
DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 3, ISSUE 1, JANUARY 2008

59

A BOTTOM-UP MERGESORT ELIMINATING RECURSION

M. Abdullah-Al-Wadud1, Md. Amiruzzaman2, Oksam Chae1

1Department of Computer Engineering
Kyung Hee University, Seocheon, Kiheung, Yongin, Gyonggi, South Korea, 449-701

2Department of Computer Engineering
Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, South Korea, 143-747

E-mail: awsujon@yahoo.com, m_amiruzzaman@email.com, oschae@khu.ac.kr

Abstract. In this paper an improved mergesort
technique is proposed by us. The recursive calls
are removed by using a bottom-up strategy to
select two lists to merge. Some earlier improve-
ments on the merge procedure, which are done by
different researchers, into an efficient merge pro-
cedure that requires less space for auxiliary
memory and less number of conditions checking
also combined.

Keyword: Mergesort, recursive calls, aux-
iliary array, bottom-up.

1. Introduction
The mergesort algorithms to sort a sequence
of n elements are based on divide and con-
quer theory [1-16]. Merge-sort technique re-
cursively divides the list of elements into two
sub-lists until it gets a single element. Then it
merges two single elements into one sorted
list. Two such lists are then merged to form a
sorted list of four elements. This procedure is
repeated with larger number of elements
through the so called conquer steps until it
merges two n/2 sized sorted lists into a sorted
list of n elements.
Several approach has been proposed to im-
prove the performance of the basic mergesort
algorithm such as top-down mergesort [4],
natural mergesort [5], queue mergesort [8],
in-place mergesort [9] etc. [6] proposes a
technique to improve the asymptotic average-
case cost of mergesort for sorting link lists.
Some approaches have been proposed for
hardware based sorting such as merge-sort on
a linear array with a reconfigurable pipelined
bus system [10], parallel mergesort for binary
tree on chip network [3]. [4] proposes a
method to cut the auxiliary array down to half
while [5] deals with reducing some condition
checks in loops. In [1], authors have reduced
the necessity of dividing the last step of split-

ting (until a single element) and thereby
shown an improvement in running time re-
quiring less number of recursive calls to the
divide and conquer procedure. However, to
the best of our knowledge, no significant
work is done yet to remove the recursive
function calls, which certainly add some
overhead on the performance of mergesort.
In this paper we first combine the approaches
in [4] and [5] to form a more efficient merge
procedure, and then present a proposal to
eliminate the recursive function calls com-
pletely.
The organization of the rest of the paper is as
follows. In Section 2, basic mergesort algo-
rithm is briefly described. Section 3 presents
the proposed improvements of mergesort,
while Section 4 presents some simulation
results. Finally, Section 5 concludes the paper.

2. Basic Mergesort Algorithm
Mergesort is composed of three steps: divide
the list of elements into two halves, recur-
sively sort them and then combine (conquer)
them into a single sorted list. The traditional
mergesort algorithm found in textbooks [2] is
presented in Fig.1. Here a contains the list of
elements to be merged and b is an auxiliary
list. The time complexity of traditional
mergesort algorithm is O(nlog(n)) [2].
Fig. 2 presents an example depicting the steps
of mergesort algorithm to sort the list {3, 18, 5,
9, 11, 1, 22, 4} in ascending order.

3 Improving Mergesort
The complexity of mergesort algorithm is
O(nlog(n)) as found in textbooks. This in-
cludes only the comparisons among the ele-
ments being sorted. However, there are some
other factors that are not ignorable. In this
paper we focus on some of these issues.

WADUD ET AL: A BOTTOM-UP MERGESORT ELIMINATING RECURSION 60

 void mergesort (int *a, int low, int high)
 {
 if (low < high)
 {
 int mid = (low+high)/2;
 mergesort(a, low, mid);
 mergesort(a, mid+1, high);
 merge(a, low, mid, high);
 }
 }

(a)

 void merge(int *a, int low, int mid, int high)
 {
 // copy to an auxiliary array b.
 for (i = low; i ≤ high; i++)
 b[i] = a[i];

 i = low; j = mid+1; k = low;
 while (i ≤ mid && j ≤ high)
 {
 if (b[i] ≤ b[j])
 { a[k]= b[i]; k = k+1; i = i+1; }
 else
 { a[k] = b[j]; k = k+1; j = j+1; }
 }

 // copy back remaining elements of first half (if any)
 while (i ≤ mid)
 { a[k] = b[i]; k = k+1; i = i+1; }
 // copy back remaining elements of second half (if any)
 while (j ≤ high)
 { a[k] = b[j]; k = k+1; j = j+1; }
 }

(b)

Fig. 1 Traditional mergesort algorithm. (a) Main control of the algorithm, (b) The merge procedure

