

“Ethoreal Shift”: A Role Playing Game for the PC Platform

BY

Swarna Kundu

ID: 142-40-128

AND

Fahim Ahmed

ID: 142-40-138

This Report Presented in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in Multimedia and Creative Technology

Supervised By

Dr. Shaikh Muhammad Allayear

Associate Professor and Head
Department of MCT

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

JULY 26, 2018

P a g e | i

APPROVAL

This Project titled Ethoreal Shift: A Role Playing Game for the PC Platform,
submitted by Swarna Kundu & Fahim Ahmed to the Department of Multimedia and
Creative Technology, Daffodil International University, has been accepted as
satisfactory for the partial fulfillment of the requirements for the degree of B.Sc. in
Multimedia and Creative Technology and approved as to its style and contents.

BOARD OF EXAMINERS

Dr. Shaikh Muhammad Allayear Chairman
Associate Professor and Head
Department of MCT
Faculty of Science & Information Technology
Daffodil International University

Arif Ahmed Internal Examiner
Associate Professor
Department of MCT
Faculty of Science & Information Technology
Daffodil International University

Md. Samaun Hasan Internal Examiner
Lecturer
Department of MCT
Faculty of Science & Information Technology
Daffodil International University

Professor Dr. Mohammad Zahidur Rahman External Examiner
Department of CSE
Jahangir Nagar University, Dhaka

P a g e | ii

DECLARATION

We hereby declare that, this project has been done by us under the supervision of Dr.
Shaikh Muhammad Allayear, Associate Professor and Head, Department of
MCT, Daffodil International University. We also declare that neither this project nor
any part of this project has been submitted elsewhere for award of any degree or
diploma.

Supervised by:

Dr. Shaikh Muhammad Allayear
Associate Professor and Head
Department of MCT
Daffodil International University

Submitted by:

Swarna Kundu
ID: 142-40-128
Department of MCT
Daffodil International University

Fahim Ahmed
ID: 142-40-138
Department of MCT
Daffodil International University

©Daffodil International University

P a g e | iii

ACKNOWLEDGEMENT

First, we express our heartiest thanks and gratefulness to almighty God for His divine

blessing makes us possible to complete the final year project successfully.

We are really grateful and wish our profound our indebtedness to our supervisor, Dr.

Shaikh Muhammad Allayear, Associate Professor and Head, Department of MCT

Daffodil International University, Dhaka. Deep Knowledge & keen interest of our

supervisor in the field of “Game Design & Development to carry out this project. His

endless patience, scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior draft and

correcting them at all stage have made it possible to complete this project.

We would like to express our heartiest gratitude to Mr. Mirza Mohtashim Alam,

Lecturer, Department of MCT, for his kind help to finish our project and to other

faculty member and the staff of MCT department of Daffodil International University.

We would like to thank our entire course mate in Daffodil International University,

who took part in this discuss while completing the course work.

Finally, we must acknowledge with due respect the constant support and patients of

our parents.

©Daffodil International University

P a g e | iv

ABSTRACT

For this project, we wanted to design a computer game in Unity. So we decided to

design a Role-Playing game (RPG) where the objective is to collect three elemental

stones, save the planet using the stones and get out of the game by finishing it. The

player, who is a magician, has to collect three stones by defeating enemies in different

levels and save the planet from being destroyed. The game is designed & developed

in Microsoft Windows and written in C# using Unity Game Engine, Monodevelop

and Microsoft Visual Studio. We have implemented many advanced programming

functions in this project as taught in our Multimedia Authoring & Game Development

course. As a result, we have created a 3D RPG game that we hope would be fun to

play and enjoyable.

©Daffodil International University

TABLE OF CONTENTS

CONTENTS PAGE

Board of examiners i

Declaration ii

Acknowledgements iii

Abstract iv

CHAPTERS

CHAPTER 1: Introduction 1-4

1.1 Present State of Gaming Industry 1

1.2 Video Game Types 2

 1.2.1 Role Playing Game 2

1.3 Report Overview 3

1.4 Related Works 5

CHAPTER 2: Proposed Project and Software Requirements

Specification of “Ethoreal Shift”
6-17

2.1 Our Proposed Project: Ethoreal Shift 6

 2.1.1 Level and Character Design Choices 7

2.2 Scope of Our Game 8

2.3 Project Scheduling 8

2.4 Software Requirement Specification of “Ethoreal Shift” 9

 2.4.1 Purpose of this Chapter 9

 2.4.2 Intended Audience and Reading Suggestions 9

P a g e | ii

 2.4.3 Scope of this Document 10

2.5 General Description 10

 2.5.1 Product and Business Perspective of the Game 10

 2.5.2 System Environment 11

 2.5.3 Quality Function Deployment of “Ethoreal Shift” 11

 2.5.4 User Story 13

 2.5.5 Game Levels 15

2.6 Specific Requirements 16

 2.6.1 External Interface Requirements of the Game 16

 2.6.2 User Characteristics for the Game 17

2.7 Requirement Change Management of Our System 18

2.8 Bugs and Glitches 18

2.9 Patches 18

CHAPTER 3: Design and Implementation of “Ethoreal Shift” 19-40

3.1 Game Design 19

 3.1.1 Characters 19

3.2 Level and Environment Design 24

 3.2.1 Sylvista Village 24

 3.2.2 Daryas City 25

 3.2.3 Quest 1 – The Jungle 26

 3.2.4 Quest 1 – The Forest 27

 3.2.5 Quest 2 - The Machine Site 28

©Daffodil International University

P a g e | iii

 3.2.6 Quest 3 – The Factory Site 29

 3.2.7 The Sacred Waterfall 30

3.3 Project Design Terms 31

 3.3.1 User Experience (UX) 31

 3.3.2 Backend Programming 31

3.4 System Features of Our Game 32

 3.4.1 Title Screen 33

 3.4.2 Pause Menu 34

 3.4.3 Dialogue 35

 3.4.4 Exit Point 36

3.5 Assumptions and Dependencies 37

 3.5.1 Construction of the Game 37

 3.5.2 Integration with Windows 37

3.6 Key Resource Requirements of the Project 38

3.7 Implementation Tools Required 40

3.8 Implemented Codes & Scripts 41

CHAPTER 4: Coding and Other Technical Aspects 42-54

4.1 Scripts Written for This Project 42

 4.1.1 Code Analysis 44

4.2 Functional Tests 49

 4.2.1 Test Case 1 49

 4.2.2 Test Case 2 49

©Daffodil International University

P a g e | iv

 4.2.3 Test Case 3 50

 4.2.4 Test Case 4 50

 4.2.5 Test Case 5 51

 4.2.6 Test Case 6 51

 4.2.7 Test Case 7 51

 4.2.8 Test Case 8 52

 4.2.9 Test Case 9 52

4.3 Post-Build Beta Tests 52

 4.3.1 Beta Test Bug 1 52

 4.3.2 Beta Test Bug 2 53

 4.3.3 Beta Test Bug 3 53

 4.3.4 Beta Test Bug 4 53

 4.3.5 Beta Test Bug 5 54

 4.3.6 Beta Test Bug 6 54

CHAPTER 5: User Manual of “Ethoreal Shift” 55-64

5.1 Playing Procedures 55

5.2 In-Game Screenshots 56

CHAPTER 6: Conclusion 65-70

6.1 The Obstacles We Faced 65

6.2 The Achievements 67

6.3 Future Development Plans 68

6.4 Last Few Words 70

©Daffodil International University

P a g e | v

LIST OF FIGURES
FIGURES PAGE NO

Fig 2.1: Input Graph 11

Fig 3.2.1: Starting Point 24

Fig 3.2.2: Teleportation Point 24

Fig 3.2.3: Magic Item Shop 24

Fig 3.2.4: Daryas City Port 25

Fig 3.2.5: Scrolls 25

Fig 3.2.6: Adventurers Wandering in the City 25

Fig 3.2.7: The Jungle 26

Fig 3.2.8: Woodcutters Standing Idle 26

Fig 3.2.9: Enemies in the Jungle 26

Fig 3.2.10: The Forest Port 27

Fig 3.2.11: Woodcutter’s Tents 27

Fig 3.2.12: The Forest 27

Fig 3.2.13: Gate of the Machine Site 28

Fig 3.2.14: The Machine Site 28

Fig 3.2.15: Paladin Knights in the area 28

Fig 3.2.16: Woodcutters Standing around 29

Fig 3.2.17: Woodcutter’s Tents 29

Fig 3.2.18: Paladin Knights Guarding the Factory 29

Fig 3.2.19: The Cave of Sacred Waterfall 30

Fig 3.2.20: Super Red Moon 30

Fig 3.2.21: The Sacred Waterfall 30

Fig 5.2.1: The Start Menu 56

APPENDIX 71

REFERENCES 72

CODES AND SCRIPTS IMPLEMENTED 73-105

©Daffodil International University

P a g e | vi

Fig 5.2.2: The Pause Menu 56

Fig 5.2.3: Game Start Cut scene 56

Fig 5.2.4: Sylvista 57

Fig 5.2.5: Sylvista Port 57

Fig 5.2.6: Citadel Castle and the Fountain 57

Fig 5.2.7: Outside of Magic Shop 58

Fig 5.2.8: Inside the Magic Shop 58

Fig 5.2.9: The Marchant Talking to the Player 58

Fig 5.2.10: Collecting Scrolls 59

Fig 5.2.11: Daryas City Port 59

Fig 5.2.12: Player exploring the City 59

Fig 5.2.13: Scrolls in the City 60

Fig 5.2.14: Peoples walking around 60

Fig 5.2.15: The City Wall 60

Fig 5.2.16: Woodcutter coming to attack the Player 61

Fig 5.2.17: Player attacking the Woodcutter 61

Fig 5.2.18: Woodcutter is Dead 61

Fig 5.2.19: Player got the Dryad Stone 62

Fig 5.2.20: Paladin Knights attacking the Player 62

Fig 5.2.21: Player attacking the Paladin Knights 62

Fig 5.2.22: Player Casting Explosion Spell on the Machine Building 63

Fig 5.2.23: Machine Building is being destroyed 63

Fig 5.2.24: Player got the Zephyrus Stone 63

Fig 5.2.25: Player in front of the Sacred Waterfall 64

Fig 5.2.26: Player in front of the Ancient Magic Table 64

Fig 5.2.27: Game Completed 64

©Daffodil International University

P a g e | 1

CHAPTER 1: Introduction

In recent times, PC video games have become very popular and wide spread all

around the world. Playing video games has become a way to know more about the

world as they offer different opportunities for gamers to explore, practice, and re-

enforce cultural and social identities as well as their own capabilities in terms of

speed, reflex, calculation and strategy. And due to the potentials of video games, the

gaming industry has grown from focused markets to mainstream that is currently

worth billions of dollars and growing very fast.

1.1 Present State of Gaming Industry

In the rapidly growing sector of game design, the future of this sector has become

hard to predict. Mid-level and independent developers are rising in the industry.

Thanks to crowdfunding, technological advancements and marketing automation,

game development has become cost efficient in 2015, resulting in the development

and release of lots of high quality AAA game titles like Assassins Creed Origin,

Battlefield 1, Halo Guardians, Call of Duty Black Ops III, Ghost Recon Future

Soldier, GTA V etc.

Development of easy-to-use game engines like Unity 3D and professional game

engines like Unreal Engine and Cry Engine becoming free for everyone to use and

other development tools helped indie studios and smaller budget productions rise into

the industry. Crowd funding initiatives like Kickstarter, Indiegogo and Fig pushed

small studios to acquire enough funds to develop new games and digital distribution

platforms like Steam, Origins, GOG, UPlay gave them online platform to publish

their games for the gamers all over the world to download and play. This helped

studios to reach potential clients without publishers and build a dedicated gamer base

even before the game’s release. The industry has gone through a remarkable growth

that was worth of around $82 billion in 2017. [1]

In recent years, professional eSports competitions held by organizations like

Electronic Sports League (ESL) and Major League Gaming (MLG) has brought

gaming competition to a whole new level. ESL holds gaming competitions like

League of Legends World Championship, DOTA 2 Major League, Call of Duty

P a g e | 2

World League and 9 other official Pro Leagues for Overwatch, Counter-Strike: Global

Offensive, Rocket League, Gears of War, Guild Wars 2, Halo 5: Guardians,

Hearthstone, Mortal Kombat X, and Tom Clancy's Rainbow Six Siege throughout the

year. Top game publishers like Activision, Blizzard Entertainment, Electronic Arts

and Epic Games also started their own gaming tournament on games developed by

them to encourage gamers all over the world. Teams from all over the world competes

with other teams in these tournaments to win the game and the prize. These

competitions have become so popular in last few years that the Olympic Games are

considering to include several eSports titles in the upcoming Olympics. [2]

1.2 Video Game Types

There are lots of different genres or categories of video games. Most famous genres of

games are First Person Shooter (FPS), Third Person Shooter (TPS), Massively

Multiplayer Online (MMO), Role Playing Game (RPG), Real Time Strategy (RTS),

action, adventure, sports, simulation, horror, survival, etc. Each have their distinctive

characteristics and fair share of games and loyal players base. Some games can be of

two or three genres. The game we planned is a fantasy Role Playing Game (RPG) as

the story takes place in a fantasy world and the player plays the game following the

storyline. The concept of role playing games have been described in next section.

