure – 3 bar
- No of nozzle – 4
- Motor
- Winch motor – 4
- Pump motor – 1
- Stirring motor – 1

Machine Type 03
Name of the machine: Winch Dyeing Machine (HTHP Jumbo fuel Automatic)
No. of machine: 04
Brand Name: DILMENLER
Manufacturer: Turkey
Capacity: 1050 (2) Kg
Year of manufacturing: 2003

Specification:
- Maximum operating temp – 135°C
- Maximum operating pressure – 3 bar
• No of nozzle – 4
• Motor
• Winch motor – 4
• Pump motor – 1
• Stirring motor – 1

Machine Type 04
Name of the machine: ATYC Dyeing Machine
No. of machine: 01
Brand Name: ATYC
Manufacturer: TERRASSA
Capacity: 900 Kg
Year of manufacturing: 2002

Specification:
• Maximum operating temp – 1350°C
• Maximum operating pressure – 3.5 bar (6 bar max.)

4.2.6 Sample Dyeing Machine Specification:

Machine Type 01
Name of the machine: Winch Dyeing Machine
Machine Type: Sample Dyeing
No. of machine: 02
Brand Name: DILMENLER
Manufacturer: Turkey
Capacity: 50 (2) Kg
Year of manufacturing: 2003

Machine Type 02
Name of the machine: Jet Dyeing Machine
Machine Type: Sample Dyeing
No. of machine: 02
Brand Name: FONGS
Manufacturer: SHENZHEN
Capacity: 50 (2) Kg
Year of manufacturing: 1997

Machine Type 03
Name of the machine: Winch Dyeing Machine
Machine Type: Sample Dyeing
No. of machine: 02
Brand Name: SETEX
Capacity: 50 (2) Kg

Machine Type 04
Name of the machine: Bangla Dyeing Machine
Machine Type: Sample Dyeing
No. of machine: 09
Capacity: 10 (3), 15 (3), 30 (3) Kg.

4.2.7 Lab Dyeing Machine Specification:

Machine Type 01
Name of the machine: Rapid Lab Dyeing Machine
Machine Type: Lab Dyeing
No. of machine: 04
No of Can: 24 (Glycerine bath), 10 (water bath).

Machine Type 02
Name of the machine: Smart Dyeing Machine
Machine Type: Lab Dyeing
No. of machine: 02
No of Cane: 16, 18

4.2.8 Operation Process:

Preparation:
1. Turn on power on main panel
2. Open valve for cooling water of main pump
3. Check stream, water & air
 + Steam pressure: 5 – 6 kg/cm² G
 + Water pressure: 1.2 – 2 kg/cm² G
 + Air pressure: 5 – 7 kg/cm² G

4. Adjustment of feeding valve as per production item & capacity

Putting fabric into the machine:

1. Select water supply level
2. Supply water automatically by pushing ‘turn on’ button and stop by ‘turn off’ button.
3. Take up edge of fabric to fabric gate through guide of the reel
4. Put edge of fabric to nozzle
5. Start main pump and put whole fabric with adjusting feeding by valve up to remaining 2 -3 meters’ fabric end
6. Stop main pump and pull up 2 -3 meters of fabric edge by stick
7. Joint both ends of fabric
8. Start main pump & reel to circulate whole fabric and adjust torque of speed
9. Make sure if fabric circulation is normal, then close the door of the gate, (Check again reel speed)

Operation:

1. Close the door
2. In-put the pattern on programmer controller
3. Mix dyeing stuff & chemical in dyeing-mixing tank and pour it with using pouring pump by adjusting feeding valve, after poring, feeding valve shall be closed
4. Switch ‘run’ on programmer setting device
5. Automatic operation
 - Select the switch of water supply to ‘automatic’ on main panel
 - Push the button of automatic operation, then automatically operation will go through heating, holding, cooling, washing as per programming. Put ‘stop ‘button when finishing buzzer will ring.
 - Open the door and take out fabric

Caution:

1. **Before operation:**
 (1) Check the power (Voltage/Hz) wrong Voltage / Hz will cause to brake motor,
(2) Check air pressure
(3) Clean inside of tube before dyeing
(4) Set the meter correctly as per dyeing method
(5) Check every valves

2. **Starting operation:**
(1) Check closing the door perfectly
(2) Set pressure below 1 kg / cm³ by watching pressure meter
(3) When temperature will be over more than 800°C, do not forget item (1) & (2)
(4) Do not start pump when tube is empty
(5) Put definitely cooling water before starting operation because pump & reel is made for cool water

3. **During operation**
(1) Check if meter is working correctly during operation
(2) Check if any strange vibration
(3) Check if any strange sound of pumping
(4) Check if pressure in the tube is too high
(5) Check if temperature in the tube meet programming
(6) Start pump when feeding steam & cooling water
(7) Check if reel is working correct under high temperature & high pressure

