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Abstract: In this paper we present a novel method for 
obtaining fast software implementation of the Elliptic 
Curve Digital Signature Algorithm in the finite field 
GF(p) with an arbitrary prime modulus p of arbitrary 
length. The most important feature of the method is that 
it avoids bit-level operations which are slow on 
microprocessors and performs word-level operations 
which are significantly faster. The algorithms used in the 
implementation perform word-level operations, trading 
them off for bit-level operations and thus resulting in 
much higher speeds. We provide the timing results of our 
implementations on a 2.8 GHz Pentium 4 processor, 
supporting our claim that ECDSA is appropriate for 
constrained environments. 
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1. Introduction 
A digital signature is a checksum which depends on 
the time period during which it was produced. It 
depends on all the bits of a transmitted message, 
and also on a secret key, but which can be checked 
without knowledge of the secret key.  

Digital signatures furnish the parties with two 
forms of protection, where A is the originator and 
B the receiver of message. 1) Both party A and 
party B should be protected against forged 
messages, planted in communication system by a 
third party C who pretends to be party A. 2) Party 
A should be protected against messages forged by 
party B, who may claim to received the messages 
from party A.  

At this time, there are three popular public-key 
algorithms which can provide digital signatures: (1) 
Elliptic Curve Digital Signature Algorithm 
(ECDSA) [1]; (2) the RSA scheme [2], (3) the 
ElGamal signature scheme [3]. Among these 
ECDSA provides a faster alternative for public-key 
cryptography, much smaller key lengths are 
required to provide a desired level of security [1].   

The objectives of this paper are to implement 
Elliptic Curve Digital Signature Algorithm 
(ECDSA) in C/C++ and analyze its workload 

characteristics. This paper also finds the suitability 
of ECDSA in constrained environment where the 
processing resources, memory and power are all 
very limited.  

In Section 2 some of the related works are 
mentioned. Section 3 describes briefly about 
elliptic curve cryptography and generation of 
parameters of ECDSA. Section 4 describes the 
ECDSA. Section 5 describes the algorithms used in 
the implementation of ECDSA.  In section 6 
experimental results are presented. Section 7 
concludes the paper. 
 
2. Previous Work 
Elliptic curves as mathematical objects have been 
known and studied since long before digital 
computers were built, but their application in 
cryptography has been more recent. In 1985, Victor 
Miller [4] and Neal Kolbitz [5] suggested 
independently that elliptic curves could he used to 
perform public-key security functions (e.g. key 
exchanges, digital signatures). Detailed and 
comprehensive reference is available on techniques 
for efficient finite field and elliptic curve arithmetic 
is IEEE 1363-2000 [6]. Elliptic-curve ElGamal 
(EC-EIGamal) is the elliptic-curve analog of the 
integer ElGamal algorithm [7]. ECC provide the 
highest strength per bit among cryptosystems 
known today [8]. Jin-Hee Han and al implemented 
ECDSA based on Java card [9]. T.Yanik and al 
implemented ECDSA by incomplete reduction in 
modular arithmetic [10]. 
 
 

3. Elliptic Curve Cryptography 
The Elliptic Curve Digital Signature Algorithm 
(ECDSA) is the elliptic curve analogue of the 
Digital Signature Algorithm (DSA). It was 
accepted in 1999 as an ANSI standard, and was 
accepted in 2000 as IEEE PI363 [10] and NIST’s 
FIPS 186-2 [12] standards. It was also accepted in 
1998 as an ISO standard, and is under consideration 
for inclusion in some other ISO standards. Unlike 
the ordinary discrete logarithm problem and the 
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integer factorization problem, no subexponential-
time algorithm is known for the elliptic curve 
discrete logarithm problem. For this reason, the 
strength-per-key-bit is substantially greater in an 
algorithm that uses elliptic curves.  
 

 

3.1 Comparison of Elliptic Curve Cryptography 
Certain unique properties of elliptic curves 

made them resilient against the types of attacks that 
were successful against integer-based algorithms. 
Table 1 shows, the number of key bits necessary to 
have equivalent levels of security for integer based 
algorithms (e.g. Digital Signature Algorithm, RSA) 

versus elliptic curve algorithms (e.g. ECDSA). For 
the most commonly used 1024-bit keys for an 
integer based algorithm; the elliptic curve 
counterpart only requires 160-bit keys for the 
equivalent security [11]. This is 7 times reduction 
in the space required to store these keys, or a 
similar reduction in bandwidth required to transmit 
these keys over a wireless network. This reduction 
in the size of data objects allows much faster 
completion of the algorithms.  Because of these 
favorable properties, ECC has been incorporated 
into many security standards.  