1.2.1 Role Playing Game

Role-playing games (RPG) are games where gamers assume the roles of game

characters and collaboratively create stories. Most of the RPG games have their own

world with different story and mechanics. RPG video games use similar settings,

terminology and game mechanics of tabletop RPGs like Dungeons & Dragons.

Players takes control of a game character, or sometimes several game avatars, called a

party or guild, and achieves victory by completing objectives, quests or finishing the

main storyline. Players roam around and explore the game worlds, while engaging in

combat with other players or enemies, solving puzzles and completing objectives and

quests. Characters grow in power and abilities, and characters customization done by

©Daffodil International University

P a g e | 3

the player is one of the key features of this genre. Player's strategic and tactical

knowledge and reflex is rarely challenged in RPGs, except action role-playing games.

The story of most RPGs puts the player in a mission of saving the world as the game

world are often set in a fantasy or fictional universe. because of this, the players have

powers and can do things that they cannot have or do in real life. Players can collect

items and currencies and trade them for equipment, levels and ranks which is done by

an inventory system. RPGs usually tries to offer dynamic and complex character

interaction than other video game genres, which typically involves developers focus

on scripted behavior and artificial intelligence of non-player characters (NPC). [3]

1.3 Report Overview

This section gives a complete overview of every chapters of this report to the reader.

Chapter 1: Introduction

This chapter discusses about PC gaming, video games and the industry that grew

around gamers for all these years. The first section focuses on the present state of the

gaming industry and how it has developed in last few years to the point that gaming

has become national sports in some countries. Second section discusses about

different types of video games, specifically Role-Playing Game (RPG), the category

our game falls in to. The next chapter focuses on games similar to ours and some of

their problems.

Chapter 2: Proposed Project and Software Requirements Specification of

“Ethoreal Shift”

This chapter discusses about our game project, the story, requirements and our

development tools and process. The first section focuses on our proposed project,

project background and design choices we made for our game. Next couple of

sections describes the scope of our game and work schedule of our game. The next

sections focus on specific requirements of our game along with user story, details

about game levels and our plans to deal with bugs and glitches of the game.

©Daffodil International University

P a g e | 4

Chapter 3: Design and Implementation of “Ethoreal Shift”

In this chapter, we have discussed about game design, UX design and backend

programming, game construction and platform integration. First and second section

focuses on our game design elements like characters, enemies, items and level and

environment design. In next sections, we have described UX design, backend

programming, system features of this game and their details along with game

construction, platform integration, key resources, required tools and the codes and

scripts we have written for this game.

Chapter 4: Coding and Other Technical Aspects

This chapter gets down to the technical aspects of our game. First section of this

chapter is about the scripts and the analysis of one of the scripts we have written for

our game. The next section describes about the functional and beta tests we performed

on our game and how we fixed the bugs and problems we faced.

Chapter 5: User Manual of “Ethoreal Shift”

This chapter describes about playing procedures and final look of our game. First

section is about how to play the game and what to do to complete objectives, quests

and the game. The next chapter consists of screenshots of our game to show the final

look of the game.

Chapter 6: Conclusion

This chapter concludes this report of our game “Ethoreal Shift”. In this chapter, we

have discussed about the obstacles we have faced while working on this project, our

achievements and our future development plan about this game. The future

development plan section contains our original plan of this game, that we couldn’t

complete because of the limited time we had.

At the end of this document, we have listed the references and codes we used in this

report and in our game respectively.

©Daffodil International University

P a g e | 5

1.4 Related Works

Role playing games (RPG) aren’t new and have a good history in gaming. Earliest

examples of popular RPG video games are Dragon Stomper (1982), Bokosuka Wars

(1983), Dragon Warrior (1986), Legend of Zelda, Dragon Slayer, Final Fantasy,

Phantasy Star, Diablo. Dungeon Master etc. Legends of Zelda, Final Fantasy,

Pokémon, Kingdom Hearts, Dragon Age, Fallout, Mass Effect, Elders Scrolls, World

of Warcraft and Warhammer are among the most famous and longest running RPG

franchises, each of them having their own loyal player base and get new game titles

frequently. [3] Kritika Online (2017), Sword Art Online Fatal Bullet (2018), Destiny

(2015), Fallout 4 (2015), Monster Hunter: World (2018), Nier: Automata (2017),

Pillars of Eternity (2017) are some of the best RPG titles that came out in recent

years. Most of them focuses on their unique open worlds and storylines. Some of the

recent RPGs are Massively Multiplayer Online (MMO) and have online battle arenas

that can be played with other players over local network or the internet.

These games are well-developed and fun to play. But most of them have paid items,

weapon, costumes and downloadable contents (DLC), which is actually not fair

considering the fact that the players already bought the game. There are some RPG

games like Kritika Online and Smite that are free-to-play. But they also have

exclusive paid contents, which is reasonable for free games like this, but not on other

games that needs to be bought in order to play. These game also have massive open

worlds to keep the players engaged in battles. But because of this, the size of game

files become huge. Size of high quality open world RPGs ranges from 6-7 GB to over

40-50 GB. For example, just the core files of Phantasy Star Online 2 is well over 50

GB, downloading this game from a digital distribution platform will take from 20-30

hours to over a week, depending on region and internet speed of the player. This kind

of problems discourages lots of gamers and stops them from playing those games.

RPG video games also tend to have pretty complex combat system, where the player

has to learn lots of new things to master the game completely. It sometimes takes

away the fun of the game. So we decided make our game simple in combat and light

weight in terms of file size. Details of our proposed project is described in the next

section.

©Daffodil International University

P a g e | 6

Chapter 2: Proposed Project and Software Requirements

Specification of “Ethoreal Shift”

This chapter covers in-depth details about our proposed project and the initial

requirements specification of our game “Ethoreal Shift”. The latter incorporates the

definition of this report with basic descriptions, specified requirements, and

evaluation of models. It also contains modification management of this requirement

specification in case of any modification is done.

2.1 Our Proposed Project: Ethoreal Shift

For our Final Project Phase-II course, we were instructed to choose a project like

animation, short film or game and complete them in this semester. Our team decided

to develop a game project to work better with graphics, scripting, 3-D modeling,

texturing, animation and game design. Because, in a game project we have the

opportunity to implement everything we learned in last four years from graphics

design, story and script writing, storyboarding, 3-D modeling, animation, texturing,

lighting and many other things in the environment of the game, the story, characters,

game play, the artworks and so on.

Our proposed project is a first person Role Playing game (RPG) named “Ethoreal

Shift” with different quests and levels to play. When we developed a concept and

finalized the story based on the concept, we realized that using elements of Role-

playing Game (RPG) genre would make the game as we want. So we developed the

game as a RPG that is played from first person (Player) perspective. The main

character of our game is a boy who gets teleported into the game he was playing on

his computer. He becomes the avatar of the main character in the game who is a

magician. He cannot return to his own world unless he finishes the game. The main

mission of the gamer is to use his powers to save the world. The game is set in a

fantasy world. There are several levels and in each level, the gamer must complete the

quests or objectives and collect the stones that he needs to use at the last level.

What sets our game apart from other role-playing games is our unique storyline,

combat system, game mechanics and the game world itself. Our game emphasizes on

©Daffodil International University

P a g e | 7

storytelling, action and adventures. Unlike other RPGs where the players fight with

enemies, fight with other players and complete linear quests, our game encourages the

player to explore the world of the game. In the first two levels, the player has to

explore the village and the city to complete his objectives. Even in the quests where

the player has to defeat enemies, he will have to explore the whole level to find all of

the enemies. We have designed a simple yet intuitive combat system for this game

that is easy to learn, but hard to master.

2.1.1 Level and Character Design Choices

As the game is set in a fantasy world, we designed the environments based on old

house and buildings to complement the story. Every aspect of the environment is

designed logically either to convey the world setting, or to serve a function of the

environment itself. We did reuse some 3D models from our previous work as they

fitted our needs, but we designed everything else ourselves. The characters of the

game were designed to match the environment and story of the game. Main player

character designed to look as a hero, so that when the gamers see the character, they

can connect to the main character easily and can feel that this character can save the

world. Character design of the enemies were based on the roles they served in the

story, but the design of the non-player characters was based on the environment and

the purpose they served in the background. Most of the NPCs in first two levels

(Sylvista and Daryas City) are adventurers, who came into the village and the city to

search for work or to meet others. We didn’t put any NPCs in the quest levels,

because those areas were exclusive to the role of the enemies, and the adventurer

NPCs didn’t have any reason to be in those areas. We have described more about

game design in the third chapter of this document further below.

©Daffodil International University

P a g e | 8

2.2 Scope of Our Game

This document discusses all necessary requirements of this project in details. The

basis of this groundwork is to provide an implicit image with both structured and

unstructured information of our project “Ethoreal Shift”. In this game, the player will

advance through levels, which require precise and strategic manipulation of the

player’s creative and logical thinking. The episodic structure of the game simplifies

the momentum of the game’s story. We exhibit the strategic implementation of script,

inputs and display (output) as we are focusing mainly on concept of the story, game

levels, objects in the game, character animation, graphics, scripts and game engine

features.

2.3 Project Scheduling

Start Date End Date Project States and Objectives

January 5 January 25 Project Proposal, meeting with supervisor

about our idea

January 26 February 10 Planning, elaborating game story, levels

planning and completing necessary

preparations

February 16 February 28 Choose tools, environment, finished 3-D

modeling and texturing of game objects

March 1 March 20 Start level designing and model

implementation, rethinking game plot

March 21 April 8 Start programming, developing game logic,

testing and enhancement

April 9 April 14 Project report writing and conducting tests

on the constructed levels

April 16 Displaying project progress at our Predefense

April 17 May 26 Perform fine-tuning on the game logics and

©Daffodil International University

P a g e | 9

fix bugs

May 28 June 19 Conducting final tests on the game, fixing

bugs and compile executable files

July 5 Reviewing project report from our project supervisor

July 6 July 20 Perform corrections on the report

July 26 Project final showcase and submission

2.4 Software Requirement Specification of “Ethoreal Shift”

In this section, the specification of this documentation is described. It describes the

rules of the document, document purview and also presents a suggestion for the

readers of the document. [4]

2.4.1 Purpose of this Chapter

This Software Requirements Specification (SRS) part is meant to provide a

comprehensive overview of our Project “Ethoreal Shift” incorporating the action

flow, the story and game user interface. The SRS document describes all aspects of

the project that shows the references, manners and relevance of their execution.

2.4.2 Intended Audience and Reading Suggestions

The SRS document provides us a method to establish the game’s commitment to our

original vision. For a summery of the report and the project, please refer to Overall

Description. For a detailed documentation of the game-play elements and their

interaction with the player, refer to System Features. Readers curious about the game-

play user interface and navigation between the front-end options should read External

Interface Requirements. Specialized guidelines to which the developer team will work

on the project are described in details in Other Nonfunctional Requirements. The

design and development timeline will be preserved in the Key Milestones. [5]

©Daffodil International University

P a g e | 10

2.4.3 Scope of this Document

This Software Requirements Specification (SRS) explains the functional and

nonfunctional prerequisites for the project. The intension of this section is to deliver a

close enough image for both structured and unstructured information of this game

project. The concept of “Ethoreal Shift” was perceived by both of the members of our

team, as having a predicted development time lengthy than the duration of this

semester. Our team Desires to work on the project until it’s complete. We will

continue to develop the game until we find it more than competent for open-source

distribution.

2.5 General Description

This segment contains the viewpoint of our project and the structural framework it

demands. It defines the QFD (Quality Function Deployment) of this game and also

the story of it.

2.5.1 Product and Business Perspective of the Game

Design and development of a game like this from scratch is an outstanding challenge

for any game studio. It demands substantial amount of investments in terms of cost

and effort and also requires the client’s participation, knowledge and understanding

about the expected marketplace (example: Steam, Origin). This report describes

overall product perspective.

©Daffodil International University

P a g e | 11

2.5.2 System Environment

Player can interact and communicate with the system by giving input to the system.

