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Abstract: Load balancing is the key to the 
efficient operation of distributed systems. To 
efficiently utilize computing resources provided 
by distributed systems, an underlying Dynamic 
load balancing (DLB) scheme must address both 
heterogeneous and dynamic features of 
distributed systems. In this paper, a DLB scheme 
for Solution Adaptive Finite Element Graph 
Applications on distributed systems is proposed. 
Experiments show that by using the proposed 
distributed DLB scheme which considers the 
heterogeneous and dynamic features of 
distributed systems, the execution time and the 
number of process migration is close to using 
Condensed Binary Tree Load Balancing (CBTLB) 
scheme which does not consider the 
heterogeneous and dynamic features of 
distributed systems. 
 
Keywords: dynamic load balancing, distributed 
systems, heterogeneity, dynamic network loads. 
 
1 Introduction  
The Finite Element Graph (FEG) method is 
widely used for the structural modeling of 
physical systems. In the finite element model, 
an object can be viewed as a finite element 
graph, which is a connected and undirected 
graph that consists of a number of finite 
elements. Each finite element is composed of 
a number of nodes. Due to the properties of 
computation-intensiveness and computation-
locality, it is very attractive to implement the 
finite element method on distributed memory 
multicomputers [4, 5, 14, 19, 20]. In the 
context of parallelizing a finite element 
application program that uses iterative 
techniques to solve system of equations [1], a 
parallel program may be viewed as a 
collection of tasks represented by nodes of a 
finite element graph. Each node represents a 
particular amount of computation and can be 
executed independently. To efficiently 
execute a finite element application program 
on a distributed memory multicomputer, we 

need to map nodes of the corresponding finite 
element graph to processors of a distributed 
memory multicomputer such that each 
processor has approximately the same 
amount of computational load and the 
communication among processors is 
minimized. Since this mapping problem is 
known to be NP-complete [12], many 
heuristic methods were proposed to find 
satisfactory suboptimal solutions [2-5, 13]. 
For a solution-adaptive finite element 
application program, the number of nodes 
increases discretely due to the refinement of 
some finite elements during the execution. 
This may result in load imbalance of 
processors. So, execution of FEG 
applications on distributed systems involves 
dynamically distributing the workload among 
the systems at runtime. A distributed system 
may consist of heterogeneous machines 
connected with heterogeneous networks; and 
the networks may be shared. Therefore, to 
efficiently utilize the computing resources 
provided by distributed systems, the 
underlying dynamic load balancing (DLB) 
scheme must take into consideration the 
heterogeneous and dynamic features of 
distributed systems. DLB schemes have been 
researched extensively, resulting in a number 
of proposed approaches [7-10, 15, 17, 18]. 
However, most of these approaches are 
inadequate for distributed systems. For 
example, some schemes assume the 
multiprocessor system to be homogeneous, 
(e.g. all the processors have the same 
performance and the underlying networks are 
dedicated and have the same performance). 
Some schemes consider the system to be 
heterogeneous in a limited way (e.g. the 
processors may have different performance 
but the networks are dedicated). To address 
the heterogeneity of processors, a widely-
used mechanism is to assign a relative weight 
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which measures the relative performance to 
each processor. For example, Elsasser [16] 
generalize existing diffusive schemes for 
heterogeneous systems. Their scheme 
considers the heterogeneity of processors, but 
does not address the heterogeneity and 
dynamicity of networks.  
In this paper, a dynamic load balancing 
scheme for distributed systems is proposed. 
This scheme takes into consideration (i) the 
heterogeneity of processors and (ii) the 
heterogeneity and dynamic load of the 
networks. The DLB scheme addresses the 
heterogeneity of processors by generating a 
relative performance weight for each 
processor. When distributing workload 
among processors, the load is balanced 
proportional to these weights. To deal with 
the heterogeneity of network, our scheme 
divides the load balancing process into global 
load balancing phase and local load balancing 
phase. The primary objective is to minimize 
remote communication as well as to 
efficiently balance the load on the processors. 
In this paper, a heuristic method is proposed 
to evaluate the computational gain and the 
redistribution cost for global redistributions. 
The scheme addresses the dynamic features 
of networks by adaptively choosing an 
appropriate action based on the current 
observation of the traffic on the networks. 
The remainder of this paper is organized as 
follows. Section 2 introduces Solution 
Adaptive Finite Element Graph Application 
and a parallel load balancing method 
Condensed Binary Tree Load Balancing 
(CBTLB) [6] method in a distributed 
environment. Section 3 describes our 
proposed dynamic load balancing scheme for 
distributed systems. Section 4 presents the 

experimental results comparing the 
performance by this distributed DLB scheme 
with CBTLB scheme which does not 
consider the heterogeneous and dynamic 
features of distributed systems. Finally, 
section 5 summarizes the paper. 
 