4. **Nozzle installation**
Set nozzle base into nozzle-casing and install nozzle by turning it clock wise.
After install nozzle, turn it one round by anti-clock wise to make 2 mm gap. The gap on nozzle shall be adjusted by kind of fabric

5. **After operation**
(1) Before opening the door, check if air pressure of inside the tube is 0 kg/cm² and temperature of inside the tube is between 800-900°C if the pressure is still remained or temperature is more than 800°C, it is very dangerous to open the door
(2) Temperature inside the tube shall be under 800°C for manual draining
(3) Turn off the power after operation and close the valve

6. **Maintenance:**
- Keep cleaning seal packing of the door and surface to touch the packing to be prevented from dust and hurting
- Keep electric portion, pump and control panel not to be wet by water
- Keep tight valve shaft seal ground packing of each valve by tightening sometime
- Check valve seat part of air valve & drain valve sometime
- Keep tight each volt
- Make often oiling rotating part
- Inspect mechanical seal according to manual of pump
- Keep adding grease & oil in pump bearing part according to manual of pump
- Inspect sometime if safety valve is working correctly
- Inspect sometime if steam trap is working correctly
- Inspect meters of pressure and temperature

6.12 Production Parameters:

a. pH:
 - During H2O2 bleaching pH 9 – 11
 - During reactive dyeing pH 10.5 – 12
 - During disperse dyeing pH 4.5 – 5.5

b. Temperature:
 - For cotton scouring 900-950C
 - For cotton cold wash 300 – 400C
 - For cotton hot wash 700-800C
 - For cotton acid wash 600-700C
 - For cotton dyeing 800-900C (For hot brand)
 - 40-600C (For cold brand)
 - Polyester dyeing: 1000-1300C

c. Time:
 - For scouring 60-90 mins
 - For reactive dyeing 60-90 mins
 - For disperse dyeing 60-90 mins

d. M:L ratio:
 - For reactive dyeing M:L ration maintained between 1 : 8 to 1 : 10
4.2.9 Dyeing Recipe:

<table>
<thead>
<tr>
<th>Fabric Composition: 100% Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Type: Single Jersey</td>
</tr>
<tr>
<td>Colour Name : Black</td>
</tr>
</tbody>
</table>

Scouring & Bleaching:

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Product Name</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-foam</td>
<td>Albaflow JET</td>
<td>0.1 g/l</td>
</tr>
<tr>
<td>Anti-crease</td>
<td>Albafluid C</td>
<td>0.5 g/l</td>
</tr>
<tr>
<td>Peroxide Stabilizer</td>
<td>Gemstap HP-52</td>
<td>0.5 g/l</td>
</tr>
<tr>
<td>Detergent</td>
<td>Imerol DLJ</td>
<td>0.5 g/l</td>
</tr>
<tr>
<td>Scouring agent</td>
<td>Caustic Soda</td>
<td>2.0 g/l</td>
</tr>
<tr>
<td>Bleaching agent</td>
<td>Hydrogen Peroxide</td>
<td>2.5 g/l</td>
</tr>
</tbody>
</table>

Peroxide Killing:

| H$_2$O$_2$ Killer | Bactosol SAP | 0.5 g/l |

Neutralisation:

| Neutraliser | Platilon 2900(Acid Buffer) | 1.0 g/l|

Enzyme Treatment:

| pH adjustor | Platilon 2900 | 0.4 g/l|
| Anti-pilling Enzyme | Bactosol CA | 1.0 g/l|
Dyeing:

<table>
<thead>
<tr>
<th>Reactive Dye</th>
<th>Novacron Yellow FN2R</th>
<th>0.25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive Dye</td>
<td>Novacron Red FNR</td>
<td>0.30%</td>
</tr>
<tr>
<td>Reactive Dye</td>
<td>Novacron Black WNN</td>
<td>7.50%</td>
</tr>
</tbody>
</table>

Dye bath sequestrant	Ladiquest 1097-U	0.75 g/l
Levelling Agent	Drimagan E2R	0.50 g/l
Anti-crease	Albafluid C	0.50 g/l
Electrolite	Glauber's Salt	80 g/l
Alkali	Soda Ash	20 g/l
Neutraliser	Platonin 2900 (Acid Buffer)	0.5 g/l
Wash off agent	Sandopur SP	2 g/l
Cationic softener	Sapamine CWS	1%

Fabric Composition: 100% Cotton

| Colour Name | Red |

Scouring & Bleaching:

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Product Name</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-foam</td>
<td>Albaflow JET</td>
<td>0.1 g/l</td>
</tr>
<tr>
<td>Anti-crease</td>
<td>Albafluid C</td>
<td>0.5 g/l</td>
</tr>
<tr>
<td>Peroxide Stabilizer</td>
<td>Gemstap HP-52</td>
<td>0.5 g/l</td>
</tr>
<tr>
<td>Detergent</td>
<td>Imerol DLJ</td>
<td>0.5 g/l</td>
</tr>
<tr>
<td>Scouring agent</td>
<td>Caustic Soda</td>
<td>2.0 g/l</td>
</tr>
<tr>
<td>Bleaching agent</td>
<td>Hydrogen Peroxide</td>
<td>2.5 g/l</td>
</tr>
</tbody>
</table>