System commands those inputs to the related script, if any change happens like the

value of certain variable is changed, the script sends required instructions to render

the objects to display (Player changing his position).

2.5.3 Quality Function Deployment of “Ethoreal Shift”

Quality Function Deployment is a procedure that expresses the requirements of the

client into structured requirements for software or game. It focuses on maximizing

client satisfaction throughout the game development process. The following

requirements concerning our project have been identified by a QFD.

 General Requirements.

 Expected Requirements.

Fig 2.5.1: Input Graph

©Daffodil International University

P a g e | 12

General Requirements

General requirements include goals and objectives which have been specified in the

meeting with the relevant peoples concerning the project. general requirements of our

project are: -

1. Efficient, user friendly and productive system.

2. Least amount of effort in development and future support.

3. Achievability of desired requirements within targeted PC configuration.

4. Easy to play.

5. Developed with professional approach.

6. Well-structured coding, creative and professional thinking.

Expected Requirements

These requirements are inherent to the system and can be so rudimentary that the

gamer and relevant people does not specify them comprehensively. Unable to

implement them might become a cause of disappointment.

1. Develop the whole game as planned in the scheduled time.

2. Minimum hardware prerequisites, which is suitable for the game.

3. Design and develop the whole game in a well-organized style.

©Daffodil International University

P a g e | 13

2.5.4 User Story

As we have specified above, “Ethoreal Shift” is a first person Role Playing game

(RPG). We desire to develop it as a cross-platform game which would be supported

by PC, console, android phone, IOS and also other available platforms. But as we

have very limited time to complete the game, it has only been developed for PC

(Microsoft Windows). So the gamer can use any windows pc to run the game. After

running the game, the UX view of the game will appear on the screen. Then the gamer

can select “Start Game” from the “Main Menu” and start playing the game. After

starting the game, a cut scene would be shown to the player to give him an idea about

the story. When the cut scene ends, player will be given a briefing about the backstory

and his primary mission on the screen. He may also interact with “Pause Menu” by

pressing “Escape”. If he loses he can replay the level as the level will automatically

restart after the player’s death. Or he can exit game by pressing “Quit” in the “Pause

Menu”.

The story behind the game is about a boy who gets teleported into a game he was

playing in his pc. He becomes the avatar of the main character of the game, a

magician who is the descendent of another great magician who saved the world from

destruction long time ago. The objective of the gamer is to collect three elemental

stones by completing three different quests, which he will use at the last level to save

the planet from being destroyed by the rays of Super Red Moon. As mentioned

earlier, the gamer will find tips in different steps which will help him to go to the

finishing stage. In first level, the player has to search for information about his

mission in Sylvista village. He finds a merchant of magic items in the village. The

merchant tells him to find scrolls which are spread around the village. There is an

Inventory System that stores everything the player collects. After collecting all the

scrolls in the village, the player has to use those scrolls to teleport to Daryas city.

In that city, player needs to find more scrolls hidden around the city to find the

location of the stones. Then he goes to the jungle to collect the Dryad stone. The

player has to defeat every wood cutter in the forest to get the stone. The player uses

fire to defeat his enemies. He has two attacks, first one is fireball that player throws at

his enemies. Second one is a charged attack, a burst of flame, where he keeps

©Daffodil International University

P a g e | 14

throwing flames at his enemies. But he can use that charged attack after an interval as

he needs to regain his magical energy. Then, he returns to the city with the stone. He

has to go to Sylvista village again, to the merchant in order to obtain a magic artifact

that will allow him to use explosion spell. Then he goes to the machine site with the

artifact to get the Zephyrus stone, where a machine is polluting the air. The area is

guarded by Paladin knights equipped with sword and shield. The player has to defeat

every knight in the area and cast an explosion spell at the building that is producing

smoke using the machine.

After collecting the Zephyrus stone, he goes to his last quest to get the last stone,

Darya. Last level is a factory site with a forest at the front and is guarded by both

woodcutters and Paladin knights. After defeating all the enemies, the player casts the

explosion spell on the factory and the Darya stone appears before him. After

collecting all 3 stones, he goes to a cave, a sacred waterfall where he can use the

power of the stones to save the world. He puts the three stones on a magic table with

ancient glyphs, the table unleashes the power of the stones creating a barrier around

the planet to protect it from the Super Blood Moon and the player is teleported back to

his own world in his room.

©Daffodil International University

P a g e | 15

2.5.5 Game Levels

Levels Description

Level 1 - Sylvista Village

This is the first level of the game. The player wakes up

in the middle of a small forest in a village named

Sylvista. He explores the village to find a magic shop,

whose owner tells the player to find scrolls hidden

throughout the village.

Level 2 - Daryas City
The player gets teleported to Daryas city. He again has

to explore the city and collect scrolls hidden in the city.

Level 3 - The Forest

He goes to the forest to defeat the woodcutters in order

to save the forest. After defeating all the enemies, he

gets the Dryad stone.

Level 4 - Sylvista Village
He returns to Sylvista to get a magic artifact, which will

allow him to use explosion spell.

Level 5 - Machine Site

The player fights Paladin Knights who are guarding a

machine that is polluting the air. After defeating all

knights, he casts explosion spell on the building the

machine is in and destroys it. Then he gets the Zephyrus

stone.

Level 6 - Factory Site

The player fights the woodcutters and Paladin Knights in

the area to destroy a factory that is polluting water. After

defeating all enemies, he casts explosion spell on the

factory building and destroys it. Then he gets the Daryas

stone.

Level 7 - Sacred Waterfall

The player goes at the Sacred Waterfall, puts the three

stones on an ancient magical table that unleashes the

powers of the stone and saves the world. Then he returns

home.

©Daffodil International University

P a g e | 16

2.6 Specific Requirements

This segment discusses the project external requirements of the game and also

signifies the user attributes for this project.

2.6.1 External Interface Requirements of the Game

2.6.1.1 User Interfaces

Every game must have a main menu, so the gamers can easily start the game. The

menu is an important element for creating the SRS document. In this SRS document

section, we have used snapshots of the menu in the user manual subsection. Those

snapshots are established on the menu of this game.

2.6.1.2 Hardware Interfaces

“Ethoreal Shift” is a pc game designed specifically for the Microsoft Windows and

can be played on all mid to high-end desktops and laptops. Game data is stored locally

on the game engine elements. Windows is graphically and universally adaptable with

both 2D and 3D graphics library based on OpenGL ES 2.0, 3.0 and different DirectX

specifications as well as hardware configuration, pixel format conversion, accelerated

3D graphics and scaling.

©Daffodil International University

P a g e | 17

2.6.1.3 Software Interface

“Ethoreal Shift” has been designed and developed using a series of 3D modelling,

game design and development software.

Software and tools used in this project:

 Unity3D 5.6 and 2018.1 (Game Engine)

 Autodesk Maya 2016 (3D modeling and animation)

 Adobe Fuse CC Beta (Character Generation)

 Adobe Photoshop CC 2014 (Creating Texture)

 Substance Painter 2 (Model Texturing)

 Substance Bitmap2Material (Image to Material Map Conversion)

 Microsoft Visual Studio 2017 Community Edition (Programming)

 Microsoft Visual Studio Code (Programming)

 Adobe After Effects (Editing Cut scene)

2.6.2 User Characteristics for the Game

The game can be played by only one player at a time and the user can interact with the

game in different ways. The player is the one who can communicate with the system

by playing the game. And the player can be any individual. The initial requirement is,

that the player should read the playing mechanism provided by the developers (us).

©Daffodil International University

P a g e | 18

2.7 Requirement Change Management of Our System

We hope to deliver a complete and fully working game that works according to the

guidelines stated in the SRS document. But, as the game will be released for multiple

Windows versions (i.e. the different desktops and laptops running different Windows

version), updates will likely be necessary to address issues like fixing bugs that made

into final version of the game, compatibility patches and expansions of the content. If

the gamers experience any issues, bugs or want to give feedback, they can

communicate with the developers through our official support email address which

will be specified later. For managing the changes, we are releasing versions of this

document. This one is version 1.1.

2.8 Bugs and Glitches

The players would be able to communicate with us, the developers through the

support email. This is where they would notify us of any bugs or glitches they have

detected and if they have any feeling that the game is not working properly. Issues of

gamers or comments would also be submitted by support email. We will monitor this

email continuously in order to answer all questions and fix any problems that have

surfaced.

2.9 Patches

As the recent Windows 10 is frequently updated and the vast amount of combination

of pc configuration exists, the game would also need to be updated frequently. We

would constantly be making changes in order to fix any compatibility issues that may

arise. These modifications, bug or glitches fixes will be updated by these patches.

©Daffodil International University

P a g e | 19

Chapter 3: Design and Implementation of “Ethoreal Shift”

This chapter discusses about the design phases of this project, the system

characteristics and also the implementation of system features.

3.1 Game Design

For this game, we had to design lots of characters for the Player, enemies and town-

folks. We also design several levels and environments where the game’s story will

take place. [6]

3.1.1 Characters

3.1.1.1 The Player

In first person view, this capsule works as the player

body. Since the player won’t be visible, using this

capsule as player helps to take some load off the

computer.

 This is the Player character model, only used in cut-

scenes of the game.

©Daffodil International University

P a g e | 20

3.1.1.2 Enemies

 This is the wood cutter, first enemy in the game. They

are seen in every level working or talking, but the

player only fights with them in Quest 1 and 3. They

stays in idle when player is not around. But they keep

moving toward the player when the player is in range

and when they get close to the player, they start

attacking with the axe.

This is the Paladin Knight, second enemy in the game

and more powerful than the woodcutter. They are also

seen in every level talking or guarding the Citadel gate,

but player only fights with them in Quest 2 and 3. As

they have armor and shield, they have more health than

the woodcutter.

3.1.1.3 Non-Player Characters (NPC)

These are non-player characters or local peoples who are either talking to others or

walking around. They are created to liven up the environment.

Archer and adventurer who is seen talking with other

peoples or walking around in Sylvista and Daryas city.

©Daffodil International University

P a g e | 21

Another archer and adventurer who is seen talking with

other peoples or walking around in Sylvista and Daryas

city.

Local girl of Asian ancestry seen walking around or

talking with other peoples in Sylvista and Daryas city.

Local women and also a merchant who is seen talking

with other peoples, walking around or running magic

shop in Sylvista and Daryas city.

©Daffodil International University

P a g e | 22

Guardian knight of the great king who is seen talking

with other peoples or walking around in Sylvista and

Daryas city. (We wanted to use him as an enemy, but he

seemed more like a noble knight. So we kept him as a

local)

Just an old man, seen talking with other peoples or

walking around in Sylvista and Daryas city.

3.1.1.4 Items

Magic health potion to heal the player when injured.

©Daffodil International University

P a g e | 23

Magic scroll that the player collects in Sylvista and

Daryas city.

3.1.1.5 Elemental Stones

The Dryad stone representing forest goddess in greek

mythology. It is given to player in Quest 1 after the

player defeats every woodcutter in the forest.

The Zephyrus stone representing the god of west wind

in greek mythology. It is given to player in Quest 2

when he defeats all paladin knights and destroys the

machine room.

The Darya stone representing water in greek. It is given

to the player in Quest 3 when he defeats all wood

cutters and paladin knights and destroys the building

polluting the water.

©Daffodil International University

P a g e | 24

3.2 Level and Environment Design

3.2.1 Sylvista Village

Fig 3.2.3: Magic Item Shop

Fig 3.2.2: Teleportation Point

Fig 3.2.1: Starting Point

©Daffodil International University

P a g e | 25

3.2.2 Daryas City

Fig 3.2.4: Daryas City Port

Fig 3.2.5: Scrolls

Fig 3.2.6: Adventurers Wandering in the City

©Daffodil International University

P a g e | 26

3.2.3 Quest 1 – The Jungle

Fig 3.2.7: The Jungle

Fig 3.2.8: Woodcutters Standing Idle

Fig 3.2.9: Enemies in the Jungle

©Daffodil International University

P a g e | 27

3.2.4 Quest 1 – The Forest

Fig 3.2.10: The Forest Port

Fig 3.2.11: Woodcutter’s Tents

Fig 3.2.12: The Forest

©Daffodil International University

P a g e | 28

3.2.5 Quest 2 - The Machine Site

Fig 3.2.13: Gate of the Machine Site

Fig 3.2.14: The Machine Site

Fig 3.2.15: Paladin Knights in the area

©Daffodil International University

P a g e | 29

3.2.6 Quest 3 – The Factory Site

Fig 3.2.16: Woodcutters Standing around

Fig 3.2.17: Woodcutter’s Tents

Fig 3.2.18: Paladin Knights Guarding the Factory

©Daffodil International University

P a g e | 30

3.2.7 The Sacred Waterfall

Fig 3.2.19: The Cave of Sacred Waterfall

Fig 3.2.20: Super Red Moon

Fig 3.2.21: The Sacred Waterfall

©Daffodil International University

P a g e | 31

3.3 Project Design Terms

For every project, two primary terms of design are very important. They are:

• User Experience (UX)

• Backend Programming

3.3.1 User Experience (UX)

In order to avoid needless features, make the design report simple and to make the

gamer’s interaction with the game easy and efficient, UX design is must. User

experience design (UXD or UED) is any impression of an individual's experience

with a specified system, along with the interface, design, graphics and manual

interaction. User Experience Design completely incorporates conventional Human-

Computer Interaction (HCI) concepts and design, and spreads it through evaluating all

attributes of a product or service as comprehended by users. UX represents primarily

suitable approach to feasibility, functionality and HCI. UX describes user experience

as “an individual’s perceptions and acknowledges that outcome from the use or

predicted use of a system, product or service”.

