
DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007

65

IMPLICATION OF FUZZY LOGIC IN GA FOR SOLVING
MATHEMATICAL PROBLEMS

A. K. M. Mahbubur Rahman, Md. Bashir Uddin Khan and Md. Al-Amin Bhuiyan

Department of Computer Science and Engineering
Jahangirnagar University, Savar, Dhaka, Bangladesh

E-mail: mahboob263@yahoo.com, bashir_273@yahoo.com, alamin@juniv.edu

Abstract: This paper presents a robust and novel
approach to find the roots of mathematical equations
using genetic algorithm. A modified approach of
genetic algorithm has been provided where fuzzy
logic has been used for chromosomes selection. A
GA formula has also been presented to solve
equations with multiple iterations in order to justify
the error versus iteration graph. Finally, a
comparison between the results of solving the same
equation by GA with fuzzy logic and those without
fuzzy logic has been furnished. Experimental results
demonstrate that GA with fuzzy logic is more
successful and efficient than that without fuzzy logic
for solving equations.

Keywords: Genetic Algorithm, Fuzzy Logic,
Mutation, Mating, Chromosome, Fitness evaluation
function.

1. Introduction
Mathematical equations are the equations
containing the terms with trigonometric,
algebraic, exponential, logarithmic and so on
expressions. Many analytical/iterative methods
are used to solve mathematical equations.
Although these methods are capable of solving
many mathematical equations they,
nevertheless, suffer from many common
drawbacks. Usually, mathematical equations
have many solutions in a given range, and the
analytical methods are not able to find all these
roots in a given interval, even when they find
several solutions, it is not possible to conclude
that the given method has found the complete
set of roots/solutions, and has not missed any
particular solution. Also, these methods fail in
case of discontinuous functions [1]. Hence,
though these methods may work very well in
some situations, they are not general in nature
and need a lot of homework from the analyst.

An analysis of some common methods used
for solving transcendental equations, their
disadvantages and cases of failures are
discussed below.
a) Newton Raphson method: This is a widely
used method for solving transcendental
equations. The method makes use of the slope
of the curve at different points. Therefore, if the
function is non differentiable at points or has a
point of inflexion, the method is not able to find
the root. Secondly, if the function changes its
slope very quickly (frequently achieves slope of
zero), or is discontinuous, cannot be solved by
this method. If the function is discrete, the
derivative has no meaning for it and this
method cannot be used. Also there is no
straightforward way to find all the roots in an
interval or even ascertain the number of roots in
the interval.
b) Bisection method: This method needs two
points on the graph such that f(a)*f(b)<0. There
is no straightforward analytical method to find
these points. Another problem lies in choosing
the distance between the points a and b. For this
method to work, a and b should be close
enough, such that the function behaves
monotonously in these limits. At the same time,
a small difference in values of a and b makes it
difficult to search the sample space.
c) Method of False Position: This method
suffers from same problems as Bisection
method. Hence it can be concluded that
analytical methods cannot find all the roots of a
transcendental equation reliably. These
limitations of analytical procedures can be
overcome by using global optimization
techniques like genetic algorithm (GA).

The Genetic Algorithm (GA) is a stochastic
search method based on the mechanics of

RAHMAN ET AL: IMPLICATION OF FUZZY LOGIC IN GA FOR SOLVING MATHEMATICAL PROBLEMS

66

natural selection and genetics analogous to
natural evolution. The GA has been employed
in a wide variety of problems related to pattern
recognition, image processing, medical image
registration, image segmentation, contour
recognition and so on. A fair amount of
research work has been found in literature for
the solution of mathematical problems using
GA. Kavanagh and Kelley have solved some
non-linear equations using GA [1]. P.C.
Barman and R. Ahmed have given a
comparison of GA and bisection method in the
numerical solution of transcendental equations
[2]. S. Shahid, M.N. Bhuiyan and M. M. Haque
have solved some non-linear equation using GA
with dynamic mutation rate [3]. Almost all of
the papers found in literature use GA to solve
mathematical equations in traditional way.

This paper investigates the application of
genetic algorithm to search for the roots of
mathematical equations. We use iteratively
fitness values to select chromosomes using
roulette wheel but with fuzzy inference. The
implication of fuzzy logic for the “survival of
the fittest” chromosome selection procedure has
proliferated the solution process with more
success and efficiency.

2. Genetic Algorithm
Genetic algorithms are a class of algorithms
inspired by evolution. These algorithms encode
solutions to a specific problem on a simple
chromosome like data structure and apply
recombination operators to these structures so
as to preserve critical information [3].

