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Abstract: We propose a modified version of 
frequency domain least mean square algorithm, 
or, fast least mean square (FLMS) algorithm that 
achieves better convergence in frequency domain 
with a marginal increment in implementation 
Complexity than the former one. The proposed 
algorithm, leaky FLMS (LFLMS), mainly differs 
from FLMS by virtue of a leaky factor which is 
dependent on the algorithm step size parameter 
and improves the convergence behaviour. We 
apply the proposed algorithm in case of an 
adaptive channel equalizer. The performance of 
the proposed algorithm is examined in the said 
application with respect to the mean square error 
(MSE) performance as well as bit error rate 
(BER) versus signal to noise ratio (SNR) curves. 
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1. INTRODUCTION 
The time-domain least mean square (LMS) 
adaptive filter algorithm [1] has found many 
applications in situations where the statistics 
of the input processes are unknown or 
changing. These include noise cancelling, 
line enhancing, and adaptive array processing 
[2]. The algorithm uses a transversal filter 
structure driven by a primary input. The filter 
weights are updated iteratively based upon 
the difference between the filter output and a 
reference input, so as to minimize the mean-
square error of the difference. In all cases, the 
stability, convergence time, and fluctuations 
of the adaptation process are governed by the 
product of a feedback coefficient and the 
input sequence power to the adaptive filter. 
As a result, in all practical applications, there 
is an implicit automatic gain control (AGC) 
on the input to the adaptive filter. The AGC 
ensures that the power-feedback product is 
maintained within acceptable design limits. 
When the adaptive filter is implemented as a 
tapped delay line operating on the entire 
available input signal bandwidth, selection of 

a single value of feedback coefficient is 
required. Then, the algorithm convergence 
time and stability depends upon the ratio of 
the largest to the smallest Eigen values 
associated with the correlation matrix of the 
input sequence. To avoid this problem, a 
faster variant of LMS, normalized LMS 
(NLMS) algorithm, has been proposed with 
time dependent step size parameter [3].More 
recently, the computational efficiencies 
resulting from processing blocks of data, 
such as the Fast Fourier Transform (FFT) and 
block digital filtering, has led to the 
implementation of the LMS adaptive 
algorithm in the frequency domain. A 
specific frequency domain implementation of 
the algorithm was suggested in [4] that 
promised a significant reduction in 
computation when the number of weights 
equalled or exceeded 16. A serial 
implementation of the time-domain block 
LMS adaptive filter, that used the frequency 
domain FFT when implementing the filters, 
was presented in [5]. Later, for frequency 
domain applications, a family of fast LMS 
(FLMS) algorithms [6], [7] have been 
proposed which can be used in case of large 
memory applications. They significantly 
reduce the processing time of the data 
received. However, it is seen that if somehow 
the step size approaches the maximum limit, 
the Algorithm’s performance deteriorates 
very fast if proper care is not taken. Based on 
this criterion, a leaky factor, dependent on the 
algorithm step size parameter, is introduced 
into the algorithm to take care of such 
conditions. This factor causes the filter to 
maintain a constant value once large step size 
is encountered at all frequencies. It is shown 
that the performance improvement is possible 
with only a marginal increment in 
computational complexity. This paper is 
organized as follows. In Section 2 we deal 
with fundamentals of FLMS algorithm. 
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Section 3 introduces the proposed leaky 
FLMS algorithm and along with its relative 
computational complexity with respect to 
FLMS. Experimental results are provided in 
Section 4. This paper is concluded by 
summarizing the present t work in Section 5. 
                           
2. FUNDAMENTALS OF FLMS 
ALGORITHM 
FLMS algorithm comes under the category of 
frequency domain adaptive filtering (FDAF) 
algorithms [8]. There are two main reasons 
for seeking the use of frequency-domain 
adaptive filtering in one form or the other. 
The first one is that in certain applications, 
such as acoustic echo cancelation in 
teleconferencing, the adaptive filter  is 
required to have a long impulse response 
(i.e., long memory) to cope with equally long 
echo duration. When conventional time 
domain adaptive signal processing algorithms 
are used, it results in requirement of a long 
memory and increase in computational 
complexity of the algorithm used. The other 
reason is that the algorithm attains a uniform 
convergence rate by exploiting the 
orthogonal properties of discrete Fourier 
transform (DFT) and related discrete 
transforms. The various notations and 
definitions in the context of the FDAF 
algorithms, to be used in the sequel, are given 
below. 

