
6                                         DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 1, ISSUE 1, JULY 2006 

STUDY ON GA BASED SOLUTIONS TO SET PARTITIONING PROBLEM AND PROPOSED 
NEW APPROACH 

 
S.M. Shahriar Nirjon 
Department of CSE 

Bangladesh University of Engineering & Technology 
E-mail: nirjon_buet@yahoo.com 

 
 
Abstract—Evolutionary Algorithms (EAs) are search 
methods that take their inspiration from natural 
selection and survival of the fittest in the biological 
world. Genetic Algorithm is a kind of EA GAs emphasize 
on the behavioral linkage between the parent generation 
and their offspring. GAs have been successfully applied 
to many optimization problems in recent years. In this 
paper, we work with various GA based solutions used to 
partition a number of objects into a numbers of disjoint 
subsets according to some problem specific optimization 
criteria and we also pose the merits and demerits of 
these solutions. Later on we propose our own structural 
approach and show the results. 
 
Keywords—Crossover, Fitness function, Genetic 
Algorithm, Mutation, Population, Selection.  
 
 

1. Introduction 
Genetic Algorithm is a variant of stochastic beam 
search in which successor states are generated by 
combining two parent states rather than modifying 
a single state. The analogy to natural selection is 
the same as in stochastic beam search, except new 
states are generated by the process of reproduction. 
Offspring bears the genetic information present in 
the parent. 

John Holland [3] (1975) is credited with 
inventing the area of Genetic Algorithm. According 
to his Schema Theorem, we can expect a population 
of individuals to evolve towards containing good 
solution candidates. 

Partitioning a set of objects into a number of 
disjoint subsets is a well-known problem. It comes 
in various forms. For example, the Equal Piles 
Problem was defined and first studied by Jones and 
Beltramo (1991).The problem is to partition N 
numbers into K subsets, such that the sums of the 
subsets are as nearly equal as possible. (Jones and 
Beltramo relate the problem to the case of objects 
of specified heights, which are to be, stacked into 
disjoint piles so that the pile heights are as nearly 
equal as possible.) The optimization criterion here 
is to minimize the sum of differences from average. 

At first, we discuss previous attempts on solving 
this problem with GAs. The fitness function, 
selection strategy, crossover and mutation operation 
of these approaches are described. Finally we 
present our approach and a summarized result of 
applying the algorithm over randomly generated 
data. 

2. The Problem 
There are N- objects, each associated with a value 
X(i), i = 1 to N. We have to divide these N objects 
into K- nonempty disjoint subsets S(j), j = 1 to K 
such that, 
I) ∑ | S(j) | = N, for j =1 to K. 
II) | S(j) | > 0, for j =1 to K. 
III) for all i = 1 to N, X(i) belongs to some S(j) , j = 
1 to K. 
Let, E(i, j) = the j-th element of i-th subset. 
C(i) = ∑ E(i, j) , j = 1 to | S(i) |    (1) 
Cn = ∑ C(i), i = 1 to K.    (2) 
Cav = Cn / K     (3) 
D(i) = | C(i) – Cav |     (4) 
D = ∑ D(i), i = 1 to K     (5) 
And our goal is to minimize D. 

3. GA-Based Solutions’ Literature Survey 

3.1. Basic Stages 
GA-based algorithms iterate over the basic stages: 
Fitness evaluation, Selection, Crossover, and 
Mutation. In the following sub-sections we describe 
some successful attempts so far by various 
researchers. 

3. 1.1. Initial Population 
Initial population is a set of vectors, P0 = {p0(1), 
p0(2) … p0(k)}, where population size k -is a user 
defined parameter. A larger k-value will definitely 
exhaust large amount of memory and will also 
increase the computation time. On the other hand, a 
smaller k-value means smaller population and



NIRJON: STUDY ON GA BASED SOLUTIONS TO SET PARTITIONING PROBLEM AND PROPOSED NEW APPROACH                                                             7 

therefore poor performance. Chu and Beasley [4] 
showed by their computation that the quality of the 
solution is not very sensitive to the size of the 
population, and a population of size k = 100 were 
used by them. They also generated the initial 
population randomly. Each of the vectors has N 
components. Let, p0(i, j) denote the j-th component 
of i-th vector p0(i) from initial population P0. p0(i, j) 
is initialized according to uniform distribution over 
the range [1, K]. (The meaning of N, K is given in 
section 2). On the other hand, Greene [5] kept 
individual partitions in a population arranged in 
increasing order of error. Although this introduced 
more computation and complex data structure to 
manipulate individual sets, it produces good results 

