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Abstract: Second order nonlinear differential systems 
modeling almost non-oscillatory processes have been 
considered. A new perturbation technique based on the 
work of Krylov-Bogoliubov-Mitropolskii method has been 
developed to find approximate solutions for almost 
critically damped nonlinear systems. The solution shows a 
good agreement with the numerical solution. 
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1. Introduction 
Krylov and Bogoliubov [1] used a perturbation 
method to discuss transients in equation 
 ),,(2

0 xxfxx &&& ε−=ω+            (1.1) 
where over-dots denote differentiation with respect to 
t, 0ω  is a positive constant and ε is a small 
parameter. This method was amplified and justified 
by Bogoliubov and Mitropolskii [2] and later 
extended by Popov [3] to the following damped 
oscillatory system 
 ),,(2 2 xxfxxkx &&&& ε−=ω++             (1.2) 
where 0>k  and 0>ω . Mendelson [4] 
rediscovered the Popov’s results. Today the method 
is well known as Krylov-Bogoliubov-Mitropolskii 
(KBM) method in the theory of nonlinear 
oscillations. Murty, Deekshatulu and Krisna [5] used 
the KBM method to discuss transients in equation 
(1.2) for the over-damped case, i.e., for ω>k . 
Murty [6] presented a unified KBM method for 
solving equation (1.2). Sattar [7] found a solution of 
(1.2) characterized by critical damping, i.e., for 

ω=k .  Alam [8] extended the unified method of 

Murty [6] to critically damped nonlinear systems. 
Alam [9] also found asymptotic solution of (1.2) 
when the unperturbed equation (or linear equation) of 
(1.2) has two complex roots, 0ω±− ik  where 

222
0 k−ω=ω  and ω<≤ω k0 . In this case 

Popov's or Mendelson's solution does not give 
desired results. The solution obtained by Popov or 
Mendelson gives desired results when 0ω<k . The 
solutions obtained by Alam [8,9] does not also give 
desired results when )(2

0 εΟ=ω . 
The aim of the present paper is to obtain a 

solution of (1.2) following  the same perturbation 
method used in [1,2] when the unperturbed 
equation  (1.2) has two complex roots, 0ω±− ik  
and )(2

0 εΟ=ω .  
 
2. The method of solution 
When ε = 0 , the solution of  (1.2) is 

,
sin

cos)0,(
0

0
000 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω
ω

+ω= − t
btaetx tk          (2.1) 

where  a0  and b0  are arbitrary constants. It is 
obvious that (2.1) is valid for small values of 0ω  as 
well as for the limit 00 →ω . It is noted that when 

00 →ω , )()0,( 00 tbaetx kt += − .  
Now we seek a solution of (1.2) that reduces to 

(2.1) as the limit ε → 0 . We look for a solution of 
(1.2) in the form : 
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where a  and b are functions of  t, defined by the first order differential equations 
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Now differentiating (2.2) twice with respect  to t and using relations (2.3), we obtain 
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Now substituting the values of &x  and &&x  respectively from (2.4a) and (2.4b), and x from (2.2) in (1.2) and 
comparing the coefficients of various powers of  ε, we get for the coefficient of  ε : 
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Usually, equation (2.5) is solved for the 
unknown functions A B1 1,  and u1  under the 
assumption that u1  does not contain first harmonic 
terms. This assumption is not valid when 0ω  is 

small. When 00 →ω  or, ω→k , equation (1.2) 
represents the critically damped motion. In this case 
formula equation (2.5) takes the simplest form : 
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Alam [9] found equation (2.6) to determine the 
critically damped solution of (1.2) in which ω=k . 
In [9], )0(f  of equation (2.6) is expanded in a 

Maclaurin series, ∑
∞

=

=
0

111
)0( ,,A   and   

r

r
r uBtgf  

were determined by assuming that u1  excludes the 

terms of 0t  and 1t  of )0(f . 
In this article we find the solution of (1.2) 

under the condition that the values of k and ω  are 
very close together, but not equal, i.e., 0ω  is much 
smaller rather than 1. However, if we take the  limit 

 00 →ω , our solution reduces to that obtained in 
[9]. 

 
3. Example 

As an example of the above procedure we may 
consider the Duffing's equation with a large linear 
damping 
   
 322 xxxkx ε−=ω++ &&& .           (3.1) 

Here, 
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Substituting f ( )0  from (3.2) into (2.5), we 
obtain the following equations for A B1 1,  and u1  

in accordance with Alam’s  [8]  assumptions: 
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Equations (3.3) and (3.4) are two simultaneous 
differential equations. Their particular solutions 
give the unknown functions 1A  and 1B . 
Substituting 

       )( 2
2

3
1

2
1 balaleA tk += − ,  

and )( 2
2

3
1

2
1 bamameB tk += −   

into (3.3) and (3.4) and equating the coefficients of 
tkea 23 −  and tkbea 22 − , we obtain four algebraic 

equations as : 
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The solution of (3.6) is 
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Thus the particular solutions of (3.3) and (3.4) 

are 
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By assuming a, b as constants (see [10]) in the 
right hand side of Eq.(3.5), we can easily determine 
the particular solution of this equation as :  
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Substituting the values of A1  and B1  from 
(3.8) into (2.3), we integrate them with respect to t, 
and under the assumption that a and b are constants 
(since the change of these variables is small as ε is, 
see [10] for details) in the right hand sides of (2.3), 
we obtain the following results (as first 
approximation) : 
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Therefore, the first approximate solution of 
(3.1) is obtained as: 
    1000 )/sincos( utbtaex tk ε+ωω+ω= − , (3.11) 
where a, b and u1  are given by respectively (3.10) 
and (3.9). The method can be carried on to higher 
orders in a similar way. 
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4. Initial conditions 
The solution can be used in a general initial 

value problem. Usually, )]0(),0([ xx &  is specified. 