For a single processor based system the key
points, which have drawn attention of most
researchers, to improve the performance of
the mergesort algorithm mainly include
reducing the number of comparisons (of
course) and cutting down the size of re-
quired auxiliary array. In this connection,
[4] proposes a method to cut the auxiliary
array down to half while [5] deals with
reducing some condition checking in loops.
However, to the best of our knowledge,
little attention is given to remove the recur-
sive function calls, which certainly add
some overhead on the performance of
mergesort. Here we first merge the ap-
proaches in [4] and [5], and then present a

proposal to eliminate the recursive function
calls completely.
3.1 Reducing Auxiliary Memory and
Loop-Condition Checking
In [4], authors notice that it is not neces-
sary to copy the second half of array a to
the auxiliary array b (in Fig. 1(b)). Doing
so, it cuts the auxiliary array as well as the
necessary copy operations to half of that
needed in the basic approach. Moreover, if
all elements of the first half have been cop-
ied back to a, the remaining elements of the
second half need not be moved anymore
since they are already at their proper places.
Hence the improved version if merge()
function may look like which is presented
in Fig. 3.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 3, ISSUE 1, JANUARY 2008

61

Fig. 2 An example showing the steps of mergesort

 void merge_improved(int *a, int low, int mid, int high)
 {
 i = 0; j = low;
 // copy first half of array a to auxiliary array b
 while (j ≤ mid)
 { b[i] = a[j]; i = i+1; j = j+1; }

 i = 0, k =low;
 // copy back the next-largest element at each time
 while (k < j && j ≤ high)
 {
 if (b[i] ≤ a[j])
 { a[k] = b[i]; k = k+1; i = i+1; }
 else
 { a[k] = a[j]; k = k+1; j = j+1; }
 }
 // copy back remaining elements of first half (if any)
 while (k < j)
 { a[k] = b[i]; k = k+1; i = i+1; }

 }

Fig. 3 First Improvement of merge()

The second while-loop of the algorithm in Fig.
3 checks whether any of the two lists are ended.
However, both the list will never be ended at
the same time [5]. Hence, checking only the
list that will end earlier is sufficient and cuts

down almost half of the CPU time spent in
checking the while-loop condition. The im-
proved algorithm, along with the improvement
done in Fig. 3, then looks like that in Fig 4.

WADUD ET AL: A BOTTOM-UP MERGESORT ELIMINATING RECURSION 62

 void merge_final(int *a, int low, int mid, int high)
 {
 if (a[mid] > a[high])
 {
 i=0; j=low;

 while (j<=mid)
 { b[i]=a[j]; i=i+1; j = j+1; }

 i=0; k=low;

 while (j<=high)
 // no need to check whether the left list is finished
 {

 if (b[i]<=a[j])
 { a[k]=b[i]; k = k+1; i = i+1; }
 else
 { a[k] = a[j]; k = k+1; j = j+1; }

 }
 while (k < j)
 { a[k]=b[i]; k = k+1; i = i+1; }

 }
 else
 {

 i = 0; j = low;
 while (j ≤ mid)
 { b[i] = a[j]; i = i+1; j = j+1; }

 i = 0; k = low;

 while (k < j)
 // no need to check whether the right list is finished
 {
 if (b[i] ≤ a[j])
 { a[k] = b[i]; k = k+1; i = i+1; }
 else
 { a[k] = a[j]; k = k+1; j = j+1; }
 }

 }
 }

Fig. 4 Further Improvement of merge()

3.2 Eliminating Recursive Calls
The overheads that may be associated with a
function call are:
• Space: Every invocation of a function call

may require space for parameters (and local
variables), and for an indication of where to
return when the function is finished. Typi-
cally this space is allocated on the stack and
is released automatically when the function
returns.

• Time: The operations involved in calling a
function include allocating (and later releas-
ing) local memory, copying values into the
local memory for the parameters, branching
to (and returning from) the function. All
these operations contribute to the time over-
head.

Hence, a recursive algorithm may need space
and time proportional to the number of nested

calls to the same function. Too much recursion
may cause a stack overflow.
Thinking of these overhead, reducing the re-
cursive calls in mergesort surely achieves some
performance gain [1]. To sort a list of n ele-
ments, traditional mergesort algorithm calls
(recursively) the function mergesort(), in Fig.
1(a), 2n-1 times. Therefore, by eliminating all
these calls, we can avoid good amount of op-
erations.
Traditional mergesort algorithm works on a so
called top-down fashion. Each time is divides n
elements into two n/2 lists, recursively calls the
same function to sort each of them and then
merge them into a single list. To avoid the re-
cursion, we proceed in a bottom-up approach.
We start by merging two neighboring elements
into sorted blocks of two elements. Each
neighboring pair of such blocks are then
merged to make blocks of four sorted elements.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 3, ISSUE 1, JANUARY 2008

63

This procedure continues until it merges all the
elements into a single sorted block. One exam-
ple of this approach is presented in Fig. 5. In
fact here we cut down the upper half of the
execution flow of basic mergesort (presented
in Fig. 2). The algorithm of this modified ap-

proach is presented in Fig. 6. Here levels holds
total number of levels to traverse to cover the
upside down binary tree in Fig. 5. block_size is
the size of two blocks that are going to be
merged in current level.