3.1.2. Fitness Evaluation 
There are two approaches to defining the fitness of 
an individual. The most common approach is to use 
penalty function [6] [7]. Penalty methods allow 
constraint to be violated [4]. An alternative 
approach for defining fitness involves separating 
the single fitness measure into two values: one is 
called fitness value and other is unfitness value [4]. 
The limitations of the former approach are 
discussed in [6]. As described in section 2, our aim 
is to minimize D. Each of the k-vectors (i.e. k-
individuals) in i-th generation Pi has corresponding 
error value fi(j), j = 1 to k. This fi(j) is the D –value 
for the j-th individual of i-th generation, which is 
calculated from equations (1), (2), (3), (4) and (5). 
The overall error value of apopulation Fi, is defined 
as the minimum of all fi(j). i.e. Fi = min { fi(1), fi(2) 
… fi(k)}. In Greene [5], the fitness is just the 
complement of error; the more erroneous a 
partition, the less fit it is. It’s the simplest of all 
approaches. 

3.1.3. Parent Selection 
Roulette-wheel selection scheme (also known as 
stochastic sampling with replacement) is a popular 
method for selection. In this method individuals are 
mapped to contiguous segments of a line, such that 
each individual’s segment is proportional to its 
fitness. A random number is generated and the 
individual whose segment spans the random 
number is selected. 

Survival of the fittest surfaces in two forms [5]. 
Firstly, elitism is practiced: a (small) percentage of 
the best individuals automatically survive into the 
next generation. Secondly, a weighted roulette 
wheel (Goldberg 1989) is used to favor fitter (less 
erroneous) parents as candidates for mating with 
crossover.  

Since we are minimizing fi(j), we have to map 
this fi(j) values to another value Ji(j) = (∑ fi(m), m 
= 1 to k) - fi(j). Now this individual with smaller 
fi(j) will have larger probability of being selected 
for crossover. 

Chu and Beasley [4] developed Maximum 
Compatibility Selection (MCS) method for 
selecting parents that attempts to improve solution 
quality as well as feasibility. Their approach 
divides the fitness unfitness landscape into 4 
subgroups. One parent is selected using a binary 
tournament based on fitness and then the other one 
is selected to give a maximum compatibility score. 

3.1.4. Crossover 
Single or multi-point crossover method is often 
applied to generate new population. Two of the 
selected individuals are taken and some crossover 
point is selected uniformly at random within the 
range [1, N]. The variables are exchanged between 
the individuals about this point, and then two new 
offspring are produced. 

Jones and Beltramo [8] tried nine GAs, the best 
of which turned out to be an ordering GA with 
PMX crossover (Goldberg 1989). But on an 
average the result was not satisfactory. 

Falkenauer [9] identified the problem and 
proposed that the entire subset should be treated as 
a gene rather than individual numbers. Falkenauer 
applied his Grouping Genetic Algorithm(GGA) on 
this problem and it showed a better result. Greene 
[5] proposed an interesting approach that he called 
‘Eager Breeder’ algorithm. Here k best subsets are 
at first selected from a total of 2k subsets (k subsets 
from each parent). It starts two pointers, one at the 
beginning of each parental subset list, and let them 
track down their respective lists. At each step, the 
better subset of the pair now pointed at is copied 
into the child’s collection. Then an adjustment is 
done when an object belongs to more than one 
subset or no subset using most into least (MIL) 
heuristic. Falkenauer employs this same insight and 
terms it the Equal Piles Descending (EPD) 
heuristic. 