2 Finite Element Graph Method 
This section gives an overview of the FEG 
method, and CBTLB, a parallel load 
balancing method for FEG on distributed 
memory multicomputers. Additional details 
about CBTLB and FEG can be found in [6]. 
 
2.1 Layout of Finite Element Graph 
In the finite element model, an object can be 
viewed as a finite element graph, which is a 
connected and undirected graph that consists 
of a number of finite elements. Each finite 
element is composed of a number of nodes. 
Due to the properties of computation-
intensiveness and computation-locality, it is 
very attractive to implement the finite 
element method on distributed memory 
multicomputers [5, 14, 17, 19, 20]. When 
nodes of a solution-adaptive finite element 
graph were evenly distributed to processors 
by some mapping algorithms, according to 
the communication property of the finite 
element graph, we can get a processor graph 
from the partition. For example, Figure 1 
shows a partition of a 21-node finite element 
graph on seven processors. The 
corresponding processor graph of Figure 1 is 
shown in Figure 2. In a processor graph, 
nodes represent the processors and edges 
represent the communication needed among 
processors. The weights associated with 
nodes and edges denote the computation and 
the communication costs, respectively.   
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2.2 CBTLB: A Parallel Load Balancing 
Method 
When a finite element graph is refined during 
run-time, it will result in load imbalance of 
processors. To balance the computational 
load of processors, the CBTLB method [6], 
work in the following five phases: 
Phase 1: Obtain a processor graph G from the 
initial partition. 
Phase 2: Group processors of G into 
metaprocessors to obtain a condensed 
processor graph Gc incrementally. Each 
metaprocessor of Gc is a hypercube. The 
metaprocessors in Gc are constructed as 
follows: First, a processor Pi with the 
smallest degree in G and a processor Pj that is 
a neighbor processor of Pi and has the 
smallest degree among those neighbor 
processors of Pi are grouped into a 
metaprocessor. Then, the same construction 
is applied to other ungrouped processors until 
there are no processors can be grouped into a 
hypercube. Repeat the grouping process to 
each metaprocessor until there are no 
metaprocessors can be grouped into a higher 
order hypercube. 
Phase 3: Find a binary tree T = (V, E) from 
Gc, where V and E denote the metaprocessors 
and edges of T, respectively. The method of 
constructing a binary tree is the same as that 
of the BTLB method. 
Phase 4: Based on T, calculate the global load 
balancing information and schedule the load 
transfer sequence by using a similar TWA 
method for metaprocessors. Assume that 
there are M processors in a tree and N nodes 
in a refined finite element graph. We define 
N/M as the average weight of a processor. To 
obtain the global load balancing information, 
the quota and the load of each processor in a 

tree are calculated. The quota is defined as 
the sum of the average weights of processors 
in a metaprocessor Ci and processors in 
children processors of Ci. The load is defined 
as the sum of the weights of processors in a 
metaprocessor Ci and processors in children 
metaprocessors of Ci. The difference of the 
quota and the load of a metaprocessor is the 
number of nodes that a metaprocessor should 
send to or receive from its parent 
metaprocessor. If the difference is negative, a 
metaprocessor should send nodes to its parent 
metaprocessor. Otherwise, a metaprocessor 
should receive nodes from its parent 
metaprocessor. After calculating the global 
load balancing information, the schedule is 
determined as follows. Assume that m is the 
number of nodes that a metaprocessor Ci 
needs to send to another metaprocessor Cj. 
We have the following two cases: 
Case 1: If the weight of Ci is less than m, the 
schedule of these two metaprocessors is 
postponed until the weight of Ci is greater 
than or equal to m. 
Case 2: If the weight of Ci is greater than or 
equal to m, a schedule can be made between 
processors of Ci and Cj. Assume that ADJ 
denotes the set of processors in Ci that are 
adjacent to those in Cj. If the sum of the 
weights of processors in ADJ is less than m, a 
schedule is made to transfer nodes of 
processors in Ci to processors in ADJ such 
that the weights of processors in ADJ is 
greater than or equal to m. If the sum of the 
weights of processors in ADJ is greater than 
or equal to m, a schedule is made to send m 
nodes from processors in ADJ to those in Cj. 
Phase 5: Perform load transfer (send/receive) 
among metaprocessors based on the global 
load balancing information, the schedule, and 

  
  
  
  
  
  
  
    
  
     
    
     

     
  
  
Fig. 2 The corresponding processor graph of Fig. 1 
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T. The load transfer method is similar to that 
of the BTLB method. After performing load 
transfer process among metaprocessors, a 
dimension exchange method (DEM) [11] is 
performed to balance the computational load 
of processors in metaprocessors.  
 