 

Table 1. Key lengths (in bits) for equivalent security 
Integer algorithm (e.g. DSA, RSA) Elliptic curve algorithm (e.g. ECDSA) 

512 106 
768 132 
1024 160 
2048 210 

21000 600 
 

 
3.2. Elliptic Curve Parameters  
Implementation of elliptic curve cryptography 
involves the selection of a suitable elliptic curve 
(determined by the coefficients in the elliptic curve 
equation), the representation of field elements (e.g. 
a binary field or a prime field), algorithms for field 
arithmetic and elliptic-curve arithmetic. The 
standards provide suggestions for the selection of 
elliptic curves and representation of field elements. 
FIPS 186-2 [12] recommends a total of ten curves 
for binary fields: two different curves for each of 
163-bit, 233-bit, 283-bit, 409-bit and 571-bit fields. 
We limit the scope of this analysis to five curves on 
binary fields, and choose polynomial basis 
representation for the field elements, which allows 
faster implementation on programmable processors.  
 

4. Elliptic Curve Digital Signature 
Algorithm 
Elliptic-curve ElGamal (EC-EIGamal) is the 
elliptic-curve analog of the integer ElGamal 
algorithm [13]. It is used to securely transmit the 
coordinates of the point P(x, y) from party A to 
party B (assume that the original plaintext m is 
embedded in P(x, y). We assume that party A and 
party B have previously agreed on a binary field 
GF(2k), a common elliptic curve E with suitable 
coefficients, and a base point, which lies on E and 
has order n. 

Elliptic-curve Digital Signature Algorithm 
(EC-DSA) has three different segments: key 
generation, signature generation and signature 
verification. These steps are summarized in Figure 
1, where party A signs the message m and party B 
verifies the signature. 

 
 

Key generation (by party A) 
1.  Choose random 1]n[2,a −∈  
2.  Compute intermediate point AT 

AT  = P × a 
Party A’s private key = a 
Party A’s public key = (E,P,AT) 

Signature Generation (by party A) 
1.  Choose random 1]n[2,k −∈  

2.  Compute )
1

, y
1

(xaP =×  

     and 
     R = x1 mod n ( if r = 0, go to step 1)  
3.  Compute K-1 mod n 
4.  Compute  
     s = k-1(SHA(m)+ar) mod n 
    (if s = 0, go to step 1) 
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    Signature for m = (r.s)   
5. send (r,s) 

Signature verification (by party B) 
1. Compute c = s-1 mod n 

and 
SHA(m) 

2. Compute u1= SHA(m)c mod n 
 

And u2= rc mod n  
3. Compute  

)
0

,
0

(
2

yxu
T

A =×+×
1

uP  

and 
V = x0 mod n   

4.  Accept signature if v = r 
Figure 1. Elliptic Curve Digital Signature Algorithm 

 
5. Software Implementation Of ECDSA 
ECDSA is coded and optimized in C/C++ on IBM 
workstation using 2.8 GHz Intel Pentium 4 
processor. The coding of these algorithms needs 
fairly simple instructions, but efficient algorithms 
mentioned in section 4 were used. 

The basic arithmetic operations (i.e. addition, 
subtraction and multiplication) in the finite field 
GF(p) have several applications in cryptography, 
including Elliptic Curve Digital Signature 
Algorithm (ECDSA) [14]. 

The arithmetic of GF(p) is also called modular 
arithmetic where the modulus is p. The elements of 
the field are the set of integers {0, 1, . . ., (p-1)}, 
and the arithmetic function (addition, subtraction 
and multiplication) takes two input operands from 
this set and produces the output which is also in 
this set. We are assuming that the modulus p is a k-
bit integer, where ]2048,160[∈k . A number in 
this range is represented as an array of words, 
where each word is of length w. Most software 
implementations require that w = 32; however, w 
can be selected as 8 or 16 on 8-bit or 16 bit 
microprocessors. Algorithms used in the 
implementation of ECDSA are shown in figure 2 
and figure 3. 

Algorithm 1 is used for polynomial reduction 
in binary fields. Algorithm 2 is used for polynomial 
reduction in binary fields. This is facilitated by 
using 512-byte table that is pre-computed to hold 
16-bit squares of each 8-bit polynomial [14]. For 
polynomial inversion, we present Modified Almost 
Inverse Algorithm (MAIA) [14] which is 
summarized in Algorithm 2. MAIA (and similar 
variants of the Almost Inverse Algorithm) is used 
in optimized implementations. Algorithm 4 was 
used for adding two points and Algorithm 5 was 
used doubling of a point on elliptic curves.   