3.1.5. Mutation 
Offspring are mutated after being created by 
recombination with a low probability. Our 
Mutation probability follows exponential 
distribution. The more the value of Ji(j), j = 1 to k 
the less is has probability of being mutated. Our 
mutation probability is: λ exp (-λ Ji(j)) , where λ is 
a predefined parameter. As mentioned earlier, in 
Greene [5] the population is kept sorted according



8                                          DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 1, ISSUE 1, JULY 2006 

to the fitness value. Then Pt is divided into four 
bands. The first band size equals the size of elite 
survivors (10%) and goes through just one mutation 
step. The remaining 3 bands consist of the next 
33%, 30% and 30% of the population in decreasing 
fitness. With 50% probability an element of these 
bands undergoes 4, 10, 20 mutation steps. Mutation 
operator designed by Chu and Beasley [4] is of two 
types – static and dynamic. Mutation rate (Ms) is 
constant at static mutation. Dynamic mutation is 
helpful when an attempt to satisfy a particular 
constraint may introduce infeasibilities into other 
current feasible constraints. Whenever certain 
constraint is satisfied in less than a fraction of the 
total population (i.e. £ | P |, £ small), dynamic 
mutation tries to re-introduce solutions that satisfies 
that constraint. 

3.2. Framework of GA based Algorithms 
Following is the common framework of any GA 
based algorithm: 

Algorithm GA_Search 
1. Generate an initial population; 
2. Evaluate fitness of individuals in the population; 
3. repeat 
4.   Select parents from the population; 
5.   Recombine (mate) parents; 
6.   Evaluate fitness of the children; 
7.   Mutation; 
8. until a satisfactory solution is found; 

4. Proposed Algorithm for Set Partitioning 
Problem 
We now propose a different structure rather than 
the conventional one: 
Algorithm GA_Caller (α , β) returns Solution 
Input: α, β - two positive integers, the minimum 
and maximum limits of  Є. 
Output: Solution 
begin 
1 for Є = α to β do 
2    if ( GA_Search (N, K, k, Є, O, I) =    Success ) 

then 
3        return Solution 
4    end if 
5 end for 
end 
 
Algorithm GA_Search (N, K, k, Є, O, I) returns 
Success or Failure 
Input: N, K – number of objects and subsets. 
k – Population size. 
Є – Threshold for fitness. 

O, I – positive integers to control the number of 
iteration. 
Output: Success or Failure 
begin 
1 while O > 0 do 
2    Take Initial Population. 
3    for i = 1 to I do 
4       Calculate Fitness value Fi 
5       if Fi < Є then 
6             Solution := pi(j), where fi(j) =     Fi,, for 

some j =1 to k 
7              return Success 
8       end if 
9       Select k-individuals 
10     Do Crossover 
11     Do Mutation 
12     Select k-best individuals for next  generation 

Pi+1 
13   end for 
14   O := O - 1 
15 end while 
16 return Failure 
end 

4.1. Analysis of the algorithm 

Claim 1: The algorithm returns a solution. 
Proof: For suitably chosen values of α, β and a 
finite increment Є > 0 of Є, the algorithm returns a 
solution if and only if GA_Search (N, K, k, Є, O, I) 
returns Success for some value of Є = Єi within the 
range and Failure for other α <= Є < Єi. It’s easy 
to see that for a finite value of O and I, GA_Search 
will eventually return Failure in case it gets stuck in 
a local minima after Ο(OI) iterations. We now 
prove our claim by contradiction. Let’s assume that 
the GA_Search never returns Success. Referring to 
equations (1)-(5), the maximum value for Fi = (K-
1) Cav + Cn - Cav. Setting β = this maximum value 
and α = 0 we can cause line #5 of GA_Search to 
return Success, which is a contradiction. 

Claim 2: The algorithm returns a near-optimal 
solution. 
Proof: Let, the optimum value for Є = ø and the 
number of optimum goal states is nø. Clearly, when 
Є < ø, GA_Search never returns Success, since Fi 
>= ø. When Є > ø, we have a more relaxed 
problem with the number of goal states increased. 
The more the number of goal states, the more the 
probability of reaching a goal since the total 
number of different states remains fixed to KN. 
Suppose GA_Search returns Failure for some Єi > 
ø with probability of failure qi. Now the probability



NIRJON: STUDY ON GA BASED SOLUTIONS TO SET PARTITIONING PROBLEM AND PROPOSED NEW APPROACH      9 

that it will fail in the next call with Єi+1 > Єi is qi+1 
which must be lower than qi. A drastically increase 
of goal states after each failure means that qi will 
diminish very soon and eventually return a near 
optimal solution. 

5. Experimental Results 

5.1. Datasets 
Datasets are generated randomly for various 
combinations of N, K. Datasets are generated such 
that N is a multiple of K and the optimum D-value 
is zero. By this way we can easily compute the 
accuracy of our algorithm since the optimum value 
is known in advance. 

