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Abstract: This paper presents a robust and novel 
approach to find the roots of mathematical equations 
using genetic algorithm. A modified approach of 
genetic algorithm has been provided where fuzzy 
logic has been used for chromosomes selection. A 
GA formula has also been presented to solve 
equations with multiple iterations in order to justify 
the error versus iteration graph. Finally, a 
comparison between the results of solving the same 
equation by GA with fuzzy logic and those without 
fuzzy logic has been furnished. Experimental results 
demonstrate that GA with fuzzy logic is more 
successful and efficient than that without fuzzy logic 
for solving equations. 
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1. Introduction 
Mathematical equations are the equations 
containing the terms with trigonometric, 
algebraic, exponential, logarithmic and so on 
expressions. Many analytical/iterative methods 
are used to solve mathematical equations. 
Although these methods are capable of solving 
many mathematical equations they, 
nevertheless, suffer from many common 
drawbacks. Usually, mathematical equations 
have many solutions in a given range, and the 
analytical methods are not able to find all these 
roots in a given interval, even when they find 
several solutions, it is not possible to conclude 
that the given method has found the complete 
set of roots/solutions, and has not missed any 
particular solution. Also, these methods fail in 
case of discontinuous functions [1]. Hence, 
though these methods may work very well in 
some situations, they are not general in nature 
and need a lot of homework from the analyst. 

An analysis of some common methods used 
for solving transcendental equations, their 
disadvantages and cases of failures are 
discussed below. 
a) Newton Raphson method: This is a widely 
used method for solving transcendental 
equations. The method makes use of the slope 
of the curve at different points. Therefore, if the 
function is non differentiable at points or has a 
point of inflexion, the method is not able to find 
the root. Secondly, if the function changes its 
slope very quickly (frequently achieves slope of 
zero), or is discontinuous, cannot be solved by 
this method. If the function is discrete, the 
derivative has no meaning for it and this 
method cannot be used. Also there is no 
straightforward way to find all the roots in an 
interval or even ascertain the number of roots in 
the interval. 
b) Bisection method: This method needs two 
points on the graph such that f(a)*f(b)<0. There 
is no straightforward analytical method to find 
these points. Another problem lies in choosing 
the distance between the points a and b. For this 
method to work, a and b should be close 
enough, such that the function behaves 
monotonously in these limits. At the same time, 
a small difference in values of a and b makes it 
difficult to search the sample space. 
c) Method of False Position: This method 
suffers from same problems as Bisection 
method. Hence it can be concluded that 
analytical methods cannot find all the roots of a 
transcendental equation reliably. These 
limitations of analytical procedures can be 
overcome by using global optimization 
techniques like genetic algorithm (GA). 

The Genetic Algorithm (GA) is a stochastic 
search method based on the mechanics of 
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natural selection and genetics analogous to 
natural evolution. The GA has been employed 
in a wide variety of problems related to pattern 
recognition, image processing, medical image 
registration, image segmentation, contour 
recognition and so on. A fair amount of 
research work has been found in literature for 
the solution of mathematical problems using 
GA. Kavanagh and Kelley have solved some 
non-linear equations using GA [1]. P.C. 
Barman and R. Ahmed have given a 
comparison of GA and bisection method in the 
numerical solution of transcendental equations 
[2]. S. Shahid, M.N. Bhuiyan and M. M. Haque 
have solved some non-linear equation using GA 
with dynamic mutation rate [3]. Almost all of 
the papers found in literature use GA to solve 
mathematical equations in traditional way.    

This paper investigates the application of 
genetic algorithm to search for the roots of 
mathematical equations. We use iteratively 
fitness values to select chromosomes using 
roulette wheel but with fuzzy inference. The 
implication of fuzzy logic for the “survival of 
the fittest” chromosome selection procedure has 
proliferated the solution process with more 
success and efficiency.  

 
2. Genetic Algorithm 
Genetic algorithms are a class of algorithms 
inspired by evolution. These algorithms encode 
solutions to a specific problem on a simple 
chromosome like data structure and apply 
recombination operators to these structures so 
as to preserve critical information [3]. 

Central to the idea of GA is a population of 
individuals, each represents a possible solution 
to the given problem [2]. Each individual, 
known as chromosome, usually represented by 
a bit string consisting of 0s and 1s, is assigned 
to a fitness value based on how good its 
solution to the problem is. The individuals then 
evolve through successive iterations called 
generations [4]. During one generation, highly 
fit individuals are given the opportunity to mate 
with other individuals in the population. Since 
the least fit individual in the population are less 
likely to get selected for mating, they disappear 
from future generations. As a result, the 
population of individuals converges to an 
optimal solution to the problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Flowchart for genetic algorithm. 
 
2.1 GA for the present problem 
To apply GA, let the transcendental equation is 

.cos23)( xxxf −+=  There is no strict rule for 
encoding the solutions to the problem. 
Generally binary coded solutions are used, 
though lately, real coded chromosomes are also 
being used. We have used binary encoding for 
this research. The advantage of using binary 
encoding is that the maximum number of 
schemes is investigated [5]. An approximation 
has been taken that the root of the above 
equation exists within the range [1.2,1.8]. 
 