Nomenclature for algorithm descriptions: 
Polynomials are represented using lower-case 
letters: a(x), b(x), c(x) etc. When addressing the 
individual 64bit words of a polynomial, square 
brackets are used: a[0], b[l], c[2] etc. a[0] 
represents the lowest order (least significant) word 
of a(x). When addressing the individual bits of a 
polynomial, a subscript is used: a0, b32, c162 etc. The 
bit a0 represents the least-significant bit of a(x), a162  
represents the most-significant bit. The operator  
⊕  represents an XOR operation. When used, p(x) 
denotes the irreducible polynomial generating the 
field. For GF(z163), p(x) = x163 + x7 + x4 + x3 + 1. 

 
 

Algorithm 1. Polynomial reduction [8] 
INPUT: Binary polynomial c(x) of degree at most 324. 
OUTPUT: c(x) mod p(x), where  p(x) = x163 + x7 + x6 + x3 +1 
1. For i from 5 down to 3 do 

1.1 t = c(i) . 
1.2 c(i-3)≡  c(i-3) ⊕ (t<<29) ⊕ (t<<32) ⊕ (t>>35) ⊕ (t>>36) 
1.3 c(i-2)≡  c(i-2) ⊕ (t<<28) ⊕ (t<<29) ⊕ (t>>32) ⊕ (t>>35) 

2. t = c(i)&0xFFFFFFFF800000000. 
3. c(0)≡  c(0) ⊕ (t<<28) ⊕ (t<<29) ⊕ (t>>32) ⊕ (t>>35) 
4. c[2] = c[2]&0x00000007FFFFFFFF. 
5. Return (c[2], c[1], c[0]. 

 
Algorithm 2. Table lookup method for polynomial squaring 
INPUT: Binary polynomial a(x) 
OUTPUT: C(X) = a2(x) 
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1. Precomputation: For each byte v = (v7, v6 ...v1, v0). 
compute the 16-bit quantity T(v) = (0, v7, 0, v6 ... , 0, v1, 0,v0 
2. For i from 0 to 5 do 

2.1. Let a[il = ( u7, u6, u5, u4, u3, u2, u1, u0) where each ui is a byte. 
2.2. c[2i]=(T(u1), T(u0)), c[2i+1]=( T(u3), T(u2)) 

3. Return c(x). 
 

Algorithm 3. Modified Almost Inverse Algorithm (MAIA) [8,23] for polynomial inversion 
INPUT: Binary polynomial a(x), a(x) ≠  0 
OUTPUT:  
b(x)∈  GF(2t) and t∈[0,2k-1] Such that b(x) a(x)≡ xt mod p(x) 
1. b(x)=1, c(x)=0, u(x)=a(x), v(x)= p(x), t=0. 
2. While x divides u(x) do 

 2.1 u(x)= u(x)/x, c(x)= c(x)x, t = t+1 
3. u(x) = 1, return (b(x)t. 
4. If degree (u(x))<degree(v(x)) then u(x)↔  v(x), b(x) ↔  c(x). 
5. u(x)= u(x)+ xj v(x), b(x)= b(x)+ c(x) 
6. Go to Step 2. 

 
Figure 2. Algorithms for (a) polynomial reduction, (b) polynomial squaring (c) Polynomial inversion 

 
Algorithm 4. Adding two distinct points on an elliptic curve 
INPUT: Elliptic Curve points P =(x1, y1) and Q =(x2, y2), P ≠ Q 
OUTPUT: R = P + Q = (x3, y3) 

1. Compute 
12

12

xx
yy

+
+

=θ  

2. Compute axxx ++++= 21
2

3 θθ  

3. Compute 13313 )( yxxxy +++= θ  
4. Return (x3, y3). 

 
Algorithm 5. Doubling a point on an elliptic curve 
INPUT: Elliptic Curve point P =(x1, y1)  
OUTPUT: R = P + P = (x3, y3) 

1. Compute 
x
yx +=θ  

2. Compute ax ++= θθ 2
3  

3. Compute 3
2

3 )1(( xxy ++= θθ  
4. Return (x3, y3). 

Figure 3. Algorithms for (a) adding points (b) doubling points on an elliptic curve  
 

Separate program was written to count points 
on the curve and specify an initial point on the 
curve using algorithms shown in figure 3, which 
was then used in a separate program as common 
information to generate public and private key. The 
source codes were carefully minimized by creating 
separate functions to handle polynomials using 
different algorithms shown in figure 2 and figure 3. 
Separate main programs were written for signature 
generation and verification of ECDSA described in 
section 4 where algorithms shown in figure 2 were 
used. 
 