5.2. Results 
Table 1 shows a summarized output of the input 
datasets. Here the average error per subset is 
calculated to see the accuracy of the algorithm. 

5.3. Experimental Facts 
We observe some experimental facts- 
I) Accuracy increases as N and/or K decreases. 
(E.g. Test# 1,2,3 & 8,9,10) 
II) Accuracy increases as Є decreases. (E.g. Test# 
14, 15) 
III) Computation time decreases as K decreases 
(E.g. Test# 8, 9, 10) 
IV) Computation time decreases as Є increases 
(E.g. Test# 14, 15) 

 
Table 1: Summarized output. 

 
Test# N K (∆Є, I, O) Time (sec) Generation

s (avg) 
Accuracy 
% 

1 10 2 (1, 32, 16) 0 7 100 
2 10 4 (1, 32, 16) 0 288 100 
3 10 5 (1, 32, 16) 0 1718 99.42 
4 15 3 (1, 32, 16) 0 11091 99.44 
5 15 5 (1, 32, 16) 1 42138 98.62 
6 25 5 (1, 32, 16) 1 20157 97.06 
7 30 3 (1, 32, 16) 0 4168 99.56 
8 100 5 (1, 32, 16) 4 47513 98.59 
9 100 10 (1, 32, 16) 20 196998 93.91 
10 100 20 (3, 32, 32) 41 322416 84.27 
11 225 9 (2, 25, 50) 35 205956 97.04 
12 550 11 (4, 16, 40) 169 239219 95.40 
13 1000 25 (150, 32, 32) 20 32195 92.37 
14 10000 50 (5000, 16, 32) 26 2048 92.88 
15 10000 50 (2500, 16, 32) 42 3328 94.67 
16 100000 100 (40000, 16, 32) 33 384 95.89 

 

6. Conclusion and Future Works 
In this paper we offered a different approach of 
applying GA that finds a near optimal solution to 
the set partitioning problem by iteratively relaxing 
constraints. Our algorithm needs some parameters 
to be supplied for a particular instance of the 
problem. In future we would work on this so that 
the algorithm itself can set these parameters from 
experience. 

7. References 
[1] Fogel, “Evolving artificial intelligence”, Ph.D. 

dissertation, Univ. of California, San Diego, CA, 
1992. 

[2] Fogel, “Evolutionary Computation: Toward a New 
Philosophy of Machine Intelligence”, IEEE press, 
Piscataway, NJ. 

[3] J. Holland, Adaptation in Natural and Artificial Systems, 
University of Michigan Press,Ann Arbor, MI (1975). 

[4] P.C. Chu & J.E. Beasley, “A Genetic  Algorithm for 
the Set Partitioning Problem”,Technical report, 
Imperial College, 1995. 

[5] W.A. Greene, “Partitioning     Sets with Genetic 
Algorithms”, In J. Etheredge and B. Manaris (eds.), 
Proceedings of the thirteenth International Florida 
Artificial Intelligence Research Society (FLAIRS) 
Conference, May 22-24, 2000, Orlando, FL. 
(pp.102-106) AAAI Press, Menlo Park, CA. 

[6] D. Levine, “A parallel genetic algorithm for the set 
partitioning problem”, Ph.D. thesis, Illinois Institute 



10                              DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 1, ISSUE 1, JULY 2006 

       of Technology, Dept. of Computer Science, May  
       1994. 
[7] D. Powell &M. Skolnick. “Using genetic 

algorithms in engineering design optimization with 
non linear constraints”. In S. Forrest, editor, 
Proceeding of the fifth International Conference on 
Genetic algorithms, pages 424-431 . Morgan 
Kaufmann, 1993. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[8] Jones, D. R., & Beltramo, M. A. (1991); “Solving 
Partitioning Problems with Genetic Algorithms”, in 
Belew, K.R. & Booker, L. B. (Eds.), Proceedings of 
the Fourth International Conference on Genetic 
Algorithms; Morgan Kaufmann Publ., San 
Francisco. 

[9] Falkenauer, Emanuel (1995); “Solving Equal Piles 
with the Grouping Genetic Algorithm”, in 
Eshelman, L. J. (Ed.), Proceedings of the Sixth 
International Conference on Genetic Algorithms; 
Morgan Kaufmann Publ., San Francisco. 