Peroxide Killing:

| H$_2$O$_2$ Killer | Bactosol SAP | 0.5 g/l |

Neutralisation:

| Neutraliser | Platonin 2900 (Acid Buffer) | 1.0 g/l |

Enzyme Treatment:

| pH adjustor | Platonin 2900 | 0.4 g/l |
| Anti-pilling Enzyme | Bactosol CA | 1.0 g/l |
4.2.10 Dyeing Flowchart:

Production flow chart for 100% cotton:

Grey fabric loading
↓
Scouring & bleaching at 95°C for 1 hour
↓
H2O2 killer [invotex PC]
↓
Ascetic Acid
↓
Enzyme [pH 4 – 4.5, temp 60°C for 40’-60’]
↓
Hot wash
↓
Leveling [Ladiquest 1097]
↓
Dyeing
 Salt
 Color
 Soda
 ↓
 Acid
Dyeing flow chart of polyester cotton:

Dyeing sequence of polyester cotton is the combination of polyester and cotton dyeing process. For this reason, this dyeing process is called double part dyeing process. In this dyeing process, polyester part is dyed first than cotton part is dyed.

Carrier and vessel washed by hydrose and caustic at 1000 C for 20 min
↓
Load the package in the carrier and feed in the vessel
↓
Add wetting agent, antifoaming agent, sequestering agent and run at 600 C for 10 min
↓
Water solution drain
↓
Add wetting agent, sequestering agent, caustic soda and hydrogen peroxide and run at 1100 C for single yarn and 1150 C for double yarn for 20 min
↓
Drain
↓
Add peroxide killer and run at 900 C for 10 min
↓
Peroxide check in the package
↓
Drain
↓
Add acetic acid for neutralization and run for 20 min at 500 C
↓
Drain
↓
Take sample and check absorbency
↓
Ok
↓
Dyeing period (Polyester part)
↓
Add leveling agent and acid, run at 600 C for 10 min
↓
PH check
↓
Color mixing at 700 C for 40 min
↓
Color dosing at 600 C for 20 min
↓
Sample check
↓
Ok
↓
Temperature cool down at 780 C and drain
↓
Hot wash for 10 min
↓
Rinse for 15 min for light shade and 25 min for dark shade
↓
Add hydrole, soda ash, run at 800 C for 20 min
↓
Drain
↓
Neutralization by acetic acid at 500 C 20 min
↓
Take sample
↓
Carbonizing by acid for 10-20 min
↓
Neutralization by acetic acid at 500 C for 20 min
↓
Drain
↓
Dyeing of polyester part complete
↓
Dyeing period (Cotton part)
↓
Add wetting agent, antifoaming agent, sequestering agent and run at 600 C for 10 min
↓ Color dosing at 600 C for 20 min
↓ Color migration at 600 C for 30 min
↓ Salt dosing at 600 C for 20 min
↓ Run the machine for 20 min at 600 C with color and salt
↓ Soda dosing at 600 C for 40 min
↓ Cotton dyeing at 600 C for 50 min
↓ Check sample
↓ Ok
↓ Drain
↓ Rinse for 10 min
↓ Add acetic acid for neutralization and run for 10 min at 500 C
↓ Drain
↓ Add washing chemical and run at 900 C for 20 min
↓ Wash sample check
↓ Ok
↓ Drain
↓ Rinse for 10 min
↓ Add fixing chemical and half acetic acid, run at 500 C for 20 min
↓ Add softening agent and rest half acid, run at 600 C for 20 min
↓ Check finished sample
↓
It is noted that dyeing sequence of CVC is as same as P/C dyeing. If we want to dye CVC then we can run the process as same as the above process sequence.

Dyeing flow chart of cotton with Turquoise Color: (Light Shade)

Turquoise color dyeing is critical than the normal color dyeing. This type of dyes is used for produce specific color.