3.3.2 Backend Programming

The "back end" is the code or script sustaining that front end. In short, front end of a

software or game is what we see (i.e. the user interface) and back end is the engine

that we do not see. For effective execution and to expand user acceptance, both of

them are very important in game industry.

©Daffodil International University

P a g e | 32

3.4 System Features of Our Game

 Title Screen

 Main Menu

 Pause Menu

 Health Meter

 Magical Power Meter

 Attack Interval Timer

 Inventory System

 Easy Control

 Immersive Action

 Quests

 Dialogue System

 Exit Point

©Daffodil International University

P a g e | 33

3.4.1 Title Screen

3.4.1.1 Description and Priority

The title screen is the screen the player will see every time upon starting the game.

Through this interface, the player can choose to start the game or exit the game. Since

the title screen is the “hub” for all activities in the project, it must be included.

3.4.1.2 Response Sequences

Step 1: The player launches the game from their device.

Step 2: The start screen loads and appears, prompting the player with two buttons:

“Play Game” and “Exit”.

Step 3: The player presses one of the buttons, triggering its respective function.

3.4.1.3 Functional Requirements

REQ-1: The title screen must load and appear every time the game is launched.

REQ-2: If the player quits the game during any stage of a level, they must be returned

to the title screen.

REQ-3: If the player presses the exit button, the game will end and return the player

to the computer’s regular interface.

REQ-4: If the player completes the game, the game will end and return the player to

the title screen.

©Daffodil International University

P a g e | 34

3.4.2 Pause Menu

3.4.2.1 Description and Priority

The player should be able to pause anytime during gameplay, and this screen fulfills

that requirement. The pause menu also allows the player to navigate between

gameplay and title screens. Player can also change level of music and sound effects in

this menu.

3.4.2.2 Response Sequences

Step 1: The player presses the Escape button on the keyboard.

Step 2: The level pauses, drawing up the pause menu which prompts the player with

two options: “Resume Game” and “Exit Game.”

Step 3: The player presses one of the buttons, triggering its respective function.

3.4.2.3 Functional Requirements

REQ-1: The “Resume Game” option must continue the game without any change to

the character’s vector or the state of the level from the moment of the pause action.

REQ-2: The “Quit Game” option must close the game and return to the desktop

screen.

©Daffodil International University

P a g e | 35

3.4.3 Dialogue

3.4.3.1 Descriptions and Priority

Dialogue is a method by which the player will be briefed about his next missions and

objectives. The player is guided to his next objectives using dialogue with the silent

protagonist, providing context and narrative. While this feature is secondary in

importance to the primary game mechanics, it is an important aspect of the game’s

atmosphere and it helps to heighten the player’s connection to the experience.

3.4.3.2 Response Sequences

Step 1: The player goes to the Merchants office and presses the specified button.

Step 2: Dialogue is triggered and a text box pops up.

Step 3: To dismiss text boxes or continue reading multiple-page text boxes, the player

clicks on Continue button.

3.4.3.3 Functional Requirements

REQ-1: Dialogue should not pause the game to prevent player disorientation.

REQ-2: Text boxes should be brief and placed away from UI components so as not to

interfere with game-play.

REQ-3: The text must be readable from any screen.

©Daffodil International University

P a g e | 36

3.4.4 Exit Point

3.4.4.1 Descriptions and Priority

Exit point is the finishing place of the levels. The player needs to complete the

objectives and mission given to him to proceed to the next level or quest.

3.4.4.2 Response Sequences

Step 1: The player completes the objectives or mission.

Step 2: Player goes to the exit point.

Step 3: The Player is teleported to the next level.

3.4.4.3 Functional Requirements

REQ-1: Objectives must be completed to finish the level.

REQ-2: Exit point must be in reach of the player.

©Daffodil International University

P a g e | 37

3.5 Assumptions and Dependencies

The target platform of our game project will be the Microsoft Windows devices.

However, Unity will be responsible for both the construction of the game and its

integration within the Windows framework.

3.5.1 Construction of the Game

Unity includes many built-in components which will expedite the process of game

development immensely. These include:

 Physics Engine

 Collision Detection and Handling

 Input Recognition

 Object Creation and Transform Manipulation (position and rotation of game

objects)

 Scene Integration (transition of one level to the next)

 Model Attachment (representing game objects with 3D models from external

programs)

3.5.2 Integration with Windows

Unity's build settings simplify the process of compiling our game for the Windows

platform. After completing the project, or during any intermediary step for testing, we

can select Windows from the list of options, build the project, and play it on the same

pc.

©Daffodil International University

P a g e | 38

3.6 Key Resource Requirements of the Project

Major Project

activities

Skill/Expertise

Required

Works by

Teammates

External

Resources
Issues/Constraints

Level Design

Ability to

translate aspects

of the story into

playable levels

Both members

made the

decision about

game levels

together

Ideas from our

existing games

(Ex. Miami’s

Adventure)

No Issues

Physics Engine

Knowledge of

functions

available

in Unity and the

ability to change

them as needed

Both members

worked on

Unity game

engine

Unity game

engine

Ability to angle

interactive portions

of levels

3D Modeling

Knowledge of

3D modeling

software

Both members

created

necessary 3D

models

3D model design

using Autodesk

Maya

Difficulties in UV

mapping because

of complex 3D

models

Texturing of

3D Models

Knowledge of

texturing

software

We both did

the texturing of

3D models

Adobe Photoshop

Substance Painter

Substance

Bitmap2Material

Frequent software

crash because of

low-end computers

Music

Implementation

Ability to

incorporate

sound clips

smoothly into

the game

-
Sound clips from

the Internet
-

©Daffodil International University

P a g e | 39

Level

Implementation

Familiarity with

scripting

language of

game engine

Both members

have some

knowledge

about scripting

language

Scripts from our

previous games

Level size

dependent on

hardware

configuration

Documentation

Knowledge

about Formal

Report Writing

Both members

worked on the

Report

Idea from

Existing Reports

(Ex. University

Report

Guideline)

Game Reports are

different from

conventional ones

©Daffodil International University

P a g e | 40

3.7 Implementation Tools Required

Software Name
Developer

Company
Usage Work Area

Unity3D 5.6

& 2018.1

Unity

Technologies
Game Engine Game Design

Autodesk Maya

2016
Autodesk

3D Modeling and

Animation

Creating 3D models

and game objects

Adobe Fuse CC

Adobe

Incorporated

Character

Generation

Creating characters for

the game

Adobe

Photoshop CC

2014

Image Editing
Creating textures for

3D models

Adobe After

Effects CC 2014

Creating & Editing

Videos

Editing and applying

necessary effects to cut

scenes

Substance

Painter 2
Substance

Texturing &

Shading

Texturing of the 3D

models

Substance

Bitmap2Material

Bitmap to Material

Conversion

Converting images to

textures for 3D models

Microsoft Visual

Studio 2017

Community

Edition Microsoft Programming
Coding scripts for the

game

Microsoft Visual

Studio Code

©Daffodil International University

P a g e | 41

3.8 Implemented Codes & Scripts

We used C# as our programming language for the game, as it is easy to create, modify

and implement. Unlike other games, we haven’t implemented any scoring system as

score doesn’t have any significance in this game. We heavily emphasized on item

collection and mission objectives. We reused codes from our previous games and

projects as we saw fit.

We did face lots of problems while writing codes for our games, most of the time the

codes didn’t work as we expected and lots of errors showed up in the console

window. We fixed those problems by either developing workarounds and using

different code structures. We took help from several game developments related

forums and websites to solve some problems that we weren’t able to fix by ourselves.

Because of this, programming took much more time than we expected.

The codes and scripts we wrote for this game have been described in the next chapter.

©Daffodil International University

P a g e | 42

Chapter 4: Coding and Other Technical Aspects

This chapter discusses about the coding and scripting we have done for this game and

refers to some of the test cases we conducted on the game to check if the game works

as intended in various stages and situations of development.

As we have stated before, we used C# as our programming language for this project

because it is easy to create, modify and implement. As Unity uses Mono engine for

scripting and execution, writing codes for Unity in C# has become more efficient. We

wrote all of the codes for this project ourselves and used internet to search for

solutions of the problems we faced. We also used relevant codes from our own

previous projects when we felt necessary.

4.1 Scripts Written for This Project

Name of the scripts we wrote and their purpose are described below:

 First Person Controller: This script handles the movement, health, damage

and other necessary parameters for the player. It is a component of the FPS

Player prefab.

 Mouse Look: This script is used to handle the movement of the first person

camera with the mouse. This script is implemented in the First Person

Controller script.

 Player Magic: This script is used to control player attack types, attack

animations, damage and range. This script is a component of the FPS Player

prefab.

 Target (Enemy): This script handles enemy movements, animation, attacks

and damage. This script is applied to both of the enemy types.

 Items: This script is the base class script for all of the items the player can

interact with and their inventory behavior. It isn’t applied to any objects, as it

is intended to be accessed by other scripts.

 Items Pickup: This script handles the player’s interaction with the in-game

items and their behaviors. It uses Items script as a base class for the items and

is applied to every in-game items.

©Daffodil International University

P a g e | 43

 Consumable: This script controls the behavior and parameter of items that

can be consumed by the player to gain health or magic. It hasn’t been

implemented yet.

 Interactable: This is a base script for interactable objects. It controls the

interaction behaviors and interaction range of the items. It isn’t implemented

to any object, as it is intended to be accessed by other scripts.

 Inventory: This is the base script for the inventory system. This script

controls the inventory system, its capacity, behavior, item storage and item

removal parameters.

 Inventory Slot: This script handles the behaviors and parameters of each

inventory slot and is applied to Inventory Slot prefab.

 Inventory UI: This script handles the user interface and player interaction

with the inventory. It is implemented in Game Manager prefab.

 Dialogue: This script is the base class for dialogue system. It controls the

dialogue sentences, text behaviors and the number of sentences to be shown.

 Dialogue Manager: This script uses Dialogue script as base script and

handles the dialogue box animation, text animation and text display behaviors.

 Dialogue Trigger: This script triggers the dialogue box to open when the

player is in range and certain button is pressed.

 Quest Marker: This script handles the behavior, movement and animation of

quest marker prefabs.

 Teleportation: This script makes the player teleport to other levels by

changing to specified levels when the objectives have been completed by the

player. This script has been used in every level to advance to the next level.

©Daffodil International University

P a g e | 44

4.1.1 Code Analysis

We have written lots of scripts and codes for this project. All of the codes of this

game is listed at the end of this document. To make the codes easy to understand for

the reader, we are analyzing and describing the codes of “Player Magic” script

below:

Library Functions:

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

This is the starting part of the script, the library functions and namespaces that

will be used in this script have been defined here.

Functions:

void Start ()

Return Type: No Return Type

Data Type: Void

Description: Runs the codes in it at the start of the game.

void Update ()

Return Type: No Return Type

Data Type: Void

Description: Runs the codes in it at every frame.

void PrimaryAttack ()

Return Type: No Return Type

Data Type: Void

Description: Executes the codes in it when called.

void ChargedAttack ()

Return Type: No Return Type

Data Type: Void

Description: Executes the codes in it when called.

©Daffodil International University

P a g e | 45

public class PlayerMagic : MonoBehaviour

Declares the name (In this script, Player Magic) and type (MonoBehaviour) of

the public class.