We can calculate the initial values of a and b, i.e., 
0a  and 0b  by solving the following equations : 
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Equations (4.1a) and (4.1b) are nonlinear simultaneous equations (algebraic). In general, a numerical 
method (mainly Newton-Raphson) is used to solve these equations (see [10-11]). 

 
5. Results and Discussion 

In order to test the accuracy of an 
approximate solution obtained by a certain 
perturbation method, we compare the 
approximate solution with the numerical solution 
(considered exact).With  regard to such a 
comparison concerning the presented KBM 
method of this paper, we refer to the work of 
Murty, Deekshatulu and Krisna [5]. In our paper, 
for different damping forces we have compared 
the analytic solution (3.11) for 1.0=ε  with 
those obtained by Runge-Kutta fourth-order 
procedure. 

First of all, )(tx  has been computed using 
the solution (3.11) with initial conditions 
x( )0 1=  and &( )x 0 0= ,  for 9.0=k , 1=ω , 
i.e., for 1.02

0 =ω . Then the numerical solution 
(by Runge-Kutta procedure) has been obtained 
and the percentage errors have been calculated. 
All the results are shown in Table 1. From Table 
1, it is seen that for most of the times the errors 
of the results obtained  from (3.11) are less than 
1%. Thus the solution and the numerical one are 
almost identical up to an accuracy of 2ε . To 

compare the new solution with Alam’s [9] 
existing solution we have calculated it for the 
same initial conditions (as well as same values of 
k and ω ) and presented in the fourth column 
(with percentage errors in fifth column) of Table 
1. Comparing the errors of both solutions we 
conclude that both solutions are useful for this 
case. 

Next we calculate both solutions for the 
case 95.0=k , 05.02

0 =ω . Here we consider 
the same initial conditions x( )0 1=  and 
&( )x 0 0= . All the results are shown in Table 2. 

From Table 2, it is clear that the errors of our 
new solution (for most of the times) are less than 
Alam’s [9] solution (note: after 5.1=t , the error 
of solution of [9] is more than 1%, but 
theoretically it should be 1% or less than 1% as 
it is chosen that 1.0=ε ). Thus the new solution 
is useful near the critical damping. Similarly, we 
can compare the new solution with the critically 
damped solution obtained in [8]. In the later case 
we shall see that the solution of [8] gives better 
result than our solution only for 00 →ω . 

 
Table 1 

t )(tx   x (Numerical) Percentage Errors  x by the solution of [9] Percentage Errors of [9] 

0.0 1.000000 1.000000 0.0000 1.000000 0.0000 
0.5 0.890503 0.899894 −1.0436 0.895257 −0.5153 
1.0 0.699569 0.707814 −1.1649 0.702844 −0.7022 
1.5 0.510640 0.515999 −1.0386 0.511841 −0.8058 
2.0 0.354892 0.357933 −0.8496 0.354816 −0.8708 
2.5 0.237808 0.239370 −0.6525 0.237175 −0.9170 
3.0 0.154654 0.155369 −0.4602 0.153887 −0.9539 
3.5 0.097934 0.098200 −0.2709 0.097232 −0.9857 
4.0 0.060464 0.060512 −0.0793 0.059897 −1.0163 
4.5 0.036385 0.036342 0.1183 0.035960 −1.0511 
5.0 0.021304 0.021232 0.3391 0.021001 −1.0880 
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      Table 2 
  t )(tx  x (Numerical) Percentage Errors  x by the solution of [9] Percentage Errors of [9] 

0.0 1.000000 1.000000 0.0000 1.000000 0.0000 
0.5 0.891415 0.900624 −1.0225 0.894705 −0.6572 
1.0 0.704228 0.711344 −1.0004 0.705080 −0.8805 
1.5 0.519151 0.523147 −0.7638 0.517902 −1.0026 
2.0 0.366211 0.368063 −0.8496 0.364095 −1.0781 
2.5 0.250514 0.251175 −0.6525 0.248339 −1.1291 
3.0 0.167434 0.167520 −0.0513 0.165566 −1.1664 
3.5 0.109820 0.109669 0.1377 0.108356 −1.1972 
4.0 0.070879 0.070660 0.3099 0.069796 −1.2228 
4.5 0.045090 0.044880 0.4679 0.044321 −1.2455 
5.0 0.028303 0.028129 0.6186 0.027772 −1.2692 
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