
NABI ET AL: IMPLEMENTATION AND PERFORMANCE ANALYSIS OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 28

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF
ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

Mohammad Noor Nabi, Sabbir Mahmud, and M Lutfar Rahman*

School of Engineering and Computer Science, Independent University, Bangladesh
* Department of Computer Science and Engineering, University of Dhaka, Bangladesh

E-mail: mnnabi@iub.edu.bd, smahmud@iub.edu.bd, lrahman@udhaka.net

Abstract: In this paper we present a novel method for
obtaining fast software implementation of the Elliptic
Curve Digital Signature Algorithm in the finite field
GF(p) with an arbitrary prime modulus p of arbitrary
length. The most important feature of the method is that
it avoids bit-level operations which are slow on
microprocessors and performs word-level operations
which are significantly faster. The algorithms used in the
implementation perform word-level operations, trading
them off for bit-level operations and thus resulting in
much higher speeds. We provide the timing results of our
implementations on a 2.8 GHz Pentium 4 processor,
supporting our claim that ECDSA is appropriate for
constrained environments.

Keywords: Digital Signature, Elliptic Curve, Finite
Field, ECDSA, Hashing.

1. Introduction
A digital signature is a checksum which depends on
the time period during which it was produced. It
depends on all the bits of a transmitted message,
and also on a secret key, but which can be checked
without knowledge of the secret key.

Digital signatures furnish the parties with two
forms of protection, where A is the originator and
B the receiver of message. 1) Both party A and
party B should be protected against forged
messages, planted in communication system by a
third party C who pretends to be party A. 2) Party
A should be protected against messages forged by
party B, who may claim to received the messages
from party A.

At this time, there are three popular public-key
algorithms which can provide digital signatures: (1)
Elliptic Curve Digital Signature Algorithm
(ECDSA) [1]; (2) the RSA scheme [2], (3) the
ElGamal signature scheme [3]. Among these
ECDSA provides a faster alternative for public-key
cryptography, much smaller key lengths are
required to provide a desired level of security [1].

The objectives of this paper are to implement
Elliptic Curve Digital Signature Algorithm
(ECDSA) in C/C++ and analyze its workload

characteristics. This paper also finds the suitability
of ECDSA in constrained environment where the
processing resources, memory and power are all
very limited.

In Section 2 some of the related works are
mentioned. Section 3 describes briefly about
elliptic curve cryptography and generation of
parameters of ECDSA. Section 4 describes the
ECDSA. Section 5 describes the algorithms used in
the implementation of ECDSA. In section 6
experimental results are presented. Section 7
concludes the paper.

2. Previous Work
Elliptic curves as mathematical objects have been
known and studied since long before digital
computers were built, but their application in
cryptography has been more recent. In 1985, Victor
Miller [4] and Neal Kolbitz [5] suggested
independently that elliptic curves could he used to
perform public-key security functions (e.g. key
exchanges, digital signatures). Detailed and
comprehensive reference is available on techniques
for efficient finite field and elliptic curve arithmetic
is IEEE 1363-2000 [6]. Elliptic-curve ElGamal
(EC-EIGamal) is the elliptic-curve analog of the
integer ElGamal algorithm [7]. ECC provide the
highest strength per bit among cryptosystems
known today [8]. Jin-Hee Han and al implemented
ECDSA based on Java card [9]. T.Yanik and al
implemented ECDSA by incomplete reduction in
modular arithmetic [10].

3. Elliptic Curve Cryptography
The Elliptic Curve Digital Signature Algorithm
(ECDSA) is the elliptic curve analogue of the
Digital Signature Algorithm (DSA). It was
accepted in 1999 as an ANSI standard, and was
accepted in 2000 as IEEE PI363 [10] and NIST’s
FIPS 186-2 [12] standards. It was also accepted in
1998 as an ISO standard, and is under consideration
for inclusion in some other ISO standards. Unlike
the ordinary discrete logarithm problem and the

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007 29

integer factorization problem, no subexponential-
time algorithm is known for the elliptic curve
discrete logarithm problem. For this reason, the
strength-per-key-bit is substantially greater in an
algorithm that uses elliptic curves.