Variables:

public float pDamage = 10f;

Public variable of float data type that contains the floating point value of the

primary attack damage of the player.

public float cDamage = 30f;

Public variable of float data type that contains the floating point value of the

charged attack damage of the player.

public float range = 50f;

Float variable containing the value of the player’s attack range.

public ParticleSystem pAttack;

Variable defining the particle system used for the effect of primary attack.

public ParticleSystem cAttack;

Variable defining the particle system used for the effect of charged attack.

public float pAttackInterval = 1f;

Float variable containing the value of primary attack interval time.

public float pTimer = 3f;

Variable containing the value of primary attack time.

public float cAttackInterval = 10f;

Float variable that contains the value of charged attack interval time.

public float cTimer = 10f;

Variable containing the value of charged attack time.

float pEffectDisplayTime = 1.10f;

Variable that defines how long the primary attack effect will be displayed.

float cEffectDisplayTime = 2.80f;

Variable defining how long the charged attack effect will be displayed.

©Daffodil International University

P a g e | 46

Animator anim;

Variable referring to animator component of player.

Target target;

Variable referring to the static variables and public functions of the Target

script.

public Image manaBar;

Image variable referring to the image of mana bar.

Camera cam;

Variable that refers to the scene camera.

AudioSource aSource;

Variable that refers to the Audio Source component of the player.

public AudioClip PAttackSound;

Contains the primary attack audio clip.

public AudioClip CAttackSound;

Variable containing the charged attack audio clip.

Codes:

anim = GetComponent<Animator> ();

Referring to the Animator component of the player.

aSource = GetComponent<AudioSource> ();

Refers to the Audio Source component of the player.

cam = Camera.main;

Refers to the camera that is tagged as the Main Camera in the scene.

pTimer += Time.deltaTime

Updates the primary attack timer according to real world time.

cTimer += Time.deltaTime;

Updates the charged attack timer according to real world time.

©Daffodil International University

P a g e | 47

manaBar.fillAmount = cTimer / 10f;

Fills the mana bar image based on the value of charged attack timer. As the fill

amount has the floating point value of 1, but the charged attack timer has the

value of 10, the charged attack timer is divided by 10 to match this value with the

fill amount value.

if (Input.GetButtonDown("Fire1") && pTimer >= pAttackInterval &&

Time.timeScale != 0)

Conditional statement that checks if certain conditions are met in order to run

the codes in the loop.

PrimaryAttack ();

Calls the Primary Attack function to run the codes in that function.

 if (Input.GetButtonDown("Fire2") && cTimer >= cAttackInterval &&

Time.timeScale != 0)

Conditional statement checking if certain conditions are met in order to run the

codes in the loop.

ChargedAttack ();

Calls the Primary Attack function to run the codes in that function.

pTimer = 0f;

Resets primary attack timer to 0.

pAttack.Simulate(1);

Starts the particle effect.

pAttack.Play();

Plays the flame effect of primary attack.

aSource.PlayOneShot (PAttackSound);

Plays the sound effect of primary attack

RaycastHit hit;

Creates a ray cast hit variable named hit to store Raycast hit point.

if (Physics.Raycast(cam.transform.position, cam.transform.forward, out hit, range))

©Daffodil International University

P a g e | 48

Defines the ray cast start position, ray direction and range of the ray.

target = hit.transform.GetComponent<Target> ();

Refers to the Target script component of the enemy that got hit by ray.

if (target != null)

Checks if the ray hit an enemy or not.

target.TakeDamage(pDamage);

Applies damage to the enemy.

cTimer = 0f;

This code resets Charged Attack timer to 0.

cAttack.Simulate(1);

Starts the particle effect.

cAttack.Play();

Plays the flame effect of charged attack.

aSource.PlayOneShot(CAttackSound);

Plays the sound effect of charged attack

©Daffodil International University

P a g e | 49

4.2 Functional Tests

We have done lots of tests to make sure that everything in the game is working as we

wanted. Some details of tests for different stages and situations are given below. [5]

4.2.1 Test Case 1

Test Case : Player movement animation.

Procedure : Import the Player character model with all

animation files, create animator, place all

animations in it, connect all states, code all

animations in C# script, put the character in a

scene and play the scene.

Expected Outcome : Animations will work properly.

Actual Outcome : Animations not working in some movements.

Found Reason : Animations not assigned properly in the script.

Assigned all animations properly.

Further Test : Run the scene again.

Expected Outcome : Animation should work properly now.

Actual Outcome : All animations are working properly.

4.2.2 Test Case 2

Test Case : Player movement and physics.

Procedure : Add codes for movement of the player in the

script. Play the scene.

Expected Outcome : Player moving properly as expected.

Actual Outcome : Player moves like sliding on the ground in some

movements.

Found Reason : Player speed is too high. Experimented with the

values to find correct speed value.

Further Test : Run the scene again.

Expected Outcome : Player should move properly now.

Actual Outcome : Player movement seems smooth and proper.

©Daffodil International University

P a g e | 50

4.2.3 Test Case 3

Test Case : Player interaction with surrounding

environment.

Procedure : Add collider to the player and all other objects,

add scripts of interaction in objects that the

player can interact with. Play the scene.

Expected Outcome : Player interacting with everything properly.

Actual Outcome : Player goes through some objects.

Found Reason : No colliders added to those objects. Added

proper colliders to objects.

Further Test : Run the scene again.

Expected Outcome : Player should interact with all objects now.

Actual Outcome : Player interaction with objects is working.

4.2.4 Test Case 4

Test Case : Player attacks

Procedure : Create two fire attacks using particles in Unity,

add necessary scripts to Player, play the scene.

Expected Outcome : particle attacks playing properly.

Actual Outcome : Particles move faster than player’s attack

animations.

Found Reason : Particle delay time is faster than player

animation speed. Matched the delay with player

animation.

Further Test : Run the scene again.

Expected Outcome : Particle emission time should match player

attack animation.

Actual Outcome : Particle emits according to attack animation.

©Daffodil International University

P a g e | 51

4.2.5 Test Case 5

Test Case : Enemy movement and damage.

Procedure : Add animations in enemy models, add necessary

scripts, assign player as the target and damage

amount to the player, play the scene.

Expected Outcome : Enemy will move toward player when in range.

Actual Outcome : Enemy falling through the ground.

Found Reason : Enemy collider is not assigned. Assigned and

modified proper collider to enemy models.

Further Test : Run the scene again.

Expected Outcome : Enemy should stay on the ground.

Actual Outcome : Enemy stays on the ground and moves toward

the player.

4.2.6 Test Case 6

Test Case : Level switching after player triggers certain

colliders.

Procedure : Create teleportation colliders in specified places,

add necessary scripts and play the scene.

Expected Outcome : Player will teleport to assigned level.

Actual Outcome : Player is teleporting to the assigned level.

4.2.7 Test Case 7

Test Case : Quest completing mechanisms.

Procedure : Implement quest completing mechanics to the

quest levels, play the scene.

Expected Outcome : Quest should be completed after fulfilling

necessary requirements.

Actual Outcome : Quests are completing after fulfilling

given requirements.

©Daffodil International University

P a g e | 52

4.2.8 Test Case 8

Test Case : Dialogue box trigger.

Procedure : Add dialogue box in the scene, create trigger

area for the box, add necessary scripts and play

the scene.

Expected Outcome : Dialogue box appears correctly.

Actual Outcome : Dialogue box displaying correcting.

4.2.9 Test Case 9

Test Case : Player health and magic bar UI.

Procedure : Create player health and magic bar UI, add

necessary scripts and play the scene.

Expected Outcome : Health and magic amount showing correctly.

Actual Outcome : Magic bar isn’t working properly.

Found Reason : Errors in the UI script. Fixed the error.

Further Test : Run the scene again.

Expected Outcome : Magic bar should be displayed properly now.

Actual Outcome : Magic bar is displaying properly.

4.3 Post-Build Beta Tests

4.3.1 Beta Test Bug 1

Expected Outcome : Game will run properly without bugs.

Actual Outcome : Player movement doesn’t match the

animation.

Found Reason : Player speed is lower than animation speed.

 Re-examined the speed values.

Further Test : Re-build the game and run again.

Expected Outcome : Player should move properly now.

Actual Outcome : Player is moving properly.

©Daffodil International University

P a g e | 53

4.3.2 Beta Test Bug 2

Expected Outcome : Game will run properly without bugs.

Actual Outcome : Dialogue box doesn’t close at magic shop.

Found Reason : Dialogue box closing animation isn’t assigned in

the script. Assigned the animation.

Further Test : Re-build the game and run again.

Expected Outcome : Dialogue box should close now.

Actual Outcome : Dialogue box is closing properly.

4.3.3 Beta Test Bug 3

Expected Outcome : Game will run properly without bugs.

Actual Outcome : Enemies keep randomly bouncing when moving.

Found Reason : Enemy physics isn’t defined properly in the

script. Re-scripted enemy physics.

Further Test : Re-build the game and run again.

Expected Outcome : Enemy should move properly now.

Actual Outcome : Enemy is moving properly.

4.3.4 Beta Test Bug 4

Expected Outcome : Game will run properly without bugs.

Actual Outcome : Enemies keep randomly bouncing when moving.

Found Reason : Enemy physics isn’t defined properly in the

script. Re-scripted enemy physics.

Further Test : Re-build the game and run again.

Expected Outcome : Enemy should move properly now.

Actual Outcome : Enemy is moving properly.

©Daffodil International University

P a g e | 54

4.3.5 Beta Test Bug 5

Expected Outcome : Game will run properly without bugs.

Actual Outcome : Camera isn’t moving as expected.

Found Reason : The assigned camera isn’t well-suited for third-

person view. Used Unity FreeLookRig camera.

Further Test : Re-build the game and run again.

Expected Outcome : Camera should move properly now.

Actual Outcome : Camera is not moving properly.

Found Reason : Unity FreeLookRig camera has lots of bugs.

Used Unity MultiPurposeCameraRig instead.

Further Test : Re-build the game and run again.

Expected Outcome : Camera should move properly now.

Actual Outcome : Camera goes through objects.

Found Reason : Unity FreeLookRig camera also has bugs in

object collision. Used Unity First Person

Controller.

Further Test : Re-build the game and run again.

Expected Outcome : Camera should move properly now.

Actual Outcome : Camera is moving properly.

4.3.6 Beta Test Bug 6

Expected Outcome : Game will run properly without bugs.

Actual Outcome : Level objectives aren’t clear enough for gamers.

Found Reason : An objective window is necessary. Added

objectives window.

Further Test : Re-build the game and run again.

Expected Outcome : Level objectives should be easy to understand.

Actual Outcome : Level objectives are easy to understand.

©Daffodil International University

P a g e | 55

Chapter 5: User Manual of “Ethoreal Shift”

This chapter contains instructions for the players. It describes the methods of playing

the game and also includes some in-game screenshots to give the player some ideas

about the game before they start playing it. [5]

5.1 Playing Procedures

Players first interact with the system UI to start playing. We provide tips to the gamer

about game mechanics so that he/she can easily understand how to play the game.

There are different levels in this game which follows a planned storyline. Gamers can

play each level by completing the objectives of the previous one. Player have to use

his/her logic to accomplish the game. He needs to explore the levels, find scrolls to

advance in some levels, defeat lots of enemies to complete his objectives. If the

gamer’s health decreases completely, he loses the game and the level restarts. Here at

the first level, the gamer’s objective is to find the magic shop first, then find all the

scrolls hidden across Sylvista village. Player have to explore every house in the

village to collect the scrolls. In the second level, the player is in Daryas city and he

have to find scrolls hidden inside the city again to get information about the location

of the elemental stones. Like that different level has different complexity and different

logics to finish. But the main objective is that gamer should find all 3 stones to save

the world and finish the game.

©Daffodil International University

P a g e | 56

5.2 In-Game Screenshots

Fig 5.2.1: The Start Menu

Fig 5.2.2: The Pause Menu

Fig 5.2.3: Game Start Cut scene

©Daffodil International University

P a g e | 57

Fig 5.2.4: Sylvista

Fig 5.2.5: Sylvista Port

Fig 5.2.6: Citadel Castle and the Fountain

©Daffodil International University

P a g e | 58

Fig 5.2.7: Outside of Magic Shop

Fig 5.2.8: Inside the Magic Shop

Fig 5.2.9: The Marchant Talking to the Player

©Daffodil International University

P a g e | 59

Fig 5.2.10: Collecting Scrolls

Fig 5.2.11: Daryas City Port

Fig 5.2.12: Player exploring the City

©Daffodil International University

P a g e | 60

Fig 5.2.13: Scrolls in the City

Fig 5.2.14: Peoples walking around

Fig 5.2.15: The City Wall

©Daffodil International University

P a g e | 61

Fig 5.2.16: Woodcutter coming to attack the Player

Fig 5.2.17: Player attacking the Woodcutter

Fig 5.2.18: Woodcutter is Dead

©Daffodil International University

P a g e | 62

Fig 5.2.19: Player got the Dryad Stone

Fig 5.2.20: Paladin Knights attacking the Player

Fig 5.2.21: Player attacking the Paladin Knights

©Daffodil International University

P a g e | 63

Fig 5.2.22: Player Casting Explosion Spell on the Machine Building

Fig 5.2.23: Machine Building is being destroyed

Fig 5.2.24: Player got the Zephyrus Stone

©Daffodil International University

P a g e | 64

Fig 5.2.25: Player in front of the Sacred Waterfall

Fig 5.2.26: Player in front of the Ancient Magic Table

Fig 5.2.27: Game Completed

©Daffodil International University

P a g e | 65

Chapter 6: Conclusion

A game project needs a lot of experience to complete. In this chapter we summarize

the experience gained by our developer team during the whole development process

of “Ethoreal Shift”.