6. Experimental Results 
Experiments were performed on many different 
sets of data. For characteristic representative of 

workload characterization, we used the three 
different sets of inputs in the range of 2000000 to 
100000000 characters without space. The 
experiments were conducted on an IBM 
workstation with Intel processor Pentium 4 of 2.8 
GHz clock speed, memory size 512 MB, cache 
memory size 512 KB and storage of 40 GB. Table 
2 shows the hashing time obtained from the 
experiments. The number of characters is 
represented by n, and the times taken (in 
milliseconds) by hashing is stated by TH. Figure 4 
shows that the ‘hashing’ time increases linearly 
with the number of characters or block size.  
Hashing is very fast as we found that for 10 million 
characters without spacing it takes around 406 
milliseconds.  
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Table 3 and Table 4 shows the time obtained 
from our experiments for five different key sizes. 
The key sizes were taken for five different curves. 
The key sizes were selected according to 
equivalency shown in Table 1. In these tables TGS1, 
TGS2, TGS3, TGS4, and TGS5 represent the times taken 
(in milliseconds) for signature operations using key 
sizes of 106,132, 160, 224 and 512 bits 
respectively. TSWH1, TSWH2, TSWH3, TSWH4, and TSWH5 

represent the times taken (in milliseconds) for 
signature operations without hashing and TVS1, 
TVS2, TVS3,TVS4 and TVS5 represent the times taken 
(in milliseconds) for signature verification 
operations for the above mentioned five key sizes 
respectively. The times TGS5 and TVS5 taken for 
digital signature generation and verification using 
key size of 512-bits are considered to calculate the 
speedup. 

Table 2. Experimental results for hashing using SHA1 
N TH (msec) 

 2000000 78  
6000000 234 

10000000 406 
 

Table 3. Experimental results of ECDSA for key size 106, 132 and 160 bits 
Key Size: 106 Key Size: 132 Key Size: 160 

n TGS1 
(msec) 

TSWH1 
(msec) 

TVS1 
(msec) 

TGS2 
(msec) 

TSWH2 
(msec) 

TVS2 
(msec) 

TGS3 
(msec) 

TSWH3 
(msec) 

TVS3 
(msec) 

2000000 78 0 78 78 0 78 78 0 78 
6000000 234 0 234 234 0 234 234 0 234 
10000000 406 0 406 406 0 406 406 0 406 
Speedup 1 - 1 1 - 1 1 - 1 

 
Table 4. Experimental results of ECDSA for key size 224 and 512 

Key Size: 224 Key Size: 512 
N TGS1 

(msec) 
TSWH1 
(msec) 

TVS1 
(msec) 

TGS2 
(msec) 

TSWH2 
(msec) 

TVS2 
(msec) 

2000000 78 0 78 78 0 78 
6000000 234 0 234 234 0 234 
10000000 406 0 406 406 0 406 
Speedup 1 - 1 1 - 1 
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Figure 4. Result analysis of the results for ECDSA, (a) Signature generation time; (b) Signature Verification time; using key sizes 

160, 224 and 512 bits respectively 
 
Figure 5 states the relationship between the results 
from our experiments. Figure 4(a) show signature 
generation and Figure 4(b) show signature 
verification time respectively using key size 160 
bits, 224 bits and 512-bits. It is found that for the 
similar number of characters (2000000 and 

10000000) ECDSA takes similar amount of time 
for input of same sizes. It is found that for ECDSA 
signature generation and verification times are 
equivalent to their hashing times respectively. 
Table 3 and Table 4 show that the signature 
generation without hashing is 0 in millisecond 
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scale, which means the operation needs less than 1 
millisecond for five key sizes considered in the 
experiment. In millisecond scale we did not find 
any speed up although key sizes were varied from 
106 to 512 bits which means that Speedup factor 
does not increase with key size. ECDSA is very 
fast, signature generation and verification time is 
very insignificant in comparison with hashing 
time.    
 
7. Conclusions 
In this paper we presented practical 
implementation of ECDSA signature generation 
and verification algorithms and found its workload 
characteristics. ECDSA can provide very high 
speed signature generation and verification.  As 
much smaller key length is required with ECDSA 
to provide desired level of security, key exchanges 
become faster and smaller key storage is needed. 
ECDSA is therefore much better than DSA and 
RSA signatures for constrained environment like 
mobile information appliances, where computing 
resources and power ability are limited. ECDSA 
can be used equally in non-constrained 
environments. We hope that this paper contributes 
to an increased understanding of the properties of 
ECDSA, and facilitates its use in practice. 

For future work, we plan to expand our 
research to include other digital signature 
algorithms, elliptic-curve algorithms, different 
block ciphers, symmetric-key, and hash functions. 
We will also expand our ECC results to include 
results for prime fields, using bases other than 
polynomial bases, and different coordinate systems 
such as projective coordinates. 
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