3.1 Comparison of Elliptic Curve Cryptography
Certain unique properties of elliptic curves

made them resilient against the types of attacks that
were successful against integer-based algorithms.
Table 1 shows, the number of key bits necessary to
have equivalent levels of security for integer based
algorithms (e.g. Digital Signature Algorithm, RSA)

versus elliptic curve algorithms (e.g. ECDSA). For
the most commonly used 1024-bit keys for an
integer based algorithm; the elliptic curve
counterpart only requires 160-bit keys for the
equivalent security [11]. This is 7 times reduction
in the space required to store these keys, or a
similar reduction in bandwidth required to transmit
these keys over a wireless network. This reduction
in the size of data objects allows much faster
completion of the algorithms. Because of these
favorable properties, ECC has been incorporated
into many security standards.

Table 1. Key lengths (in bits) for equivalent security
Integer algorithm (e.g. DSA, RSA) Elliptic curve algorithm (e.g. ECDSA)

512 106
768 132
1024 160
2048 210

21000 600

3.2. Elliptic Curve Parameters
Implementation of elliptic curve cryptography
involves the selection of a suitable elliptic curve
(determined by the coefficients in the elliptic curve
equation), the representation of field elements (e.g.
a binary field or a prime field), algorithms for field
arithmetic and elliptic-curve arithmetic. The
standards provide suggestions for the selection of
elliptic curves and representation of field elements.
FIPS 186-2 [12] recommends a total of ten curves
for binary fields: two different curves for each of
163-bit, 233-bit, 283-bit, 409-bit and 571-bit fields.
We limit the scope of this analysis to five curves on
binary fields, and choose polynomial basis
representation for the field elements, which allows
faster implementation on programmable processors.

4. Elliptic Curve Digital Signature
Algorithm
Elliptic-curve ElGamal (EC-EIGamal) is the
elliptic-curve analog of the integer ElGamal
algorithm [13]. It is used to securely transmit the
coordinates of the point P(x, y) from party A to
party B (assume that the original plaintext m is
embedded in P(x, y). We assume that party A and
party B have previously agreed on a binary field
GF(2k), a common elliptic curve E with suitable
coefficients, and a base point, which lies on E and
has order n.

Elliptic-curve Digital Signature Algorithm
(EC-DSA) has three different segments: key
generation, signature generation and signature
verification. These steps are summarized in Figure
1, where party A signs the message m and party B
verifies the signature.

Key generation (by party A)
1. Choose random 1]n[2,a −∈
2. Compute intermediate point AT

AT = P × a
Party A’s private key = a
Party A’s public key = (E,P,AT)

Signature Generation (by party A)
1. Choose random 1]n[2,k −∈

2. Compute)
1

, y
1

(xaP =×

 and
 R = x1 mod n (if r = 0, go to step 1)
3. Compute K-1 mod n
4. Compute
 s = k-1(SHA(m)+ar) mod n
 (if s = 0, go to step 1)

NABI ET AL: IMPLEMENTATION AND PERFORMANCE ANALYSIS OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 30

 Signature for m = (r.s)
5. send (r,s)

Signature verification (by party B)
1. Compute c = s-1 mod n

and
SHA(m)

2. Compute u1= SHA(m)c mod n

And u2= rc mod n
3. Compute

)
0

,
0

(
2

yxu
T

A =×+×
1

uP

and
V = x0 mod n

4. Accept signature if v = r
Figure 1. Elliptic Curve Digital Signature Algorithm

5. Software Implementation Of ECDSA
ECDSA is coded and optimized in C/C++ on IBM
workstation using 2.8 GHz Intel Pentium 4
processor. The coding of these algorithms needs
fairly simple instructions, but efficient algorithms
mentioned in section 4 were used.

The basic arithmetic operations (i.e. addition,
subtraction and multiplication) in the finite field
GF(p) have several applications in cryptography,
including Elliptic Curve Digital Signature
Algorithm (ECDSA) [14].

The arithmetic of GF(p) is also called modular
arithmetic where the modulus is p. The elements of
the field are the set of integers {0, 1, . . ., (p-1)},
and the arithmetic function (addition, subtraction
and multiplication) takes two input operands from
this set and produces the output which is also in
this set. We are assuming that the modulus p is a k-
bit integer, where]2048,160[∈k . A number in
this range is represented as an array of words,
where each word is of length w. Most software
implementations require that w = 32; however, w
can be selected as 8 or 16 on 8-bit or 16 bit
microprocessors. Algorithms used in the
implementation of ECDSA are shown in figure 2
and figure 3.

Algorithm 1 is used for polynomial reduction
in binary fields. Algorithm 2 is used for polynomial
reduction in binary fields. This is facilitated by
using 512-byte table that is pre-computed to hold
16-bit squares of each 8-bit polynomial [14]. For
polynomial inversion, we present Modified Almost
Inverse Algorithm (MAIA) [14] which is
summarized in Algorithm 2. MAIA (and similar
variants of the Almost Inverse Algorithm) is used
in optimized implementations. Algorithm 4 was
used for adding two points and Algorithm 5 was
used doubling of a point on elliptic curves.