6.1 The Obstacles We Faced

1. We had our first idea for the game rejected after four months of development

time. So we had only one semester to complete the whole project starting from

developing a new concept, planning everything we have to implement in the

game, 3D modelling, designing the levels, programming etc.

2. We weren’t given any idea about how much time we would have to finish the

project. So we had to set a deadline by ourselves and had to plan the project

according to that deadline. Because of this reason, we had to give up on some

of the ideas and features of the game to complete it in due time.

3. Unity game engine has lots of necessary features missing because it has a

subscription based paid version with lots of additional features, some of which

should have been implemented in the free/personal version of the engine that

we used. We suffered a lot because of this in this project and our previous

games. We had to develop some workarounds to make some features work.

But most of the workarounds needs advanced knowledge in C# and we didn’t

have enough time to do research and learn more things to fully utilize the

features of Unity.

4. We developed these workarounds and broaden our knowledge in game design

and programming by video tutorials, text tutorials, internet and learning

materials given by the tools themselves, though they had little contribution in

our knowledge building. The project was a matter of time, patience and hard

work.

5. It is very rational work and it requires lots of time because the game engines

try to match the game environment with the real world.

©Daffodil International University

P a g e | 66

6. Creating 3D models for this project was very difficult because we had to work

with each and every point of the model to make them look realistic. The

characters of the game were most difficult to model as we wanted to make

them feel real.

7. Developing models, textures and game levels were much difficult than we had

thought because of our under-powered computers.

8. Unity demands vast knowledge about its functions, properties, sections and

subsections.

9. The game engines themselves had lots of bugs in them, which made our work

much more difficult. We had to develop some alternatives to tackle the bugs of

game engines.

10. Some features of Unity that we needed for our project were made available

with version upgrade in this year. So we had to improvise some aspects of the

game so that we can complete our project. And when we upgraded our Unity

version, the upgraded Unity re-imported our project files where it corrupted

some files. We had to import those files again, re-modified them for our levels

and had to implement them again.

11. The Unity asset store has huge collection of tools, but most of the tools we

needed were paid. So We weren’t able to implement some features like we

wanted to.

And finally but most importantly, our planned game was not a project that could be

completed in 4-6 months by only two people with under-powered computers!

©Daffodil International University

P a g e | 67

6.2 The Achievements

1. Now we know much more about the Unity game engine. How it works, its

features, properties, objects and others, including its bugs.

2. We were able to implement everything we learned in last four years starting

from graphics design, motion graphics, 3D modelling, character rigging,

animation, to game level design, game programming and scripting etc.

3. We know more about 3D modelling, texturing, look development, rigging and

animation.

4. The main thing is that as a game developer, skill and expertise to design game

levels, implementing various mechanics and the experience we gained by

completing an overall game project by only two people.

5. Dedication and co-operation between group members.

6. Developed better communication skills.

7. Expending creative thinking and imagination capability.

©Daffodil International University

P a g e | 68

6.3 Future Development Plans

Ethoreal Shift was originally planned to be a free-to-play Massively Multiplayer

Online (MMO) fantasy open-world third person action-adventure game where all the

players will be magicians and they will be playing the game together online to save

the world of the game from the magic beasts of the parallel world. But as we were

given pretty short time to develop this game and because of the shortcomings and lack

of necessary features in Unity game engine itself, we had to divert from our original

plan and cut short most of our ideas to complete the game in time. So our future plan

for this game is to rebuild the game from scratch in Unreal Engine using our original

plan. We will develop a massive and open fantasy world full of quests, puzzles and

adventures using cultural, historical and mythological references, where the players

will have to use their own knowledge, intellect and cooperate with each other in order

to advance through the quests and finish the game. Also, there will be four elemental

stones instead of three and their location won’t be revealed until the final phase of the

game starts (described further below).

 There would be 9 classes (races) of avatars in the game which the players can

choose to play with. Each class will have their own features, powers and

special abilities. But they all would have access to the massive weapons

arsenal in the game as they level up. The unlock system for avatar, weapons

and power upgrades will be based on levels, ranks and amount of in-game

gems of the players, rather than pay-to-unlock. Players will level up and

collect gems by completing different quests, solving puzzles, in-game trading

of gems and items, and defeating the magic beasts.

 The quests and puzzles will be all over the game’s open world based on

historical events, Greek and Norse mythologies, cultures of different countries

and our own original ideas. Some quests would require the players to work

together as a team to complete the objectives. Quests based on historical

events and mythologies would require the player to gain knowledge about

history and mythologies in order to complete them. There would be some fast-

paced quests and puzzles that will challenge the intellect and reflex of a

player. It will be up to the players to complete those quests and puzzles.

©Daffodil International University

P a g e | 69

 The enemies would be magic beasts, who would be from parallel world. There

will be several races of the beasts and they will have magical powers similar to

the magicians of this world. Their powers will differ based on their race, size,

and also their level and rank. Some of them will have regenerative abilities,

some will have the power to heal others. Some beasts will be huge like a

building, very powerful. Those will be the boss of the quests. Some beasts will

be the size of small animals and would be found in easy quests. Some beasts

would be like regular sized humans or taller, those will be the regular enemies

in the quests. Their ranks and levels would decide what amount of gems and

experience points will the players get when they defeat the enemies.

 The quests, number and level of enemies, gems, item drops and XP points in

cooperative quests would be controlled by a base system or algorithm to keep

certain things in the game unpredictable. Some quests will be in this world,

and some quests would be in the parallel world. We are planning to give the

game itself a time-limit. At first, the game will be in phase alpha, where the

players will be given a couple of years to level up, complete quests and find

clues to complete the whole game. After that, the final phase of the game will

start, which will unlock new quests and objectives that will reveal the

locations of the four elemental stones. In this phase, all players will have from

6 months to 1 year to complete all new quests, collect the stones and finish the

game. If they can’t finish the game in the given time, the whole game will

reset, deleting all player and level data and the game will restart from the

beginning, starting a loop until the game is cleared in the final phase. But this

isn’t finalized in the plan yet because of the technical difficulties of this

process.

Though it will take several years of development and lots of funding to complete this

original plan of the game, but we believe that we can develop this into an amazing

game if given the opportunity.

©Daffodil International University

P a g e | 70

6.4 Last Few Words

We learned a lot by working on this project. This project has enriched our knowledge

and sharpened our concept of game engines, 3D modeling and animation. We learned

a lot about different game documentation. The game we developed is intended to be

played by the gamers of all over the world. The success of this project may give

pleasure to lots of game lovers among the world. This project has not only tested our

knowledge and technical skills but also our temperament. There were few times when

we almost lost hope and motivation, but we recovered through continuous

concentration, research, teamwork and hard work.

If you have any kind of suggestion, ideas for improvements and more effective

development ideas, please feel free to communicate with us.

©Daffodil International University

P a g e | 71

Appendix

Abbreviation and Acronyms

Term Definition

Game engine
A game engine is an application designed for the creation and

development of video games.

UX
User experience (UX or UE) is a person's interaction and experience

with a particular product, system or service.

Animation
Animation is a process by which images or objects are manipulated

to appear as moving images.

OpenGL

Open Graphics Library (OpenGL) is a cross-language, cross-

platform application programming interface for rendering 2D and 3D

vector graphics that is typically used to interact with a graphics

processing unit, to achieve hardware-accelerated rendering.

Scripting

A scripting language or script language is a programming language

that supports the writing of scripts and programs for a special

runtime environment that can interpret and automate the execution of

tasks which would otherwise be executed manually by a human

operator.

SRS Software Requirements Specification

UI User Interface

System
A system is a set of interacting or interdependent components

forming an integrated whole.

©Daffodil International University

P a g e | 72

References

[1] Global video game industry revenue CAGR by category 2015-2020, Retrieved

from https://www.statista.com.

[2] ESports, Retrieved from https://en.wikipedia.org.

[3] Role-playing video game, Retrieved from https://en.wikipedia.org.

[4] Software Requirement Specification (2010), Chalmers University of Technology

[5] Project “The Ghost in Town” (2014), Dhaka University

[6] Project “Death Wish” (2008), Viral Light Interactive.

©Daffodil International University

https://www.statista.com/
https://en.wikipedia.org/
https://en.wikipedia.org/

P a g e | 73

Codes and Scripts Implemented

The scripts and codes we wrote for our game are written below:

First Person Controller:

using System;

using UnityEngine;

using UnityStandardAssets.CrossPlatformInput;

using UnityStandardAssets.Utility;

using System.Collections;

using UnityEngine.UI;

using UnityEngine.SceneManagement;

using Random = UnityEngine.Random;

 [RequireComponent(typeof(CharacterController))]

 [RequireComponent(typeof(AudioSource))]

 public class FirstPersonController : MonoBehaviour

 {

 [SerializeField] private bool m_IsWalking;

 [SerializeField] private float m_WalkSpeed;

 [SerializeField] private float m_RunSpeed;

 [SerializeField] [Range(0f, 1f)] private float m_RunstepLenghten;

 [SerializeField] private float m_JumpSpeed;

 [SerializeField] private float m_StickToGroundForce;

 [SerializeField] private float m_GravityMultiplier;

 [SerializeField] private MouseLook m_MouseLook;

 [SerializeField] private bool m_UseFovKick;

 [SerializeField] private FOVKick m_FovKick = new FOVKick();

 [SerializeField] private bool m_UseHeadBob;

 [SerializeField] private CurveControlledBob m_HeadBob = new

CurveControlledBob();

 [SerializeField] private LerpControlledBob m_JumpBob = new

LerpControlledBob();

©Daffodil International University

P a g e | 74

 [SerializeField] private float m_StepInterval;

 [SerializeField] private AudioClip[] m_FootstepSounds; // an array of footstep

sounds that will be randomly selected from.

 [SerializeField] private AudioClip m_JumpSound; // the sound played

when character leaves the ground.

 [SerializeField] private AudioClip m_LandSound; // the sound played

when character touches back on ground.

 public float pHealth;

 public float maxHealth = 100f;

 public Transform startPoint;

 public Item item;

 public Text scrolls;

 public GameObject pDeathText;

 public static int scrollCount;

 public static float enemyCount;

 public AudioClip scrollCollect;

 public Image healthBar;

 private Camera m_Camera;

 private bool m_Jump;

 private float m_YRotation;

 private Vector2 m_Input;

 private Vector3 m_MoveDir = Vector3.zero;

 private CharacterController m_CharacterController;

 private CollisionFlags m_CollisionFlags;

 private bool m_PreviouslyGrounded;

 private Vector3 m_OriginalCameraPosition;

 private float m_StepCycle;

 private float m_NextStep;

 private bool m_Jumping;

 private AudioSource m_AudioSource;

 private void Start()

©Daffodil International University

P a g e | 75

 {

 m_CharacterController = GetComponent<CharacterController>();

 m_Camera = Camera.main;

 m_OriginalCameraPosition = m_Camera.transform.localPosition;

 m_FovKick.Setup(m_Camera);

 m_HeadBob.Setup(m_Camera, m_StepInterval);

 m_StepCycle = 0f;

 m_NextStep = m_StepCycle / 2f;

 m_Jumping = false;

 m_AudioSource = GetComponent<AudioSource>();

 m_MouseLook.Init(transform, m_Camera.transform);

 pHealth = 100f;

 scrollCount = 0;

 enemyCount = 0;

 pDeathText.SetActive(false);

 scrolls.text = scrollCount.ToString();

 m_CharacterController.transform.position = startPoint.position; //Moves

the Player to the assigned Start Point.