Carrier and vessel washed by hydrose and caustic at 1000°C for 20 min
↓ Load the package in the carrier and feed in the vessel
↓ Add wetting agent, anti foaming agent, sequestering agent and run at 600°C for 10 min
↓ Water solution drain
↓ Add wetting agent, sequestering agent, caustic soda and hydrogen peroxide and run at 1100°C for single yarn and 1150°C for double yarn for 20 min
↓ Drain
↓ Add peroxide killer and run at 900°C for 10 min
↓ Peroxide check in the package
↓ Drain
↓ Add acetic acid for neutralization and run for 20 min at 500°C
↓ Drain
↓ Absorbency test of sample
↓ Ok
↓ Dyeing period
↓ Add wetting agent, antifoaming agent, sequestering agent and run at 600°C for 10 min
Color dosing at 600 C for 20 min
↓
Color migration at 800 – 900 C for 30 min
↓
Salt dosing at 600 C for 20 min
↓
Run the machine for 20 min at 800 – 900 C with color and salt
↓
Soda dosing at 600 C for 40 min
↓
Cotton dyeing at 800 – 900 C for 50 min
↓
Check sample
↓
Ok
↓
Drain
↓
Rinse for 10 min
↓
Add acetic acid for neutralization and run for 10 min at 500 C
↓
Drain
↓
Add washing chemical and run at 900 C for 20 min
↓
Wash sample check
↓
Ok
↓
Drain
↓
Rinse for 10 min
↓
Add fixing chemical and half acetic acid, run at 500 C for 20 min
↓
Add softening agent and rest half acid, run at 600 C for 20 min
↓
Check finished sample
↓
Ok
Dyeing flow chart of cotton with Turquoise Color: (Dark Shade)

Shade of the textile materials depends on the dyes percentage which is used for dyeing. Chemical which is used for dyeing also vary depending on the dyes used. Generally dark shade means the dyes percentage above 2%. Medium shade dyeing and dark shade dyeing process is nearly same.

Carrier and vessel washed by hydrose and caustic at 1000 C for 20 min
↓
Load the package in the carrier and feed in the vessel
↓
Add wetting agent, antifoaming agent, sequestering agent and run at 600 C for 10 min
↓
Water solution drain
↓
Add wetting agent, sequestering agent, caustic soda and hydrogen peroxide and run at 1100 C for single yarn and 1150 C for double yarn for 20 min
↓
Drain
↓
Add peroxide killer and run at 900 C for 10 min
↓
Peroxide check in the package
↓
Drain
↓
Add acetic acid for neutralization and run for 20 min at 500 C
↓
Drain
↓
Absorbency test of sample
↓
Ok
↓
Dyeing period
↓
Add salt, wetting agent, antifoaming agent, sequestering agent and run at 600 C for 10
min
↓
PH check
↓
Color dosing at 600 C for 30 min
↓
Color migration at 800 – 900 C for 30 min
↓
Migration package check
↓
Ok
↓
Run the machine for 20 min at 800 – 900 C with color and salt
↓
Soda dosing at 600 C for 40 min
↓
Cotton dyeing at 800 – 900 C for 50 min
↓
Check sample
↓
Ok
↓
Drain
↓
Rinse for 10 min
↓
Add acetic acid for neutralization and run for 10 min at 500 C
↓
Drain
↓
Add washing chemical and run at 950 C for 20 min
↓
Add washing chemical and run at 900 C for 20 min
↓
Ok
↓
Drain
↓
Rinse for 10 min
↓
Add fixing chemical and half acetic acid, run at 500 C for 20 min
Add softening agent and rest half acid, run at 600 C for 20 min
Check finished sample
Ok
Drain

4.3 Dyeing Finishing Section:

4.3.1 Process Sequence of Finishing Machinery

For Tubular form of Fabric:
- De-watering m/c
- Dryer
- Tubular compactor

For Open form of Fabric:
- Slitter
- Dryer
- Stenter
- Open Compactor

For Collar and Cuff:
- Hydro-Extractor m/c
- Softening m/c
- Dryer

Finishing is the final steps of wet processing technology. A textile product either it is dyed or printed it needs to add some finishing features before marketing. By applying different finishing techniques, a product becomes more comfortable to use. So finishing should be easier to apply.

4.3.2 Objects of Finishing:

1. To improve the attractiveness of the fabric.
2. To increase the life time or durability of the fabric.
3. To meet up specific requirement of the fabric for achieve the final goal.
Finishing plays an important role in the modern age. Everyone likes to wear finished products with some special types of finishing. Finishing of the fabric depends on the requirement of the buyer. Different types of finishing machine are use in finishing operation.

4.3.3 Classification of Finishes:

Textile finishes are classified in different ways. The most common classification are-

- **Aesthetics finishes**: This type of finishes make change or modify the appearance of the fabric or hand/drape properties of the fabrics.
- **Functional finishes**: This type of finishes changes the internal performance properties of the fabric.
- **Permanent finishes**: It involves a chemical change in fibre structure and do not change throughout the life of a fabric.
- **Durable finishes**: Usually last throughout the life of a fabric, effectiveness becomes diminished after each cleaning and near the end of normal use of the fabrics, the finishing is nearly removed.
- **Semi-durable finishes**: Usually last several launderings or dry cleanings and many are removal in home laundering or dry cleaning.
- **Temporary finishes**: Removed or substantially diminished the first time an article is laundered or dry cleaning.