Central to the idea of GA is a population of
individuals, each represents a possible solution
to the given problem [2]. Each individual,
known as chromosome, usually represented by
a bit string consisting of 0s and 1s, is assigned
to a fitness value based on how good its
solution to the problem is. The individuals then
evolve through successive iterations called
generations [4]. During one generation, highly
fit individuals are given the opportunity to mate
with other individuals in the population. Since
the least fit individual in the population are less
likely to get selected for mating, they disappear
from future generations. As a result, the
population of individuals converges to an
optimal solution to the problem.

Figure 1. Flowchart for genetic algorithm.

2.1 GA for the present problem
To apply GA, let the transcendental equation is

.cos23)(xxxf −+= There is no strict rule for
encoding the solutions to the problem.
Generally binary coded solutions are used,
though lately, real coded chromosomes are also
being used. We have used binary encoding for
this research. The advantage of using binary
encoding is that the maximum number of
schemes is investigated [5]. An approximation
has been taken that the root of the above
equation exists within the range [1.2,1.8].

2.1.1 Chromosome Encoding
The chromosomes are represented by binary
vectors to represent the real values of the x. The
length of the vectors depends on the required
precision [6]. This means that minimum 10 bits
are required as a binary vector to represent each
chromosome. We use 20 bits for each
chromosome for better effect of crossover and
mutation.

The binary string (c0, c1, c2, …,c19) maps
into a real number x.

Select pair of
chromosomes

(roulette-wheel)

Mating
l

Subpopulation

No

start

Initial
population

Calculate
fitness

Yes

Sub
popula-tion

full?

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007

67

a) Convert the binary string <c0, c1, c2, …,c19>
from the base 2 to base 10.

 i=19
<c0, c1, c2, ...,c19>2 = (∑ci .2i)10 =x'
i=0
Find a corresponding real number x:

),12/()2.18.1.(2.1 20 −=′+= xx
(1)
where 1.2 is the left boundary of x and 1.8
is the right boundary of x. The
chromosomes (00000000000000000000)
and (11111111111111111111) represent
boundaries of the domain 1.2 and 1.8,
respectively.

2.1.2 Initial population
The initialization process is very simple. Here
we assume that 20 chromosomes are used as
population. A population of chromosomes has
been created as follows
• Generate 20 random numbers in the range [0,

(220-1)].
• Convert each random number into 20 bits

binary vector and assign each binary vector to
one of 20 chromosomes.

• Now each chromosome is a binary vector of
20 bits.

2.1.3 Evaluation function
The evaluation function for a chromosome c is
equivalent to function f; evaluate(c) = f (x),
where
x=1.2+ binarytodecimal(c).(1.8-1.2)/(220 -1).
(2)

In order to identify the best individual root
(real x) during the evolutionary process, a
function needs to assign a degree of fitness to
each chromosome in every generation. So in
order to determine largest region where the best
root lies in that region, we have to compute
fitness of particular chromosome.

The fitness of a chromosome is defined as
the function that represents that how much f(x)
is close to zero. That is, for each chromosome
n whose corresponds to real input value x,
fitness function is defined as follows:
For each chromosome, n=0,1, …,19 compute

)3(2)cos(3)(nnn xxxf −+=

Add all values

)4())(/1(sum
19

0
∑=
=n nxfabsolute

Now compute fitness values for each
chromosomes

)5(%100
sum

))(/1(
)(AreaFitness ×= nxfabsolute

n

where xn is the real value corresponding to the
n-th chromosome.

Fitness area represents the fitness of the
root(real value of x). That is, absolute[f(xn)] is
more closer to zero, xn is more close to the
actual final root. So it has been shown that the
larger fitness area is the result for the more
fittest root. Thus survival of the fittest is
maintained.

2.1.4 Selection
Good chromosomes that contribute their gene-
inherited knowledge to breed for the next
generation are chosen. Here we use
conventional elitist selection scheme to select
an elitist chromosome with the highest fitness
value, which is copied directly into the new
population of next generation [7]. The other
chromosomes are selected by roulette-wheel
selection process, where the selection
probability of each individual is proportional to
its fitness value. In this process on a wheel, all
the samples are placed allotting them space
proportional to their fitness. N markers are put
around the wheel, where N is the size of the
new population. The wheel is spun and samples
under each marker are selected [1].