 }

 private void Update()

 {

 RotateView();

 // the jump state needs to read here to make sure it is not missed

 if (!m_Jump)

 {

 m_Jump = CrossPlatformInputManager.GetButtonDown("Jump");

 }

 if (!m_PreviouslyGrounded && m_CharacterController.isGrounded)

 {

 StartCoroutine(m_JumpBob.DoBobCycle());

 PlayLandingSound();

©Daffodil International University

P a g e | 76

 m_MoveDir.y = 0f;

 m_Jumping = false;

 }

 if (!m_CharacterController.isGrounded && !m_Jumping &&

m_PreviouslyGrounded)

 {

 m_MoveDir.y = 0f;

 }

 m_PreviouslyGrounded = m_CharacterController.isGrounded;

 if (startPoint == null)

 {

 startPoint = transform; //If Start Point is not assigned, player transform

will be used.

 }

 if (pHealth <= 0)

 return;

 }

 private void PlayLandingSound()

 {

 m_AudioSource.clip = m_LandSound;

 m_AudioSource.Play();

 m_NextStep = m_StepCycle + .5f;

 }

 private void FixedUpdate()

 {

 float speed;

 GetInput(out speed);

 // always move along the camera forward as it is the direction that it being

aimed at

 Vector3 desiredMove = transform.forward * m_Input.y + transform.right *

m_Input.x;

 // get a normal for the surface that is being touched to move along it

©Daffodil International University

P a g e | 77

 RaycastHit hitInfo;

 Physics.SphereCast(transform.position, m_CharacterController.radius,

Vector3.down,

out hitInfo,

m_CharacterController.height / 2f, Physics.AllLayers,

QueryTriggerInteraction.Ignore);

 desiredMove = Vector3.ProjectOnPlane(desiredMove,

hitInfo.normal).normalized;

 m_MoveDir.x = desiredMove.x * speed;

 m_MoveDir.z = desiredMove.z * speed;

 if (m_CharacterController.isGrounded)

 {

 m_MoveDir.y = -m_StickToGroundForce;

 if (m_Jump)

 {

 m_MoveDir.y = m_JumpSpeed;

 PlayJumpSound();

 m_Jump = false;

 m_Jumping = true;

 }

 }

 else

 {

 m_MoveDir += Physics.gravity * m_GravityMultiplier *

Time.fixedDeltaTime;

 }

 m_CollisionFlags = m_CharacterController.Move(m_MoveDir *

Time.fixedDeltaTime);

 ProgressStepCycle(speed);

 UpdateCameraPosition(speed);

 m_MouseLook.UpdateCursorLock();

 }

©Daffodil International University

P a g e | 78

 private void PlayJumpSound()

 {

 m_AudioSource.clip = m_JumpSound;

 m_AudioSource.Play();

 }

 private void ProgressStepCycle(float speed)

 {

 if (m_CharacterController.velocity.sqrMagnitude > 0 && (m_Input.x != 0 ||

m_Input.y != 0))

 {

 m_StepCycle += (m_CharacterController.velocity.magnitude + (speed *

(m_IsWalking ? 1f : m_RunstepLenghten))) *

 Time.fixedDeltaTime;

 }

 if (!(m_StepCycle > m_NextStep))

 {

 return;

 }

 m_NextStep = m_StepCycle + m_StepInterval;

 PlayFootStepAudio();

 }

 private void PlayFootStepAudio()

 {

 if (!m_CharacterController.isGrounded)

 {

 return;

 }

 // pick & play a random footstep sound from the array,

 // excluding sound at index 0

 int n = Random.Range(1, m_FootstepSounds.Length);

 m_AudioSource.clip = m_FootstepSounds[n];

 m_AudioSource.PlayOneShot(m_AudioSource.clip);

©Daffodil International University

P a g e | 79

 // move picked sound to index 0 so it's not picked next time

 m_FootstepSounds[n] = m_FootstepSounds[0];

 m_FootstepSounds[0] = m_AudioSource.clip;

 }

 private void UpdateCameraPosition(float speed)

 {

 Vector3 newCameraPosition;

 if (!m_UseHeadBob)

 {

 return;

 }

 if (m_CharacterController.velocity.magnitude > 0 &&

m_CharacterController.isGrounded)

 {

 m_Camera.transform.localPosition =

 m_HeadBob.DoHeadBob(m_CharacterController.velocity.magnitude +

 (speed * (m_IsWalking ? 1f : m_RunstepLenghten)));

 newCameraPosition = m_Camera.transform.localPosition;

 newCameraPosition.y = m_Camera.transform.localPosition.y –

m_JumpBob.Offset();

 }

 else

 {

 newCameraPosition = m_Camera.transform.localPosition;

 newCameraPosition.y = m_OriginalCameraPosition.y -

m_JumpBob.Offset();

 }

 m_Camera.transform.localPosition = newCameraPosition;

 }

 private void GetInput(out float speed)

 {

 // Read input

©Daffodil International University

P a g e | 80

 float horizontal = CrossPlatformInputManager.GetAxis("Horizontal");

 float vertical = CrossPlatformInputManager.GetAxis("Vertical");

 bool waswalking = m_IsWalking;

#if !MOBILE_INPUT

 // On standalone builds, walk/run speed is modified by a key press.

 // keep track of whether or not the character is walking or running

 m_IsWalking = !Input.GetKey(KeyCode.LeftShift);

#endif

 // set the desired speed to be walking or running

 speed = m_IsWalking ? m_WalkSpeed : m_RunSpeed;

 m_Input = new Vector2(horizontal, vertical);

 // normalize input if it exceeds 1 in combined length:

 if (m_Input.sqrMagnitude > 1)

 {

 m_Input.Normalize();

 }

 // handle speed change to give an fov kick

 // only if the player is going to a run, is running and the fovkick is to be used

 if (m_IsWalking != waswalking && m_UseFovKick &&

m_CharacterController.velocity.sqrMagnitude > 0)

 {

 StopAllCoroutines();

 StartCoroutine(!m_IsWalking ? m_FovKick.FOVKickUp() :

m_FovKick.FOVKickDown());

 }

 }

 private void RotateView()

 {

 m_MouseLook.LookRotation(transform, m_Camera.transform);

©Daffodil International University

P a g e | 81

 }

 public void TakeDamage(float dAmount)

 {

 pHealth -= dAmount;

 healthBar.fillAmount = pHealth / 100f;

 if (pHealth <= 0f)

 {

 pDeathText.SetActive(true);

 StartCoroutine(GameOver());

 }

 }

 void OnTriggerEnter(Collider other)

 {

 if (other.tag == "Scrolls")

 {

 scrollCount = scrollCount + 1;

 m_AudioSource.PlayOneShot(scrollCollect);

 if (scrolls.text != null)

 {

 scrolls.text = scrollCount.ToString();

 }

 }

 }

IEnumerator GameOver()

 {

 yield return new WaitForSeconds(5.0f);

 SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex);

 }

 private void OnControllerColliderHit(ControllerColliderHit hit)

 {

©Daffodil International University

P a g e | 82

 Rigidbody body = hit.collider.attachedRigidbody;

 //dont move the rigidbody if the character is on top of it

 if (m_CollisionFlags == CollisionFlags.Below)

 {

 return;

 }

 if (body == null || body.isKinematic)

 {

 return;

 }

 body.AddForceAtPosition(m_CharacterController.velocity * 0.1f, hit.point,

ForceMode.Impulse);

 }

 }

©Daffodil International University

P a g e | 83

Player Magic:

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

public class PlayerMagic : MonoBehaviour {

 public float pDamage = 10f; //Primary Attack damage.

 public float cDamage = 30f; //Charged Attack damage.

 public float range = 50f; //Attack range.

 public ParticleSystem pAttack; //Primary Attack effect.

 public ParticleSystem cAttack; //Charged Attack effect.

 public float pAttackInterval = 1f; //Primary Attack Interval.

 public float pTimer = 3f; //Primary Attack Timer.

 public float cAttackInterval = 10f; //Charged Attack Interval.

 public float cTimer = 10f; //Charged Attack Timer.

 float pEffectDisplayTime = 1.10f; //How long the Primary Attack effect will be

displayed.

 float cEffectDisplayTime = 2.80f; //How long the Charged Attack effect will be

displayed.

 Animator anim; //Reference to Player Animator.

 Target target; //Reference to Enemy Script.

 public Image manaBar;

 Camera cam;

 AudioSource aSource;

 public AudioClip PAttackSound;

 public AudioClip CAttackSound;

 void Start()

 {

 anim = GetComponent<Animator>();

 aSource = GetComponent<AudioSource>();

©Daffodil International University

P a g e | 84

 cam = Camera.main;

 }

 void Update ()

{

 pTimer += Time.deltaTime; //Update the Timer.

 cTimer += Time.deltaTime; //Update the timer.

 manaBar.fillAmount = cTimer / 10f;

 //Primary Attack.

 if (Input.GetButtonDown("Fire1") && pTimer >= pAttackInterval &&

Time.timeScale

!= 0)

 {

 PrimaryAttack();

 }

 //Charged Attack.

 if (Input.GetButtonDown("Fire2") && cTimer >= cAttackInterval &&

Time.timeScale != 0)

 {

 ChargedAttack();

 }

 }

 //Primary Attack parameters

 void PrimaryAttack()

 {

 pTimer = 0f; //Resets Primary Attack timer.

 pAttack.Simulate(1); //Starts the effect.

 pAttack.Play(); //Plays the effect.

 aSource.PlayOneShot(PAttackSound);

 RaycastHit hit; //Reference to Raycast hit point.

©Daffodil International University

P a g e | 85

 if (Physics.Raycast(cam.transform.position, cam.transform.forward, out hit,

range))

 {

 Debug.Log(hit.transform.name);

 target = hit.transform.GetComponent<Target>();

 if (target != null)

 {

 target.TakeDamage(pDamage); //Enemy takes damage.

 }

 }

 }

 //Charged Attack parameters

 void ChargedAttack()

 {

 cTimer = 0f; //Resets Charged Attack timer.

 cAttack.Simulate(1); //Starts the effect.

 cAttack.Play(); //Plays the effect.

 aSource.PlayOneShot(CAttackSound);

 RaycastHit hit; //Reference to Raycast hit point.

 if (Physics.Raycast(cam.transform.position, cam.transform.forward, out hit,

range))

 {

 Debug.Log(hit.transform.name);

 target = hit.transform.GetComponent<Target>();

 if (target != null)

 {

 target.TakeDamage(cDamage); //Enemy takes damage.

 }

 }

 }

}

©Daffodil International University

P a g e | 86

Mouse Look:

using System;

using UnityEngine;

using UnityStandardAssets.CrossPlatformInput;

 [Serializable]

 public class MouseLook

 {

 public float XSensitivity = 2f;

 public float YSensitivity = 2f;

 public bool clampVerticalRotation = true;

 public float MinimumX = -90F;

 public float MaximumX = 90F;

 public bool smooth;

 public float smoothTime = 5f;

 public bool lockCursor = true;

 private Quaternion m_CharacterTargetRot;

 private Quaternion m_CameraTargetRot;

 private bool m_cursorIsLocked = true;

 public void Init(Transform character, Transform camera)

 {

 m_CharacterTargetRot = character.localRotation;

 m_CameraTargetRot = camera.localRotation;

 }

 public void LookRotation(Transform character, Transform camera)

 {

 float yRot = CrossPlatformInputManager.GetAxis("Mouse X") * XSensitivity;

 float xRot = CrossPlatformInputManager.GetAxis("Mouse Y") * YSensitivity;

 m_CharacterTargetRot *= Quaternion.Euler (0f, yRot, 0f);

©Daffodil International University

P a g e | 87

 m_CameraTargetRot *= Quaternion.Euler (-xRot, 0f, 0f);

 if(clampVerticalRotation)

 m_CameraTargetRot = ClampRotationAroundXAxis

(m_CameraTargetRot);

 if(smooth)

 {

 character.localRotation = Quaternion.Slerp (character.localRotation,

m_CharacterTargetRot,

 smoothTime * Time.deltaTime);

 camera.localRotation = Quaternion.Slerp (camera.localRotation,

m_CameraTargetRot,

 smoothTime * Time.deltaTime);

 }

 else

 {

 character.localRotation = m_CharacterTargetRot;

 camera.localRotation = m_CameraTargetRot;

 }

 UpdateCursorLock();

 }

 public void SetCursorLock(bool value)

 {

 lockCursor = value;

 if(!lockCursor)

 {//we force unlock the cursor if the user disable the cursor locking helper

 Cursor.lockState = CursorLockMode.None;

 Cursor.visible = true;

 }

 }

 public void UpdateCursorLock()

©Daffodil International University

P a g e | 88

 {

 //if the user set "lockCursor" we check & properly lock the cursos

 if (lockCursor)

 InternalLockUpdate();

 }

 private void InternalLockUpdate()

 {

 if(Input.GetKeyUp(KeyCode.Escape))

 {

 m_cursorIsLocked = false;