Nomenclature for algorithm descriptions:
Polynomials are represented using lower-case
letters: a(x), b(x), c(x) etc. When addressing the
individual 64bit words of a polynomial, square
brackets are used: a[0], b[l], c[2] etc. a[0]
represents the lowest order (least significant) word
of a(x). When addressing the individual bits of a
polynomial, a subscript is used: a0, b32, c162 etc. The
bit a0 represents the least-significant bit of a(x), a162
represents the most-significant bit. The operator
⊕ represents an XOR operation. When used, p(x)
denotes the irreducible polynomial generating the
field. For GF(z163), p(x) = x163 + x7 + x4 + x3 + 1.

Algorithm 1. Polynomial reduction [8]
INPUT: Binary polynomial c(x) of degree at most 324.
OUTPUT: c(x) mod p(x), where p(x) = x163 + x7 + x6 + x3 +1
1. For i from 5 down to 3 do

1.1 t = c(i) .
1.2 c(i-3)≡ c(i-3) ⊕ (t<<29) ⊕ (t<<32) ⊕ (t>>35) ⊕ (t>>36)
1.3 c(i-2)≡ c(i-2) ⊕ (t<<28) ⊕ (t<<29) ⊕ (t>>32) ⊕ (t>>35)

2. t = c(i)&0xFFFFFFFF800000000.
3. c(0)≡ c(0) ⊕ (t<<28) ⊕ (t<<29) ⊕ (t>>32) ⊕ (t>>35)
4. c[2] = c[2]&0x00000007FFFFFFFF.
5. Return (c[2], c[1], c[0].

Algorithm 2. Table lookup method for polynomial squaring
INPUT: Binary polynomial a(x)
OUTPUT: C(X) = a2(x)

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007 31

1. Precomputation: For each byte v = (v7, v6 ...v1, v0).
compute the 16-bit quantity T(v) = (0, v7, 0, v6 ... , 0, v1, 0,v0
2. For i from 0 to 5 do

2.1. Let a[il = (u7, u6, u5, u4, u3, u2, u1, u0) where each ui is a byte.
2.2. c[2i]=(T(u1), T(u0)), c[2i+1]=(T(u3), T(u2))

3. Return c(x).

Algorithm 3. Modified Almost Inverse Algorithm (MAIA) [8,23] for polynomial inversion
INPUT: Binary polynomial a(x), a(x) ≠ 0
OUTPUT:
b(x)∈ GF(2t) and t∈[0,2k-1] Such that b(x) a(x)≡ xt mod p(x)
1. b(x)=1, c(x)=0, u(x)=a(x), v(x)= p(x), t=0.
2. While x divides u(x) do

 2.1 u(x)= u(x)/x, c(x)= c(x)x, t = t+1
3. u(x) = 1, return (b(x)t.
4. If degree (u(x))<degree(v(x)) then u(x)↔ v(x), b(x) ↔ c(x).
5. u(x)= u(x)+ xj v(x), b(x)= b(x)+ c(x)
6. Go to Step 2.

Figure 2. Algorithms for (a) polynomial reduction, (b) polynomial squaring (c) Polynomial inversion

Algorithm 4. Adding two distinct points on an elliptic curve
INPUT: Elliptic Curve points P =(x1, y1) and Q =(x2, y2), P ≠ Q
OUTPUT: R = P + Q = (x3, y3)

1. Compute
12

12

xx
yy

+
+

=θ

2. Compute axxx ++++= 21
2

3 θθ

3. Compute 13313)(yxxxy +++= θ
4. Return (x3, y3).

Algorithm 5. Doubling a point on an elliptic curve
INPUT: Elliptic Curve point P =(x1, y1)
OUTPUT: R = P + P = (x3, y3)

1. Compute
x
yx +=θ

2. Compute ax ++= θθ 2
3

3. Compute 3
2

3)1((xxy ++= θθ
4. Return (x3, y3).

Figure 3. Algorithms for (a) adding points (b) doubling points on an elliptic curve

Separate program was written to count points
on the curve and specify an initial point on the
curve using algorithms shown in figure 3, which
was then used in a separate program as common
information to generate public and private key. The
source codes were carefully minimized by creating
separate functions to handle polynomials using
different algorithms shown in figure 2 and figure 3.
Separate main programs were written for signature
generation and verification of ECDSA described in
section 4 where algorithms shown in figure 2 were
used.