4.3.4 Finishing Machine Profile (Dckil):

De-Watering Machine:

<table>
<thead>
<tr>
<th>Brand</th>
<th>Type</th>
<th>Origin</th>
<th>Qty.</th>
<th>Capacity/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calator Tube</td>
<td>Sweden</td>
<td>1</td>
<td>1</td>
<td>6000</td>
</tr>
<tr>
<td>Fabcon Tube</td>
<td>USA</td>
<td>1</td>
<td>1</td>
<td>6000</td>
</tr>
<tr>
<td>Bianco Tube</td>
<td>Italy</td>
<td>2</td>
<td>1</td>
<td>7000</td>
</tr>
<tr>
<td>Bianco Open</td>
<td>Italy</td>
<td>1</td>
<td>1</td>
<td>14000</td>
</tr>
<tr>
<td>Taida Open</td>
<td>Turkey</td>
<td>1</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>Dilmenler Open</td>
<td>Turkey</td>
<td>3</td>
<td>1</td>
<td>10000</td>
</tr>
</tbody>
</table>

Total Capacity: 653000

RELAX DRYER:
Ruckh Gas heated Tube Germany 11 7000
Santex Gas heated Tube Switzerland 11 6000
Total Capacity 13000

STENTER:
Bruckner 6 Chamber Open Germany 2 1 12000
Taida 6 Chamber Open China 3 1 10000
TTM 8 Chamber Open Turkey 3 1 15000
Total Capacity 37000

COMPACTOR:
Fab-Con Tube USA 11 7000
Ferraro Tube Italy 11 6000
Lafer Open Italy 2 2 12000
HAS Open Turkey 3 1 10000
Total Capacity 35000

BRUSH & PEACH:
HAS Peach Open Turkey 3 1 5000
I Kuang Brush Open + Tube China 3 1 5000
Gma Tex Brush Open + Tube Germany 3 1 4000

4.3.5 Description of Different Finishing and Washing Machine:

Hydro Extractor m/c
- Manufacturer: Nazar Corporation (Pakistan)
- Extraction%: 65% Maximum
- Speed: 1400 rpm
- Extraction time: 5-7 min
- Function: To remove the water from the fabric by centrifugal extraction.

Dewatering Machine
- Manufacturer: CALATOR (SWEDEN)

Function:
- Reduce water content
- Apply finishing chemical
• Open the fabric from rope form

Controlling Parameters:

• Padder pressure : 4-7 bar
• Pick up % : 80-85%
• Speed at m/c : 8-60 m/min

Chemical application:

• Softener: To soften the fabric
• Acetic acid : 0.25 g/l
• pH : 7.5

Ruckh Relax Dryer (Germany)

• Gas burner Heated
• 4 Chamber, 1 burner/ 2 chamber.

Santex Relax Dryer (Switzerland)

• Steam Heated
• 2 Chamber

Machine set up for Ruckh relax dryer is as follows:

• Machine Parameters Set-up Value

Temp. Setting:

• (100-120)°c for White Shade
• (120-130)°c for Light Shade
• (130-140)°c for Dark Shade
• (140-170)°c for Curing

Blower Fan setting Auto

Exhaust Fan setting Auto

Machine Speed 3-35 m/min (depends on quality of fabric)

Over feed 0-40 % (depends on the fabric construction)

Width of Expender Setting 45- 114 cm (depends on the required fabric width)

Burner Gas pressure 10-15 / bar

Slitter Machine

Slitter machine is used for tubular knit fabric to make it in open form. In open form fabric finishing line; slitter machine is used after hydro-extractor, de-watering and drying machine.
Slitting is a process that is applied for cutting the tubular fabric through the intended break Wales line on lengthwise direction prior to stenter processing. During slitting, it is required to be aware about the cutting line otherwise, fabric faults can be occurred there.

Objectives of Slitting:
- To open tube fabric according to specific needle mark.
- To prepare the fabric for next stentering process.

Slitter Machine parts and their functions:
1. Rotary Blade: Rotary blade is used for cutting the fabric through break Wales line.
2. Ring: Ring is use to help the cutting process.
4. Plaiting: Open fabric is make plait by plaiting.
5. Sensor: Sensor is used for identify the specific Wales line. It makes sense for cutting through break Wales’s line.

Checking Parameters:
1. Cutting Line Check: Fabric cutting line is checked by the operator of the slitting machine. Operator checks that the rotary blade cut fabric through break Wales’s line or not.
2. Bow and Slant check: Bow and slant is checked in the delivery side of the machine by the Manufacturer: Bianka Slitter m/c (Germany)

Speed: 20-25 m/min

Stenter Machine

Stenter is used for open form fabric. After passing the open compactor, fabric enter into the stenter. Cotton fabric shrinks widthwise and weft distorted due to bleaching and dyeing process. The main function of the stenter is to stretch the fabric widthwise and to recover the uniform width.

Functions of Stenter:
1. Heat setting is done by the stenter for lycra fabric, synthetic and blended fabric.
2. Width of the fabric is controlled by the stenter.
3. Finishing chemical apply on fabric by the stenter.
4. Loop of the knit fabric is controlled.
5. Moisture of the fabric is controlled by the stenter.
6. Spirility controlled by the stenter.
7. GSM of the fabric is controlled by stenter.
8. Fabric is dried by the stentering process.
9. Shrinkage property of the fabric is controlled.
10. Curing treatment for resin, water repellent fabric is done by the stenter.