3. Distributed Dynamic Load Balancing 
Scheme 
In this section, we present a DLB scheme for 
FEG applications on distributed systems. To 
address the heterogeneity of processors, each 
processor is assigned a relative weight. To 
deal with the heterogeneity of networks, the 
scheme divides the load balancing process 
into two steps: global load balancing phase 
and local load balancing phase. Further, the 
proposed scheme addresses dynamic feature 
of networks by adaptively choosing an 
appropriate action according to the traffic on 
them. The details are given in the following 
subsections. 
3.1 Description 
First, we define a “group” as a set of 
processors which have the same performance 
and share an intraconnected network; a group 
is a homogeneous system. A group can be a 
shared-memory parallel computer, a 
distributed-memory parallel computer, or a 
cluster of workstations. Communications 
within a group are referred as local 
communication, and those between different 
groups are remote communications. A 
distributed system is composed of two or 
more groups.  
Our distributed DLB scheme entails two 
steps to redistribute the workload: global load 
balancing phase and local load balancing 
phase, which are described in detail below. 
• Global Load Balancing Phase 
For a solution-adaptive finite element 
application program, the number of nodes 
increases discretely due to the refinement of 
some finite elements during the execution. 
This may result in load imbalance of 
processors. So after each refinement, the 
scheme evaluates the load distribution among 
the groups by considering both 
heterogeneous and dynamic features of the 
system. If imbalance is detected, a heuristic 
method described in the following 
subsections is invoked to calculate the 
computational gain of removing the 
imbalance and the overhead of performing 
such load redistribution among groups. If the 

computational gain is larger than the 
redistribution overhead, this step will be 
invoked. All the processors will be involved 
in this process, and both global and local 
communications are considered. Workload 
will be redistributed by considering the 
heterogeneity of number of processors and 
processor performance of each group. 
• Local Load Balancing 
After each refinement, each group entails a 
balancing process within the group. The 
parallel DLB scheme as mentioned in section 
2.2 is invoked, that is, the workload of each 
group is evenly and equally distributed 
among the processors. However, load 
balancing is only allowed within the group. 
An overloaded processor can migrate its 
workload to an underloaded processor of the 
same group only. During this step, load 
imbalance may be detected among groups; 
however, the global balancing process will 
not be invoked until the next refinement. 
3.2 Cost Evaluation 
To determine if a global redistribution is 
invoked, an efficient evaluation model is 
required to calculate the redistribution cost 
and the computational gain. The evaluation 
should be very fast to minimize the overhead 
imposed by the DLB. Basically, the 
redistribution cost consists of both 
communicational and computational 
overhead. The communicational overhead 
includes the time to migrate workload among 
processors. The computational overhead 
includes forming the groups of 
metaprocessors, calculating load balancing 
information and performing a load transfer 
algorithm to balance the computational load 
of metaprocessors. 
We propose a heuristic method to evaluate 
the redistribution cost as follows. First, the 
scheme checks the load distribution of the 
system. If imbalance exists, the scheme 
calculates the amount of load needed to 
migrate between groups. In order to 
adaptively calculate communication cost, the 
network performance is modeled by the 
conventional model, that 
is LTcomm ×+= βα . Here commT is the 
communication time, α is the communication 
latency, β is the communication transfer rate, 
and L is the data size in bytes. Then the 
scheme sends two messages between groups, 
and calculates the network performance 
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parameters α and β. If the amount of 
workload need to be redistributed is W, the 
communication cost would be α + β × W. 
This communication model is very simple so 
little overhead is introduced. To estimate the 
computational cost, the scheme uses history 
information that is, recording the 
computational overhead of the previous 
refinement. We denote this portion of cost as 
δ. Therefore, the total cost for redistribution is: 

Cost  = α + β × W + δ   (1) 
3.3 Gain Evaluation 
The scheme predicts the computational gain 
by the following heuristic method. Between 
two refinement of finite element graph, the 
scheme records several performance data, 
such as the amount of load each processor 
has, the number of iterations performed 
during each refinement, and the execution 
time for one refinement. For each group, the 
total workload is calculated for one 
refinement using this recorded data. Then the 
difference of total workload between groups 
is estimated. Lastly, the computational gain is 
estimated by using the difference of total 
workload and the recorded execution time of 
one refinement. The detailed formula is as 
follows: 

)()]([)( tNtwtW iter
groupproc

procgroup ×= ∑
∈

 (2) 

))(max(_
))(min())(max(

)(
yWGroupsNumber

tWtW
tTGain

group

groupgroup

×

−
×=

                 (3) 
Here, Gain denotes the estimated 
computational gain for global load balancing 
at time t; )(twproc is the workload of 

processor proc for time t; )(tWgroup  is the 
total amount of load of group for time t; 

)(tNiter  is the number of iterative steps for 
last refinement; and T (t) is the execution 
time for last refinement. Hence, the gain 
provides a very conservative estimate of the 
amount of decrease in execution time that 
will occur from the redistribution of load 
resulting from the DLB. 
 