Fig. 5 An example showing the steps of mergesort without using any recursive call

void MergeSort(int *a, int n){
 levels = ⎡log2n⎤;
 levelCount=0, block_size=1;
 while (levelCount < levels)

{
 left=0;
 while(1)

{
 mid = left+block_size-1;
 right = mid+block_size;
 if(right ≥ total)

{
 right = total-1;
 if(mid>=right)
 break;
 }
 merge_final(numbers_our, left, mid, right);
 left = right+1;
 }
 levelCount = levelCount +1;

block_size = block_size *2;
 }

}

Fig. 6 Algorithm of mergesort without using any recursive call

4 Experimental Results
For performance measurement, we have exe-
cuted our proposed mergesort and the basic
mergesort algorithm on a PC having Intel Pen-
tium (R) D CPU 3.40 GHz and 2.00 GB of
RAM. We have run them on same randomly
generated data sets of different sizes. We have
generated ten different data sets of same size,
run the algorithms on them and taken the aver-

age time needed to sort the sets. Then we have
plotted these data to have the graph in Fig. 7. It
clearly shows better performance of the pro-
posed algorithm. Moreover, also notice that the
more data is given, the better is the perform-
ance. This also advocates for the proposed
method.

WADUD ET AL: A BOTTOM-UP MERGESORT ELIMINATING RECURSION 64

Fig. 7 Performance comparison of the proposed algorithm with traditional mergesort

5 Conclusions
In this paper we have presented an improved
mergesort algorithm. We have eliminated the
need of recursive calls by making the algo-
rithm bottom-up. We also have combined
two approaches to cut the auxiliary array in
the traditional mergesort and to reduce some
loop-conditions to speed up the computa-
tional time. Though the computational com-
plexity remains the same as traditional one, it
surely runs faster than the traditional imple-
mentations and the experimental results also
support this claim.

References
[1] Hossain, N., Alma, M.G.R., Amiruzzaman, M.,

Qadir, S.M.M., “An Efficient Merge Sort Tech-
niques that reduces both Times and Comparisons”.
Damascus, Syria, ICCTA’04, April 19-23, 2004,
pp.537-538

[2] Azad, A.K.M., Kaykobad, M., “A Variation of
Merge Sort Algorithm Requiring Fewer Compari-
sons”, Nat. Conf. Comp. & Info. Syst. Dhaka, Dec
9-10, 1997

[3] Wong, S., Vassiliadis, S., Hur, J. Y., “Parallel
Merge Sort on a Binary Tree On-Chip Network”,
Proceedings ProRISC, 2005

[4] SOMMERLAD, P., (Private Korrespondenz). Som-
merlad, P., Rapperswil, H. f. T., Schweiz, 2004

[5] Katajainen, J., Träff, J. L., “A Meticulous Analy-
sis of Mergesort Programs”, Proceedings of the
Third Italian Conference on Algorithms and
Complexity, Vol. 1203, Lecture Notes In Com-
puter Science, 1997, pp.217–228

[6] Roura, S., “Improving Mergesort for Linked
Lists”, J. Nˇesetˇril (Ed.): ESA’99, Lecture Notes
in Computer Science 1643, 1999, pp.267–276

[7] Roura, S., “An improved master theorem for di-
vide-and-conquer recurrences”. Proc. of the 24th
International Colloquium (ICALP-97), volume
1256 of Lecture Notes in Computer Science,
Springer, 1997, pp.449–459.

[8] Golin, M.J., Sedgewick, R., “Queue-mergesort”,
Information Processing Letter, 48, 1993, pp. 253-
259

[9] Katajainen, J., Pasanen, T., Teuhola J., “Practical
in-place mergesort”, Nordic Journal of Computing,
1996, pp.27-40

[10] Datta, A., Soundaralakshmi, S., Owens, R., “Fast
Sorting Algorithms on Linear Array with a Re-
configurable Pipelined Bus Sytem”, IEEE Trans-
actions on Parallel and Distributed Systems, Vol-
ume 13, No. 3 March, 2002

[11] Knuth, D.E., The art of Computer Programming:
Sorting and Searching, Volume 3, Addison
Wesley, Reading, MA, 2nd edition, 1998

[12] Horowitz, E., Sahni, S., Fundamentals of Com-
puter Algorithms, Galgotia Publication (p) Ltd.,
New Delhi, 1995

[13] Sedgewick, R., Algorithms, 3rd Edition, Addison
Wesley, 1946

[14] Kleinberg, J., Tardos, E., Algorithm Design, Pear-
son International Edition, Addison Wesley, 2006,
pp.210

[15] Sedgewick, R., Algorithms, 2nd edition, Addison-
Wesley Publishing Company, Reading, Mass,
1988

[16] Knuth, D.E., The Art of Computer Programming,
Vol.1: Fundamental Algorithms, Addison-Wesley
Publishing Company, Reading, Mass, 1968