Machine Specification:
Brand Name: Bruckner
Serial no: 72276-0463
Origin: Germany
Year of manufacture: 1995
Speed range: 15-30 m/min
Temperature range 50-250C
Used utilities: Electricity, Gas, Compress air, Steam
Production capacities: 8 ton /day
No. of chamber: 3
Maximum fabric width: 102”
Minimum fabric width: 30”
Steam pressure: 2 bar
Air pressure: 10 bar
Applied for: Open tube fabric
No. of ratamatic burner: 6
Extra Attachment: Mahlo weft straightener
M/C parts: Burner, Nozzle, Exhaust air fan, Over feed roller,
Suction fan, Chain arrangement
4.4 Garments Section:

4.4.1 Introduction:

Apparel and Garment are two similar words but Apparel used in USA standard and Garment used in UK standard. Finally, it turns into Readymade Garment (RMG). So, Knit Concern Apparel is a USA standard Readymade Garment. According to Apparel, classify it is divided into two parts—
a) Bespoke Garment (Tailoring system)
b) Ready-to-wear (Industrial system). In Knit Concern Apparel, used Ready-to-wear (Industrial System). In Industrial System, a group of people or a group of size (S, M, L, XL etc) required to make an apparel.

4.4.2 Flow Chart of Apparel Manufacturing:

```
APPAREL DESIGN AND SKETCH (MEASUREMENT CHART)
↓
WORKING PATTERN (SIZE: S, M, L, XL etc)
↓
SAMPLE MAKING
↓
APPROVED SAMPLE
↓
PATTERN GRADING
↓
MARKER MAKING
↓
FABRIC SPREADING
↓
FABRIC CUTTING
↓
SEWING
```

©Daffodil International University
INSPECTION
↓
FINISHING
↓
FINAL INSPECTION
↓
SHIPMENT
4.4.3 Sample Section:

The section which maintains various types of sample called Sample section. The word in Knit Concern Apparel list the "CORRECT SAMPLE AT THE FIRST TIME". This section works according the sequence.

```
Sketch/design →
Basic Block →
Working Pattern →
Sample Making →
Basic Manufacturing →
Approve Sample →
Costing
```

4.4.4 Objectives:

1. To make correct sample.
2. To make master pattern.
3. To pattern grading.
4.4.5 Cutting Section:
Cutting is the process which cut out the pattern pieces from specified fabric to making the garments. Using the markers from graded patterns and in accordance with the issued plan, the fabrics are cut to prepare the garments assembly. Flow chart of garments cutting section.

Markermaking

Fabric spreading

Cutting

 Bundling

4.4.6 Marker Making:
Markers are layout of pattern pieces for the purpose of fabric cutting. Great effort is made to arrange patterns in the most economizing manner within the constraints of fabric type, width, nap, fabric design.
4.4.7 Computer Aided Design (CAD)

The design which is made by computer with the help of Digitizer is called Computer Aided Design (CAD). The CAD can be 2D or 3D. In Knit Concern Ltd 2D is used.

Software Brand:
- Lectra System
- Optitex System

Lectra Systems:

Step One: At first the pattern needs to be placed on the digitizing table.
Step Two: For every part, a new sheet is needed.
Step Three: Then, click twice the button and for curve position, any part can be clicked. Any fault to take point D = delete.
Step Four: For Grain Line, click A.
Step Five: After one part is digitized, finish the digitizing by clicking F to finish.
Step Six: Repeating the whole process, another part can be digitized.

Effect of CAD:

All the jobs described so far lend themselves ideally to computerized graphics. The master patterns or blocks can be stored as images in the computer and called up as required, together with a list of each part needed for that block. With the use of a light pen, each part can be brought up turn by turn and enlarged on the screen. This job, obviously, retains the skill of the computer operator. With interactive graphics, the pattern maker can now adjust each part to match the designer's concept.

Effect of CAD on Garment Design and Pre-Assembly

- Block images stored in computer
- Grading technique replaced by expert system
- Percentage wasted computed and displayed for each layout
- Fabric pattern constraints incorporated in the program
• Learning system incorporated
• Lay-makers deskill
• Cutters replaced by CAD/CAM
• Women take over as operators
• Wages reduced

4.4.8 Fabric Spreading:

Spreading means the smooth laying out of fabric in relation to marker length and marking width i.e. specified length and width.

4.4.9 CUTTING:

Then cut the fabric according to pattern or marker setting. Fabric cutting is the most important part of a garment factory. Cutting different part of garment apparel according to the pattern is called fabric cutting.
4.4.10 Numbering:

Sorting out the components according to size and for each size make individual bundle. Numbering includes:

- Cutting no
- Bundle no
- Style no
- Quantity
- Color
- Parts no
- Size
- Serial no
The basic components of sewing are -

- Sewing Thread,
- Fabric and
- Elements of Machine.