3.4 Global Load Redistribution 
The global load redistribution is invoked 
when the computational gain is larger than 
some factor times the redistribution cost, that 
is, when Gain > γ × Cost. Here, γ is a user-
defined parameter (default is 2:0) which 

identifies how much the computational gain 
must be for the redistribution to be invoked. 
The detailed sensitivity analysis of this 
parameter will be included in our future 
work. During the global redistribution step, 
the scheme redistributes the workload by 
considering the heterogeneity of processors. 
For example, suppose the total workload is 
W, which needs to be partitioned into two 
groups. Group A consists of nA processors 
and each processor has the performance of 
pA; group B consists of nB processors and 
each processor have the performance of pB. 
Then the global balancing process will 
partition the workload into two portions: 

BBAa

AA

pnpn
pnW

×+×
×

× for group A and 

AABB

BB

pnpn
pn

W
×+×

×
× for group B. 

Basically, this step entails moving the 
groups’ boundaries slightly from underloaded 
groups to overloaded groups so as to balance 
the system.  
 
4 Experimental Results 
In this section we compare the performance 
of CBTLB executed on a distributed 
environment with homogeneous processors 
with that executed on a distributed 
environment with heterogeneous processors. 
To compare the performance of the load-
balancing methods, the algorithms have been 
implemented with some simulation programs. 
The criteria used to evaluate the performance 
are execution time and the number of 
processes to be migrated to balance the 
system load. 
CBTLB method has been implemented in 
distributed systems of homogeneous 
processors. The execution time and the 
number of processes to be migrated of 
CBTLB methods, with 7, 15, 25, 30, and 40 
homogeneous processors are shown in Table 1.  
The proposed DLB method has been 
implemented in distributed systems of 
heterogeneous processors. The execution 
time and the number of processes to be 
migrated of new CBTLB methods, with 7, 
15, 25, 30, and 40 heterogeneous processors 
are shown in Table 2.   
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Table 1: The execution time in seconds and the number of processes to be migrated of CBTLD method for different 
load samples with different number of homogeneous processors. 

No. of Processors Execution time in seconds No. of processes to be migrated 
7 1.500549 782 
15 1.500549 2286 
25 1.600455 4426 
30 1.600655 5556 
40 1.612354 7355 

 
Table 2: The execution time in seconds and the number of processes to be migrated of proposed DLB method for 
different load samples with different number of heterogeneous processors. 

No. of Processors Execution time in seconds No. of processes to be migrated 
7 1.600655 785 
15 1.600665 2170 
25 1.612365 4120 
30 1.700236 5450 
40 1.710010 7255 

 
Figure 3 compares the total execution times 
with varying configurations for both load 
balancing schemes. It is observed that the 
total execution time and the total number of 
processes needed to be migrated by using 
the proposed DLB method is near same to 

some cases as compared to using CBTLB 
method. The most noteworthy reveal about 
the proposed DLB method is that it takes 
into account the heterogeneity of the 
processors of the distributed environment 
which CBTLB method cannot.

 
5 Conclusion 
In this paper, we proposed a dynamic load 
balancing scheme for distributed systems. 
This scheme takes into consideration (i) the 
heterogeneity of processors and (ii) the 
heterogeneity and dynamic load of networks. 
To address the heterogeneity of processors, 
each processor is assigned a relative 
performance weight. When distributing 
workload among processors, the load is 
distributed proportionally to these weights. 
To deal with the heterogeneity of network, 
the scheme divides the load balancing 
process into global load balancing phase and 
local load balancing phase. Further, the 

scheme addresses the dynamicity of networks 
by adaptively choosing an appropriate action 
based on the observation of the traffic on the 
networks. For global redistribution, a 
heuristic method was proposed to evaluate 
the computational gain and the redistribution 
cost. The experiments, however, illustrate the 
advantages of our DLB to handle the 
heterogeneity and dynamic load of the 
networks. The experiments show that by 
using this distributed DLB scheme, the total 
execution time can be reduced by 9%-46% 
and the average improvement is more than 
26%, as compared to using parallel DLB 
scheme which does not consider the 
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heterogeneous and dynamic features of 
distributed systems. 
Our future work will focus on including more 
heterogeneous machines and larger real 
datasets into our experiments. Further, we 
will connect this proposed DLB scheme with 
tools to get more accurate evaluation of 
underlying networks. Lastly, a detailed 
sensitivity analysis of parameters used in this 
distributed DLB scheme will also be 
completed. 
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