2.1.5 Cross-over
This operator randomly chooses a crossover
point where two parent chromosomes ‘break’,
and then exchanges the chromosome parts after
that point [2]. As a result, two offspring are
generated by combining the partial features of
two chromosomes. If a pair of chromosomes
does not cross over, then the chromosome
cloning takes place, and the offspring are
created as exact copies of each parent [8]. Here
we have studied single point cross-over, two
point cross-over and uniform cross-over
operators. The cutting points are selected
randomly within the chromosome for
exchanging the contents. In this experiment, the

RAHMAN ET AL: IMPLICATION OF FUZZY LOGIC IN GA FOR SOLVING MATHEMATICAL PROBLEMS

68

4.975

4.98

4.985

4.99

4.995

5

5.005

5.01

0 5 10 15 20 25

Chromosomes

S
ur

vi
va

l v
al

ue

f(x)* 5.19

fitness
value

cross-over rate was chosen as 0.7 for all cases.
For example, the strings 10000100 and
11111111 could be crossed over after the third
locus in each to produce the two offspring
10011111 and 11100100.

2.1.6 Mutation
Mutation, which is rare in nature, represents a
change in the gene and aids us in avoiding loss
of genetic diversity. Its role is to provide a
guarantee that the search algorithm is not
trapped on a local optimum.

This operator alters a randomly selected
gene of chromosome with a very low
probability, .Mp For each chromosome,
generate a random value between [0,1]. If the
random value is less than ,Mp then choose a bit
at a random location to flip its value from 0 to
1, or 1 to 0. The mutation rate for our method
was chosen as 0.05. For example, the string
00000100 might be mutated in its second
position to yield 01000100. Mutation can occur
at each bit position in a string with some
probability, usually very small (e.g.,0.001) [9].

2.1.7 Replacement
After generating the subpopulation (offspring),
two representative strategies have been used for
the replacement of old generation [2].

3. Fitness Evaluation Fuzzy
This section introduces a new concept for the
evaluation of the fitness value of each
chromosome.

The fuzzy logic based GA has been
designed with the following notions:
1. Create a fuzzy function (S-function) for a

set of chromosomes.
2. Now rating the fitness area based on the

fuzzy function values to 7 fuzzy rating such
as Extremely good (more than 80% area),
Very good, Good, More or less good, Not
so good, Not bad, Bad (less than 5% area).

3. Extremely good is for the highest fitness
area (more than 80% area).

4. Bad is for lowest fittest area (less than 5% area).
5. Other ratings are covered for intermediate

areas.
6. Now when a selection is made after

roulette-wheel spun, if bad fittest area is

selected, the selection is rejected and again
roulette-wheel will be spun for the
selection. The process is repeated until
other than bad fittest area is selected.

7. At the first iteration all area can be badly
fittest. So only for 1st iteration above rule is
not followed (General rule followed.).

4. Experimental Results
The effectiveness of this method has been
justified over some experiments. Experiments
were carried out on a Pentium IV 1.3 GHz PC
with 256 MB RAM. The algorithm has been
implemented in Visual C++. In any iteration,
the evaluated values of the given equation and
corresponding fitness values are depicted
against chromosomes.

The survival value i.e., evaluated value of
the function and the fitness of each individual
chromosome for the first and second iterations
are shown in Fig. 2, and Fig. 3, respectively.

Figure 2. Survival value of chromosomes (1st iteration)

Figure 3. Survival value of chromosomes (2nd iteration).

0

5

10

15

20

25

30

35

0 5 10 15 20 25
Chromos omes

Su
rv

iv
al

 v
al

ue

f (x) *5 .19

Fitnes s

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007

69

roulette-wheel 1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

2

4

6

8

10

12

14

0 5 10 15 20 25
Chromosomes

Su
rv

iv
al

 v
al

ue

f itness value
f(x)*5.19

Figure 4. Roulette-wheel for first iteration.

The roulette-wheel construction for first
iteration is shown in Fig. 4. Here the fittest root
is: 1.201123 and largest area of the fittest root
is 5.0083%. For the second iteration, fittest root
is: 1.553666, and the largest area=29.12856%.
Since the same areas correspond to same roots
so in this experiment the sum of the same areas
is taken into consideration to find the fittest
root.

The error versus iteration graph for 100
iterations is furnished in Fig. 5, where error at
any iteration i is defined as:

(6))),Exp_root(-)t(abs(Th_roo)Error(iii =
where abs is the absolute function, Th_root(i)
and Exp_root(i) are the theoreal and
experimental values of the root at iteration i.

Figure 5. Error versus iteration graph.

From the resulting curve, we have found
that the final root becomes stable approximately
at 66th iteration and minimum error has been
obtained over there. After 66th iteration, we
have got more accurate final root as: 1.518475.

The uneven peaks are caused by the mutation
operation. By selecting appropriate position for
mutation operation, we can avoid the local
optimal value and proceed to global optimal
value.