4.4.11 Sewing machines:

The machines which are used in sewing section.

- Plain m/c
- Over lock m/c
- Fat lock m/c
- Kansai m/c
- Chain stitch m/c
- Vertical m/c
- Two needle m/c
- Feed of the arm m/c
- Zigzag m/c
- Bar tack m/c
- Button holding m/c
- Button attach m/c
- Snap button attach m/c
- Eye late hole m/c

4.4.12 Different types of sewing machines:

Plain m/c

Properties:

- One needle
Two tensioners
Three guide
One hook
Two thread
One bobbin case
One magnate guide

Application:
Bottom hemming
Belt top seam
Belt joint
Loop tack
Pocket joint
Zipper joint
Flap top
Flap joint
Front rise
Back rise

Over lock m/c

Properties:
5 thread
4 tensioner
2 knifes
2 needle for 5 thread
1 needle for 3 thread
3 looper for 5 thread
2 looper for 3 thread

Application:
Used for over lock stitch

Fat Lock M/C:

Properties:
• 4 tensioner
• Contain a holder
• thread
• needle

Application:
• Zig zag stitch
• Knit hemming
• Loop making

SEWING PROCESS FOR T-SHIRT:
- Shoulder Join
- Neck R/B Make
- Neck Joint
- Label Joint
- Back Tip Joint
- Sleeve Hem
- Sleeve Joint
- Side Seam
- Sleeve Tag
- Body Hem
- Lop Join

SEWING PROCESS FOR POLO-SHIRT:
- Shoulder Joint
- Placket Joint
- Placket Top Seam
- Box Tuck
- Body Hem
- Side Joint Seam
- Side Top Seam
- Nose Tuck
- Collar Joint
- Collar Tape Joint
- Top Seam
- Joint
- Top Joint
- Top
Join
Armhole Top Seam
Sleeve Tuck
Side Stitching Tuck
Side Stitching Tape
Side Stitching Top Seam

4.4.13 FINISHING SECTION:

Finishing is the last processes to making apparel. The finishing process sequences are as follows:

Finishing input(style, color, size wise)
Initial quality check
Stop removing
Ironing/pressing
Inspection
Hang tag
Get up change
Folding
Poly
Barcode
Metal check
Cartooning
Final inspection by buyer
4.4.14 Material used in finishing:

- Neck board
- Back board
- Full board
- Hang tag
- Tag pin
- Tissue paper
- Al pin
- Ball pin
- Elastic clip
- Hanger
- Poly bag
- Size sticker
- Gum tape
- Inner box
- Master cartoon box
- Pp belt
- Blister

Cleaning:
In this process extra sewing thread and various unnecessary things are removed from the garments body. Air suction is done to remove this. Extra part of sewed thread is also cut from the garments by scissor.
Checking:
Prepared garments are now passes through the metal detector for checking. If any kinds of metal such as broken needle etc found then the machine stops and the garments are checked to remove the thing.

Ironing:
Garments are now being ironed at a high temperature which will cause no harm to the garments. Special types of table are used for ironing. Table is selected according to the fabric characteristics.

Tagging:
After ironing tags are attached with the garments as per buyers requirements. If the tags are needed to be printed, a sticker is made with that. Now the sticker is attached with the garments with heat (100°C-150°C) is applied to fix it.

Folding:
Do creases result from applying result to fold. If we wrap a paper around a cylinder, it will be easy to straighten again. If we make a fold in the paper, it will be more difficult. If we apply pressure along the fold it will be more pronounced.

The delta composite knitting industry ltd uses following folding styles,
- Flat folding
- Roller folding
- Crunching folding

Hangers:
Hangers must be secured with a cable tie. All film specification must be same in pre made bags. The supplier must be ensure that the heat setting is adequate to seal the bags sufficiently without overheating the bags and weakening the bags strength. Garments to hang loose in the bags. Bottom edge of the garments to be above the bottom edge of the bags. Hanger opening is to face left.

Packing and packaging requirements:
To ensure the cartoon is enough strong and secure the content inside in the normal transport and distribution process according to the standards. Ensure the contents of the pack are packed according to the instruction.

The delta composite knitting industry ltd using following four types of packaging systems,
• Solid color & solid size
• Solid color & assort size
• Assort color & assort size
• Assort color & solid size

4.4.15 Final inspection:
Its main purpose is to assure quality. After apparel preparation, before packing this shorts of inspection is done to remove the faulty garments. Defects are identified here and if possible garments are again send to respected section to solve the problems.

4.4.16 Defects in garments:
For the textile and apparel industry product quality is calculated in the terms of quality and standard of fibres, yarns, fabrics color, design and the final finished of the garments. Quality control in terms of garments manufacturing, pre-sales and post-sales services delivery, pricing, etc are essential for any garments manufacturer, trader, or exporter. Certain quality related problems often seen in garments manufacturing like sewing, color, sizing, or garment defects should never be overlooked.