2.1.1 Chromosome Encoding 
The chromosomes are represented by binary 
vectors to represent the real values of the x. The 
length of the vectors depends on the required 
precision [6]. This means that minimum 10 bits 
are required as a binary vector to represent each 
chromosome. We use 20 bits for each 
chromosome for better effect of crossover and 
mutation. 

The binary string (c0, c1, c2, …,c19) maps 
into a real number x. 
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a) Convert the binary string <c0, c1, c2, …,c19> 
from the base 2 to base 10. 

       i=19 
<c0, c1, c2, ...,c19>2 = ( ∑ci .2i )10 =x' 
i=0 
Find a corresponding real number x: 

),12/()2.18.1.(2.1 20 −=′+= xx                 
(1) 
where 1.2 is the left boundary of x and 1.8 
is the right boundary of x. The 
chromosomes (00000000000000000000) 
and (11111111111111111111) represent 
boundaries of the domain 1.2 and 1.8, 
respectively. 

 
2.1.2 Initial population 
The initialization process is very simple. Here 
we assume that 20 chromosomes are used as 
population. A population of chromosomes has 
been created as follows 
• Generate 20 random numbers in the range [0, 

(220-1)]. 
• Convert each random number into 20 bits 

binary vector and assign each binary vector to 
one of 20 chromosomes. 

• Now each chromosome is a binary vector of 
20 bits. 

 
2.1.3 Evaluation function 
The evaluation function for a chromosome c is 
equivalent to function f; evaluate(c) = f (x), 
where 
x=1.2+ binarytodecimal(c).(1.8-1.2)/( 220 -1).      
(2)       

In order to identify the best individual root 
(real x) during the evolutionary process, a 
function needs to assign a degree of fitness to 
each chromosome in every generation. So in 
order to determine largest region where the best 
root lies in that region, we have to compute 
fitness of particular chromosome. 

The fitness of a chromosome is defined as 
the function that represents that how much f(x) 
is close to zero. That is, for each chromosome 
n whose corresponds to real input value x, 
fitness function is defined as follows: 
For each chromosome, n=0,1, …,19 compute 

)3(2)cos(3)( nnn xxxf −+=

Add all values 

)4())(/1(sum
19

0
∑=
=n nxfabsolute

Now compute fitness values for each 
chromosomes 

)5(%100
sum

))(/1(
)(AreaFitness ×= nxfabsolute

n

where xn is the real value corresponding to the 
n-th chromosome. 

Fitness area represents the fitness of the 
root(real value of x). That is, absolute[f(xn)] is 
more closer to zero, xn is more close to the  
actual final root. So it has been shown that the 
larger fitness area is the result for the more 
fittest root. Thus survival of the fittest is 
maintained. 

 
2.1.4 Selection 
Good chromosomes that contribute their gene-
inherited knowledge to breed for the next 
generation are chosen. Here we use 
conventional elitist selection scheme to select 
an elitist chromosome with the highest fitness 
value, which is copied directly into the new 
population of next generation [7]. The other 
chromosomes are selected by roulette-wheel 
selection process, where the selection 
probability of each individual is proportional to 
its fitness value. In this process on a wheel, all 
the samples are placed allotting them space 
proportional to their fitness. N markers are put 
around the wheel, where N is the size of the 
new population. The wheel is spun and samples 
under each marker are selected [1]. 
 
2.1.5 Cross-over 
This operator randomly chooses a crossover 
point where two parent chromosomes ‘break’, 
and then exchanges the chromosome parts after 
that point [2]. As a result, two offspring are 
generated by combining the partial features of 
two chromosomes. If a pair of chromosomes 
does not cross over, then the chromosome 
cloning takes place, and the offspring are 
created as exact copies of each parent [8]. Here 
we have studied single point cross-over, two 
point cross-over and uniform cross-over 
operators. The cutting points are selected 
randomly within the chromosome for 
exchanging the contents. In this experiment, the 
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cross-over rate was chosen as 0.7 for all cases. 
For example, the strings 10000100 and 
11111111 could be crossed over after the third 
locus in each to produce the two offspring 
10011111 and 11100100.  
 
2.1.6 Mutation 
Mutation, which is rare in nature, represents a 
change in the gene and aids us in avoiding loss 
of genetic diversity. Its role is to provide a 
guarantee that the search algorithm is not 
trapped on a local optimum. 

This operator alters a randomly selected 
gene of chromosome with a very low 
probability, .Mp  For each chromosome, 
generate a random value between [0,1]. If the 
random value is less than ,Mp  then choose a bit 
at a random location to flip its value from 0 to 
1, or 1 to 0. The mutation rate for our method 
was chosen as  0.05. For example, the string 
00000100 might be mutated in its second 
position to yield 01000100. Mutation can occur 
at each bit position in a string with some 
probability, usually very small (e.g.,0.001) [9]. 
 
2.1.7 Replacement 
After generating the subpopulation (offspring), 
two representative strategies have been used for 
the replacement of old generation [2]. 

 
3. Fitness Evaluation Fuzzy 
This section introduces a new concept for the 
evaluation of the fitness value of each 
chromosome. 