6. Experimental Results
Experiments were performed on many different
sets of data. For characteristic representative of

workload characterization, we used the three
different sets of inputs in the range of 2000000 to
100000000 characters without space. The
experiments were conducted on an IBM
workstation with Intel processor Pentium 4 of 2.8
GHz clock speed, memory size 512 MB, cache
memory size 512 KB and storage of 40 GB. Table
2 shows the hashing time obtained from the
experiments. The number of characters is
represented by n, and the times taken (in
milliseconds) by hashing is stated by TH. Figure 4
shows that the ‘hashing’ time increases linearly
with the number of characters or block size.
Hashing is very fast as we found that for 10 million
characters without spacing it takes around 406
milliseconds.

NABI ET AL: IMPLEMENTATION AND PERFORMANCE ANALYSIS OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 32

Table 3 and Table 4 shows the time obtained
from our experiments for five different key sizes.
The key sizes were taken for five different curves.
The key sizes were selected according to
equivalency shown in Table 1. In these tables TGS1,
TGS2, TGS3, TGS4, and TGS5 represent the times taken
(in milliseconds) for signature operations using key
sizes of 106,132, 160, 224 and 512 bits
respectively. TSWH1, TSWH2, TSWH3, TSWH4, and TSWH5

represent the times taken (in milliseconds) for
signature operations without hashing and TVS1,
TVS2, TVS3,TVS4 and TVS5 represent the times taken
(in milliseconds) for signature verification
operations for the above mentioned five key sizes
respectively. The times TGS5 and TVS5 taken for
digital signature generation and verification using
key size of 512-bits are considered to calculate the
speedup.

Table 2. Experimental results for hashing using SHA1
N TH (msec)

 2000000 78
6000000 234

10000000 406

Table 3. Experimental results of ECDSA for key size 106, 132 and 160 bits
Key Size: 106 Key Size: 132 Key Size: 160

n TGS1
(msec)

TSWH1
(msec)

TVS1
(msec)

TGS2
(msec)

TSWH2
(msec)

TVS2
(msec)

TGS3
(msec)

TSWH3
(msec)

TVS3
(msec)

2000000 78 0 78 78 0 78 78 0 78
6000000 234 0 234 234 0 234 234 0 234
10000000 406 0 406 406 0 406 406 0 406
Speedup 1 - 1 1 - 1 1 - 1

Table 4. Experimental results of ECDSA for key size 224 and 512

Key Size: 224 Key Size: 512
N TGS1

(msec)
TSWH1
(msec)

TVS1
(msec)

TGS2
(msec)

TSWH2
(msec)

TVS2
(msec)

2000000 78 0 78 78 0 78
6000000 234 0 234 234 0 234
10000000 406 0 406 406 0 406
Speedup 1 - 1 1 - 1

ECDSA Signature generation

0

100

200

300

400

500

2000000 6000000 10000000
No. of Characters

To
ta

l C
om

pu
ta

tio
n

Ti
m

e(
m

se
c)

160 224 512
ECDSA Signature Verification

0

100

200

300

400

500

2000000 6000000 10000000
No. of Characters

To
ta

l C
om

pu
ta

tio
n

Ti
m

e(
m

se
c)

160 224 512

 (a) (b)
Figure 4. Result analysis of the results for ECDSA, (a) Signature generation time; (b) Signature Verification time; using key sizes

160, 224 and 512 bits respectively

Figure 5 states the relationship between the results
from our experiments. Figure 4(a) show signature
generation and Figure 4(b) show signature
verification time respectively using key size 160
bits, 224 bits and 512-bits. It is found that for the
similar number of characters (2000000 and

10000000) ECDSA takes similar amount of time
for input of same sizes. It is found that for ECDSA
signature generation and verification times are
equivalent to their hashing times respectively.
Table 3 and Table 4 show that the signature
generation without hashing is 0 in millisecond

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007 33

scale, which means the operation needs less than 1
millisecond for five key sizes considered in the
experiment. In millisecond scale we did not find
any speed up although key sizes were varied from
106 to 512 bits which means that Speedup factor
does not increase with key size. ECDSA is very
fast, signature generation and verification time is
very insignificant in comparison with hashing
time.