Defect classification:
Types of defects considered in AQL,

■ Critical Defects: are those that render the product unsafe or hazardous for the end user or that contravene mandatory regulations.
■ Major defects: can result in the product’s failure, reducing marketability, usability.
■ Minor Defects: do not affect products marketability or usability but represents
workmanship defects that make the product fall short of defined quality standard.

6.9 Basic Symbols for all systems:

LABELS
Label is the identification of Apparel. Labels are various types named main Label and Size label.

- **Main Label:**
 - Indicate the Trade name of Apparel.

- **Size Label:**
 - Indicate the size of the Apparel.

4.4.17 MERCHANDISING SECTION:

Merchandising section is the most important section for any industry. It is quite impossible to continue any industry without this section. The job done from buyers order up to shipment.

OBJECTIVES:
- To satisfy the buyer requirements.
- To work systematically to achieve good production.
- To shipment the right time.
- To communicate and motivate excellently with buyer.
- To fixed the product price.

ORDER SHEET:
A group of sheets which contents the followings.
- Apparel Design and Sketches
- Apparel Measurements
- Stitches
- Trimmings and Details
- Other Quality & size ratio
- Packing Instructions
- Other Details etc.
4.5 Utility Section

Utility section contents of
- Boiler
- Generator
- Air compressor

4.5.1 Boiler:

Brand name: Cleaver brooks
Origin: USA
Capacity: 10000 kg/hr

Specification:
- Feed water temperature: 60oc
- Feed water hardness: 2
- System pressure: 500 psi
- Types of steam: wet system
- Steam temperature: 1500c
- Fuel used: natural gas

4.5.2 Generator:

Machine no: 1
- Brand name: Waukesha
- Capacity: 1126 kv

Machine no: 2
• Brand name: Caterpillar
• Capacity: 390 kv

4.5.3 Air Compressor:

Air compressor is a machine which compresses the air and raises its pressure. The air compressor sucks the air from the atmosphere, compresses it and deliver the same under a high pressure to a storage vessel. From a storage vessel, it may be conveyed by the pipeline to a place where the supplied air compressor required.

4.6 Effluent Treatment Plant (E.T.P.)

Effluent means wastewater discharged from a textile wet processing plant contains various types of impurities depending on the type of dyes, chemicals, auxiliaries and process used. The Effluent which is treated by a plant that is called Effluent Treatment Plant. In fact, water is the heart for dyeing Industry and chemical also an important element for different stage of dyeing. Now, it is quite impossible without chemical continue dyeing. So, which chemical we use in Dyeing that mixed with water and finally drain. If the chemical mixed water goes outside through river it is very harmful for not only our environment but also all alive animals.

4.6.1 TYPES OF E.T.P

There are different types of E.T.P are available. Those are

• Biological E.T.P. (Best)
• Chemical E.T.P.
• Biological & Chemical E.T.P.
• Physical ETP

BIOLOGICAL E.T.P.:
• The Effluent will be treated according to sequence or stage by stage.
• Its primary cost or set up cost is very high.
• Its effluent treatment will be best.

4.6.2 E.T. P in Delta:
• Cost of the project is nearly 8, 00, 000 BDT.
• Fully Biological E.T.P.
• Manufactured by Water Treatment Technology (W.T.T.) of ITALY.
• 60 lac liter storage capacity
• 30 lac liter processing capacity

4.6.3 Different chemical used in E.T.P:
• Sodium hypochlorite
• Sulfuric acid
• Polyelectrolyte
• Nutrient salt
• Anti-foam
• De-colorant

4.6.4 some picture of ETP process
Chapter-5

IMPACT OF INTERNSHIP
5. IMPACT OF INTERNSHIP:

5.1 Knitting section:
Know about different types of knitting process
Know about different types of knitting fault
Know about different types of Cam arrangement
Know about different types of yarn
Know about different types of knit fabric

5.2 Dyeing Section:
Know about different types of dyes and chemicals
Know about different types of dyeing process
Know about different types of finishing process
Know about different types of dyeing recipe

5.3 Garments Section:
Learn about cutting of garments
Learn about sewing of garments
Learn about pattern making
Learn about marker making
Learn about CAD software
Learn about finishing
Chapter-6

CONCLUSION
6. CONCLUSION:

Industrial attachment program sends us to the expected destiny of practical life. Through The completion of Two Month industrial attachment at The Delta Composite Knitting Ind. Ltd (DCKIL), we have got the impression that the factory is one of the most knit dyeing projects in Bangladesh. Though it was established 19 years ago, it has earned very good reputation for its best performance over any other knit dyeing project. During our industrial attachment program, we had tried to our best to done our duty. Our supervising officer also satisfied to us & offer co-operation in every steps. It is completely a new experience in our life, which will be very effective in our service life. During our training period we realized that practical experience is valuable for service life.
Sample Attachment