 }

 else if(Input.GetMouseButtonUp(0))

 {

 m_cursorIsLocked = true;

 }

 if (m_cursorIsLocked)

 {

 Cursor.lockState = CursorLockMode.Locked;

 Cursor.visible = false;

 }

 else if (!m_cursorIsLocked)

 {

 Cursor.lockState = CursorLockMode.None;

 Cursor.visible = true;

 }

 }

 Quaternion ClampRotationAroundXAxis(Quaternion q)

 {

 q.x /= q.w;

©Daffodil International University

P a g e | 89

 q.y /= q.w;

 q.z /= q.w;

 q.w = 1.0f;

 float angleX = 2.0f * Mathf.Rad2Deg * Mathf.Atan (q.x);

 angleX = Mathf.Clamp (angleX, MinimumX, MaximumX);

 q.x = Mathf.Tan (0.5f * Mathf.Deg2Rad * angleX);

 return q;

 }

 }

©Daffodil International University

P a g e | 90

Target (Enemy):

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Target : MonoBehaviour

{

 public float health = 50f; //Enemy health

 public float damage = 20f; //Damage done to the Player

 Animator anim; //Reference to Enemey Animator

 float startDelay = 1.5f; //Start delay of death animation

 public Transform player; //Reference to Player position

 FirstPersonController fpc; //Reference to Player Control script

 float enemyGravity;

 AudioSource aSource;

 public AudioClip walkSound;

 public AudioClip attackSound;

 void Start()

 {

 anim = GetComponent<Animator>();

 player = GameObject.FindGameObjectWithTag("Player").transform;

 fpc = player.transform.GetComponent<FirstPersonController>();

 aSource = GetComponent<AudioSource>();

 }

 private void Update()

 {

 //Enemy animation

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", true);

©Daffodil International University

P a g e | 91

 anim.SetBool("isAIdle", false);

 anim.SetBool("isWalking", false);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", false);

 enemyGravity += Physics.gravity.y * Time.deltaTime;

 Vector3 direction = player.position - this.transform.position; //Determining

enemy position from Player

 float angle = Vector3.Angle(direction, this.transform.forward); //Enemy

moves forward

 //Checks distance from player

 if (Vector3.Distance(player.position, this.transform.position) < 20 && angle <

300 && fpc.pHealth >= 0 && Time.timeScale >= 1)

 {

 if (health <= 0)

 return;

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", false);

 anim.SetBool("isAIdle", true);

 anim.SetBool("isWalking", false);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", false);

 this.transform.rotation = Quaternion.Slerp(this.transform.rotation,

Quaternion.LookRotation(direction), 1f);

 //Keeps moving toward the player until reached at a certain distance

 if (direction.magnitude > 2)

 {

 this.transform.Translate(0, 0, .09f);

 anim.SetBool("isRunning", false);

©Daffodil International University

P a g e | 92

 anim.SetBool("isIdle", false);

 anim.SetBool("isAIdle", false);

 anim.SetBool("isWalking", true);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", false);

 }

 //Attacks the player when in range

 else if (direction.magnitude <= 2)

 {

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", false);

 anim.SetBool("isWalking", false);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", true);

 anim.SetBool("gotHit", false);

 StartCoroutine(PlayerDamage());

 }

 if (fpc.pHealth <= 0)

 {

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", true);

 anim.SetBool("isWalking", false);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", false);

 }

 }

 //If player is not in range, enemy stays idle

 else

©Daffodil International University

P a g e | 93

 {

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", false);

 anim.SetBool("isAIdle", true);

 anim.SetBool("isWalking", false);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", false);

 }

 }

 //Takes damage

 public void TakeDamage(float amount)

 {

 health -= amount; //Reduces Enemy health by the Player's damage

amount.

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", false);

 anim.SetBool("isWalking", false);

 anim.SetBool("Dying", false);

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", true);

 //When health reaches zero, enemy dies

 if (health <= 0f)

 {

 Die();

 }

 }

 //Death Sequence

 void Die()

©Daffodil International University

P a g e | 94

 {

 anim.SetBool("isRunning", false);

 anim.SetBool("isIdle", false);

 anim.SetBool("isWalking", false);

 anim.Play("Death");

 anim.SetBool("Attack", false);

 anim.SetBool("gotHit", false);

 PlayerControl.enemyCount = PlayerControl.enemyCount + 1;

 //Destroys game object after 7 seconds

 Destroy(gameObject, 5);

 }

 IEnumerator PlayerDamage()

 {

 yield return new WaitForSeconds(.5f);

 fpc.TakeDamage(damage); //Damages the player

 }

}

©Daffodil International University

P a g e | 95

Item:

using UnityEngine;

 [CreateAssetMenu(fileName = "New Item", menuName = "Inventory/Item")]

public class Item : ScriptableObject

{

 new public string name = "New Item";

 public Sprite icon = null;

 public bool showInInventory = true;

 public virtual void Use()

 { }

 public void RemoveFromInventory()

 {

 Inventory.instance.Remove(this);

 }

}

Consumables:

using UnityEngine;

[CreateAssetMenu(fileName = "New Item", menuName = "Inventory/Consumable")]

public class Consumable : Item

{

 public int healthGain;

 public GameObject player;

 public override void Use()

 {

 PlayerControl playerControl = player.GetComponent<PlayerControl>();

 playerControl.Heal(healthGain);

 RemoveFromInventory();

 }

}

©Daffodil International University

P a g e | 96

Inventory Scripts:

Inventory:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Inventory : MonoBehaviour

{

 public static Inventory instance;

 void Awake()

 {

 instance = this;

 }

 public delegate void OnItemChanged();

 public OnItemChanged onItemChangedCallback;

 public int space = 10;

 public List<Item> items = new List<Item>();

 public void Add(Item item)

 {

 if (item.showInInventory)

 {

 if (items.Count >= space)

 {

 return;

 }

 items.Add(item);

 if (onItemChangedCallback != null)

 onItemChangedCallback.Invoke();

 }

 }

 public void Remove(Item item)

 {

©Daffodil International University

P a g e | 97

 items.Remove(item);

 if (onItemChangedCallback != null)

 onItemChangedCallback.Invoke();

 } }

Inventory Slot:

using UnityEngine;

using UnityEngine.UI;

using UnityEngine.Events;

using UnityEngine.EventSystems;

public class InventorySlot : MonoBehaviour

{

 public Image icon;

 public Button removeButton;

 Item item;

 public void AddItem(Item newItem)

 {

 item = newItem;

 icon.sprite = item.icon;

 icon.enabled = true;

 removeButton.interactable = true;

 }

 public void ClearSlot()

 {

 item = null;

 icon.sprite = null;

 icon.enabled = false;

 removeButton.interactable = false;

 }

 public void RemoveItemFromInventory()

 {

 Inventory.instance.Remove(item);

©Daffodil International University

P a g e | 98

 }

 public void UseItem()

 {

 if (item != null)

 {

 item.Use();

 } } }

Inventory UI:

using UnityEngine;

using System.Collections.Generic;

using UnityEngine.UI;

public class InventoryUI : MonoBehaviour

{

 public GameObject inventoryUI;

 public Transform itemsParent;

 Inventory inventory;

 void Start()

 {

 inventory = Inventory.instance;

 inventory.onItemChangedCallback += UpdateUI;

 }

 void Update()

 {

 if (Input.GetButtonDown("Inventory"))

 {

 inventoryUI.SetActive(!inventoryUI.activeSelf);

 UpdateUI();

 Debug.Log("Inventory");

 }

 }

 public void UpdateUI()

©Daffodil International University

P a g e | 99

 {

 InventorySlot[] slots = GetComponentsInChildren<InventorySlot>();

 for (int i = 0; i < slots.Length; i++)

 {

 if (i < inventory.items.Count)

 {

 slots[i].AddItem(inventory.items[i]);

 }

 else

 {

 slots[i].ClearSlot();

 } } } }

Items Pickup:

using UnityEngine;

public class ItemPickup : Interactable

{

 public Item item;

 public override void Interact()

 {

 base.Interact();

 }

 void OnTriggerEnter(Collider Other)

 {

 if (Other.tag == "Player")

 {

 Inventory.instance.Add(item);

 Destroy(gameObject);

 } } }

©Daffodil International University

P a g e | 100

Interactable:

using UnityEngine;

using UnityEngine.AI;

public class Interactable : MonoBehaviour

{

 public float radius = 3f;

 public Transform interactionTransform;

 bool isFocus = false;

 Transform player;

 bool hasInteracted = false;

 public virtual void Interact()

 { }

 void OnDrawGizmosSelected()

 {

 if (interactionTransform == null)

 interactionTransform = transform;

 Gizmos.color = Color.yellow;

 Gizmos.DrawWireSphere(interactionTransform.position, radius);

 }

}

©Daffodil International University

P a g e | 101

Dialogue System:

Dialogue:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

[System.Serializable]

public class Dialogue

{

 public string name;

 [TextArea(3, 10)]

 public string[] sentences;

}

Dialogue Manager:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class DialogueManager : MonoBehaviour

{

 public Text nameText;

 public Text dialogueText;

 public Animator animator;

 public Animator mAnim;

 private Queue<string> sentences;

 void Start()

 {

 sentences = new Queue<string>();

 }

 public void StartDialogue(Dialogue dialogue)

 {

©Daffodil International University

P a g e | 102

 animator.SetBool("IsOpen", true);

 mAnim.SetBool("Idle", false);

 mAnim.SetBool("Talk", true);

 nameText.text = dialogue.name;

 sentences.Clear();

 foreach (string sentence in dialogue.sentences)

 { sentences.Enqueue(sentence);

 }

 DisplayNextSentence();

 }

 public void DisplayNextSentence()

 {

 if (sentences.Count == 0)

 {

 EndDialogue();

 return;

 }

 string sentence = sentences.Dequeue();

 StopAllCoroutines();

 StartCoroutine(TypeSentence(sentence));

 }

 IEnumerator TypeSentence(string sentence)

 {

 dialogueText.text = "";

 foreach (char letter in sentence.ToCharArray())

 {

 dialogueText.text += letter;

 yield return null;

 } }

 void EndDialogue()

 {

 animator.SetBool("IsOpen", false);

©Daffodil International University

P a g e | 103

 mAnim.SetBool("Talk", false);

 mAnim.SetBool("Idle", true);

 } }

Dialogue Trigger:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class DialogueTrigger : MonoBehaviour {

 public Dialogue dialogue;

 public GameObject dialogueText;

 private void Start()

 {

 dialogueText.SetActive(false);

 }

 private void OnTriggerStay(Collider other)

 {

 if (other.gameObject.tag == "Player")

 {

 dialogueText.SetActive(true);

 if (dialogueText.activeInHierarchy == true && Input.GetKeyDown

(KeyCode.F))

 {

 FindObjectOfType<DialogueManager>().StartDialogue(dialogue);

 } } }

 private void OnTriggerExit(Collider other)

 {

 dialogueText.SetActive(false);

 }

}

©Daffodil International University

P a g e | 104

Other Scripts:

Quest Marker:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class QuestMarker : MonoBehaviour {

 public float degreesPerSecond = 15.0f;

 public float amplitude = 0.5f;

 public float frequency = 1f;

 Vector3 posOffset = new Vector3();

 Vector3 tempPos = new Vector3();

 void Start()

 {

 posOffset = transform.position;

 }

 void Update()

 {

 transform.Rotate(new Vector3(0f, Time.deltaTime * degreesPerSecond, 0f),

Space.World);

 tempPos = posOffset;

 tempPos.y += Mathf.Sin(Time.fixedTime * Mathf.PI * frequency) * amplitude;

 transform.position = tempPos;

 }

}

©Daffodil International University

P a g e | 105

Teleportation:

using UnityEngine;

using UnityEngine.SceneManagement;

public class TeleportToDC : MonoBehaviour {

 public GameObject teleportText;

 public string levelToLoad;

 public GameObject qMarker;

 void Start () {

 teleportText.SetActive(false);

 qMarker.SetActive(false);

 }

 private void Update()

 {

 if (PlayerControl.scrollCount >= 7)

 { qMarker.SetActive(true); }

 else { qMarker.SetActive(false); }

 }

 private void OnTriggerStay(Collider other)

 {

 if (other.gameObject.tag == "Player" && PlayerControl.scrollCount >= 7)

 {

 teleportText.SetActive(true);

 if (teleportText.activeInHierarchy == true && Input.GetKeyDown

(KeyCode.F))

 {

 SceneManager.LoadScene(levelToLoad, LoadSceneMode.Single);

 } } }

 private void OnTriggerExit(Collider other)

 {

 teleportText.SetActive(false);

 } }

©Daffodil International University