7. Conclusions
In this paper we presented practical
implementation of ECDSA signature generation
and verification algorithms and found its workload
characteristics. ECDSA can provide very high
speed signature generation and verification. As
much smaller key length is required with ECDSA
to provide desired level of security, key exchanges
become faster and smaller key storage is needed.
ECDSA is therefore much better than DSA and
RSA signatures for constrained environment like
mobile information appliances, where computing
resources and power ability are limited. ECDSA
can be used equally in non-constrained
environments. We hope that this paper contributes
to an increased understanding of the properties of
ECDSA, and facilitates its use in practice.

For future work, we plan to expand our
research to include other digital signature
algorithms, elliptic-curve algorithms, different
block ciphers, symmetric-key, and hash functions.
We will also expand our ECC results to include
results for prime fields, using bases other than
polynomial bases, and different coordinate systems
such as projective coordinates.

References

[1] Araki. Kiyomichi, Takakazu Satoh, and Shinji
Miura, “Overview of Elliptic Curve
Cryptography,” Public Key Cryptography. pp.
2948. Springer-Verlag. 1998.

[2] Rivest, R.L., Shamir, A., and Adelman, L. “A
method for obtaining digital signatures and
public-key cryptosystem”, Commun. ACM, 1978,
21, (2). pp. 120-126.

[3] Elgamal, T, “A public-key cryptosystem and a
signature scheme based on discrete logarithms”,
IEEE Trans. Info. Theo, 1985, IT-31, pp. 469-472

[4] Miller. Victor S., “Use of Elliptic Curves in
Cryptography,” Lecture Notes in Computer Sci.
no. 218, pp. 417.426, Springer-Verlag. 1986.

[5] Koblitz, Neal. “Elliptic Curve Cryptosystem”
Mathematics of Computation, vol 48, no, 177,
pp203-209, 1987

[6] T. Hasegawa, J. Nakajima and M. Matsui, “A
practical implementation of elliptic curve
cryptosystems over GF(p) on a 16-bit

microcomputer”, Public Key Cryptography –
Proceedings of PKC ’98, Lecture Notes in
Computer Science, 1431 (1998), 182-194.

[7] “Proposed Federal Information Processing
Standard for Digital Signature Standard (DSS)”,
in Federal Register, 1991, 56, (169),

[8] Menezed, A., Van Oorschot, P., Vanstone, S.,
Handbook of Appl Cryptography, CRC Press,
1997.

[9] Jin-Hee Han and al, “Implementation of
ECC/ECDSA Cryptography Algorithms Based on
Java Card”, Proceedings of the 22nd International
Conference on Distributed Computing Systems
Workshops (ICDCSW’02), 2002 IEEE

[10] T.Yanik, E. Savas and C. K. Koc “Incomplete
reduction in modular arithmetic” IEE
Proceedings online no. 20020235, 2002.

[11] Annex to the IEEE P1363, Standard
Specifications for Public Key Cryptography.

[12] “Digital Signature Standard (DSS) - FIPS Pub.
186-2” February 2000.

[13] EIGamal, T., “A Public key Cryptosystem and a
Signature Scheme based on Discrete Logarithm,”
IEEE Trans. on Info theory, 31:469-472. 1985.

[14] Hankerson, D., J. Hernandez. and A. Menezes.
“Software Implementation of Elliptic Curve
Cryptography Over Binary Fields,’’ Proceedings
of Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2000), 2000.

Mohammad Noor Nabi is currently a Lecturer in the
School of Engineering and Computer Science at the
Independent University, Bangladesh. Mr. Nabi received
his B. Sc. (Honors) in Applied Physics, Electronics and
Communication Engineering, M.S. in Computer
Science and Engineering degrees from University of
Dhaka. Mr Nabi’s areas of interest include Parallel and
distributed computing, Cryptography and VLSI design.

Sabbir Mahmud is currently a Lecturer in the School
of Engineering and Computer Science at the
Independent University, Bangladesh. Mr. Mahmud
received his B. Sc. (Honors) in Computer Science from
IUBAT and M.S. in Computer Science from
Independent University, Bangladesh. Mr Mahmuid’s
areas of interest include Parallel and distributed
computing, Cryptography and Data Mining.

M. Lutfar Rahman is currently working as a Professor
in the Department of Computer Science and
Engineering, University of Dhaka and he is the founder
chairman of the Department. He worked as the director
of Institution of Information Technology (IIT) of Dhaka
University. Professor Rahman obtained B.Sc. (Hons)
and M.Sc. in Physics and M.Sc. and Ph.D. in Electronic
and Electrical Engineering. He has over 200 research
papers and scientific and technical articles to his credit.
He authored sixteen books on Electronics and Computer
Science and was awarded “Halima Sharfuddin Science
Writer Prize” by Bangla Academy.