Now results of GA with fuzzy logic are
furnished. The survival values for the 1st and
2nd iterations are shown in Fig. 6 and Fig. 7,
respectively. For the first iteration, the graph is
similar to that of general rule for GA. The
fittest root is: 1.201, and largest area=5.005%.
After 2nd iteration, the fittest root is: 1.696774
and largest area=15.84478%. The error versus
iteration graph for the GA with fuzzy is shown
in Fig. 8, which reveals that the final root
becomes stable approximately at 40th iteration
and the minimum error (.000432) has been
obtained. After 40th iteration we have got more
accurate final root as: 1.523167.

Figure 6. Survival value of chromosome for 1st iteration.

Figure 7. Survival value of chromosome for 2nd iteration.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150
Iterartion

E
rro

r

Peaks for
mutation

4.975

4.98

4.985

4.99

4.995

5

5.005

5.01

0 5 10 15 20 25
Chrom osom es

S
ur

vi
va

l v
al

ue

f itness value
f(x)*5.19

RAHMAN ET AL: IMPLICATION OF FUZZY LOGIC IN GA FOR SOLVING MATHEMATICAL PROBLEMS

70

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150

Iteration

Er
ro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150

Iteration

E
rro

r

withoutfuzzy
withfuzzy

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 50 100 150
Iteration

Er
ro

r

Figure 8. Error versus iteration graph for GA with fuzzy
logic.

Experimental results demonstrate that GA with
fuzzy logic provides much more accurate
solution for transcendental equation. And also
finds solution more quickly. A comparative
graph for GA with fuzzy logic and without
fuzzy logic is depicted in Fig. 9. It justifies that
implication of fuzzy logic in GA to solve
equations is more effective.

Figure 9. Comparison for error versus iteration

Mutation plays a great role on GA. We know
that the MSB of a bit string has highest
positional value and the LSB has lowest
positional value. Effects of mutation operation
in any bit except LSB and MSB have been
justified over some experiments. The error
versus iteration curve for GA with fuzzy logic
is furnished in Fig. 10.

Figure 10. Error versus iteration graph for GA with fuzzy
logic (no mutation at MSB or LSB).

Effects of mutation operation in any bit

except LSB and MSB have been justified over
some experiments and the result is furnished in
Fig. 11. From this comparison curve, it reveals
that mutation at MSB or LSB has significant
effects to find a global optimal value.

Figure 11. Error versus iteration comparison curve for GA
with fuzzy.

5. Conclusion
This paper illustrates the implication of fuzzy
logic in genetic algorithm for the selection of
chromosome. Experiments were conducted to
justify the expected results. The results reveal
that GA with fuzzy logic provides more
accurate results and that the fuzzy logic is more
efficient way to find roots of mathematical
equations. This paper also justifies the
influences of mutations at MSB and LSB and

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150
Iteration

Er
ro

r

nomsblsbmutation
msblsbmutation

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 2, ISSUE 1, JANUARY 2007

71

finds that mutation at MSB or LSB leads to
dramatic change in the result. Our next target is
to solve the real world mathematical equations
using fuzzy logic.

References
[1] K. R. Kavanagh and C. T. Kelley, “Pseudo-

transient Continuation for Nonsmooth
Nonlinear Equations”, SIAM J. Numer. Anal.,
vol. 43, 2005, 1385-1406.

[2] M. J. Uddin, A. M. Mondal, M. H. Chowdhury
and M. A. Bhuiyan, “Face Detection using
Genetic Algorithm”, Proceedings of the 6th
ICCIT, 2003, Dhaka, Bangladesh, pp. 41-46.

[3] M. A. Bhuiyan, V. Ampornaramveth, S. Muto,
H. Ueno, “Face Detection and Facial Feature
Localization for Human-machine Interface”,
NII Journal, Vol. 5, 2003, pp. 25-38.

[4] S. Kumar, E. David, M. Pelikan, “IlliGAL
report”, No. 2001013, January, 2001.

[5] M. Buulmer, The mathematical theory of
quantitative genetic, Oxford Press, 1st Edition,
1980.

[6] D. Goldberg, K. Deb, and J. Clark, “Genetic
Algorithms, Noise, and the Sizing of
Populations”, Complex Systems, vol. 6, 1992,
pp. 333-362.

[7] D. Goldberg, Evolutionary Design by
Computers, 1999, pp. 105-118.

[8] B. L. Miller, and D. Goldberg, “Genetic
Algorithms, Selection Schemes and the
Varying Effects of Noise”, Evolutionary
Computation, vol. 4, 1999, pp. 113-131.

[9] B. L. Miller, Noise, sampling, and efficient
genetic algorithms, Doctoral dissertation,
University of Illinois at Urbana-Champaign,
Urbana, IL, 1997.