The fuzzy logic based GA has been 
designed with the following notions: 
1. Create a fuzzy function (S-function) for a 

set of chromosomes. 
2. Now rating the fitness area based on the 

fuzzy function values to 7 fuzzy rating such 
as Extremely good (more than 80% area), 
Very good, Good, More or less good, Not 
so good, Not bad, Bad (less than 5% area). 

3. Extremely good is for the highest fitness 
area (more than 80% area). 

4. Bad is for lowest fittest area (less than 5% area). 
5. Other ratings are covered for intermediate 

areas. 
6. Now when a selection is made after 

roulette-wheel spun, if bad fittest area is 

selected, the selection is rejected and again 
roulette-wheel will be spun for the 
selection. The process is repeated until 
other than bad fittest area is selected. 

7. At the first iteration all area can be badly 
fittest. So only for 1st iteration above rule is 
not followed (General rule followed.). 

 
4. Experimental Results 
The effectiveness of this method has been 
justified over some experiments. Experiments 
were carried out on a Pentium IV 1.3 GHz PC 
with 256 MB RAM. The algorithm has been 
implemented in Visual C++. In any iteration, 
the evaluated values of the given equation and 
corresponding fitness values are depicted 
against chromosomes. 

The survival value i.e., evaluated value of 
the function and the fitness of each individual 
chromosome for the first and second iterations 
are shown in Fig. 2, and Fig. 3, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Survival value of chromosomes (1st iteration) 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 3. Survival value of chromosomes (2nd iteration). 
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Figure 4. Roulette-wheel for first iteration. 
 

The roulette-wheel construction for first 
iteration is shown in Fig. 4. Here the fittest root 
is: 1.201123 and largest area of the fittest root 
is 5.0083%. For the second iteration, fittest root 
is: 1.553666, and the largest area=29.12856%. 
Since the same areas correspond to same roots 
so in this experiment the sum of the same areas 
is taken into consideration to find the fittest 
root. 

The error versus iteration graph for 100 
iterations is furnished in Fig. 5, where error at 
any iteration i is defined as:  

(6))),Exp_root( -)t(abs(Th_roo)Error( iii =
where abs is the absolute function, Th_root(i) 
and Exp_root(i) are the theoreal and 
experimental values of the root at iteration i. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 5. Error  versus iteration graph. 
 

From the resulting curve, we have found 
that the final root becomes stable approximately 
at 66th iteration and minimum error has been 
obtained over there. After 66th iteration, we 
have got more accurate final root as: 1.518475. 

The uneven peaks are caused by the mutation 
operation. By selecting appropriate position for 
mutation operation, we can avoid the local 
optimal value and proceed to global optimal 
value.  

Now results of GA with fuzzy logic are 
furnished. The survival values for the 1st and 
2nd iterations are shown in Fig. 6 and Fig. 7, 
respectively. For the first iteration, the graph is 
similar to that of general rule for GA. The 
fittest root is: 1.201, and largest area=5.005%.  
After 2nd iteration, the fittest root is: 1.696774 
and largest area=15.84478%. The error versus 
iteration graph for the GA with fuzzy is shown 
in Fig. 8, which reveals that the final root 
becomes stable approximately at 40th iteration 
and the minimum error (.000432) has been 
obtained. After 40th iteration we have got more 
accurate final root as: 1.523167. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Survival value of chromosome for 1st iteration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Survival value of chromosome for 2nd iteration. 
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Figure 8. Error versus iteration graph for GA with fuzzy 
logic. 
 
Experimental results demonstrate that GA with 
fuzzy logic provides much more accurate 
solution for transcendental equation. And also 
finds solution more quickly. A comparative 
graph for GA with fuzzy logic and without 
fuzzy logic is depicted in Fig. 9. It justifies that 
implication of fuzzy logic in GA to solve 
equations is more effective. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9. Comparison for error versus iteration  
 
Mutation plays a great role on GA. We know 
that the MSB of a bit string has highest 
positional value and the LSB has lowest 
positional value. Effects of mutation operation 
in any bit except LSB and MSB have been 
justified over some experiments. The error 
versus iteration curve for GA with fuzzy logic 
is furnished in Fig.  10. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 10. Error versus iteration graph for GA with fuzzy 
logic (no mutation at MSB or  LSB). 

 
Effects of mutation operation in any bit 

except LSB and MSB have been justified over 
some experiments and the result is furnished in 
Fig. 11. From this comparison curve, it reveals 
that mutation at MSB or LSB has significant 
effects to find a global optimal value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Error versus iteration comparison curve  for GA 
with fuzzy.  
 
5. Conclusion 
This paper illustrates the implication of fuzzy 
logic in genetic algorithm for the selection of 
chromosome. Experiments were conducted to 
justify the expected results. The results reveal 
that GA with fuzzy logic provides more 
accurate results and that the fuzzy logic is more 
efficient way to find roots of mathematical 
equations. This paper also justifies the 
influences of mutations at MSB and LSB and 
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finds that mutation at MSB or LSB leads to 
dramatic change in the result. Our next target is 
to solve the real world mathematical equations 
using fuzzy logic.  
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