F[x] = FFT[x], 
                       ][1 xF − = IFFT[x], 
U(k) = diag{F [u(n - N ), .....u(n - 1), u(n), 
....u(n + N - 1)]}: tap input vector, 
W(k)=F[w(n),

N zeroes

0, ........014243
]: filter weight vector, 

d(n): desired response vector, 
y(n): output response vector, 
E(k): error vector in frequency domain, 
                 NN ×0  : N × N all zero matrix, 
                 NNI ×  : N × N identity matrix     
µ: the constant learning rate scalar with the 
convergence range 20

tr (R )
µ< <  and  

R = E[u T(n) u(n)]: input correlation matrix. 
In FLMS algorithm, the desired response 
vector, output response vector and the error 
vector in frequency domain are taken as 
d(n)=[
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0,.........,014243 ,d(n),....,d(n+N-1)]           (1)   
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and E(k) = F[d(n)-y(n)]                      (3) 
 
respectively. With the help of (1)-(3), the 
weight update equation in frequency domain 
is specified as                                            
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,where the latter half of the right hand side of 
(4) represents the update factor in frequency 
domain.    
 
3. THE PROPOSED LEAKY FLMS 
ALGOR ITHM 
In the proposed leaky FLMS (LFLMS) 
algorithm, except the weight update equation, 
all the other notations and Definitions remain 
same. In the weight update equation of FLMS 
algorithm (4), we introduce a leaky factor (.) 
to improve the performance of the algorithm. 
The modified equation, takes the form as 

1

( ) (1 ) ( 1)

[ ( ) ( )]
N N N N

N N N N
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Where, the experimental lower and upper 
limits of are found to be 
                       

µ
γ 20 ≤≤                                (6) 

By introducing, we marginally increase the 
computational complexity as well as the 
mean square error (MSE) of the algorithm. It 
is seen that the leaky factor has almost no 
effect on the small step sizes. However, for 

large step sizes ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

)(
2
Rtr

, the leakage factor 

prevents the algorithm from diverging and 
restricts it to maintain a constant Value by 
putting a certain weightage on the previous 
filter weight vector. 
 
3.1 A comment on computational 
complexity 
The computational complexities of the 
algorithms mentioned above namely NLMS, 
FLMS and Leaky FLMS algorithm is 
provided in Table 1. Note that, in the table, N 
denotes the order of the filter. As an example, 
if we Take FLMS algorithm, there will be 4N 
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additions, 9 log2 N + 6 multiplications and 
the remaining are for divisions And sorting. 
Equation (2) takes log2 N for one IFFT 
operation. In the same way, (3) also takes 
log2 N for another FFT operation. The 
remaining is included in (4). The additions 
can also be explained in the similar way. 
Before entering the filter the signal is stored 
in N element block for further usage in the 
processing. This block serves as the storage 
block for passing the signal. This explains the 
storage requirement. We enlist all these in 
Table 1. It should be noted that for all the 
algorithms given in the table, the storage 
requirement is same. 
   
TABLE 1 Computational complexities of LMS, 
FLMS and LFLMS algorithms 

 
3.2 A few remarks about the LFLMS 
convergence 
Certain mathematical observations have been 
made regarding the convergence of the 
proposed leaky FLMS (LFLMS) algorithm. 
We state them below, without the 
complicated mathematical proof, as remarks. 
Remark 1: First, it must be proved that 
LFLMS converges. A proof of convergence of 
FLMS is given in [5] In LFLMS, when   

0→γ , we observe that LFLMS FLMS, 
which ensures for small, LFLMS converges. 

For 
µ

γ 1lim →  we observe that E[(1- 

µ.)W(k)] =0, meaning we are left with only 
the correction term, which is also a well 
known term that converges. 
Remark 2: It is known that the FLMS 
algorithm converges in mean to the same 
solution as that of the LMS. 
However, µ must be reduced by N times in 
FLMS to guarantee stability [5]. When . . 0, 
we observe that LFLMS, FLMS, and it is the 

mode we commonly prefer for very small µ 
values. However, lim..1/µ E[(1 -  µ. )W(k)] = 
0, 0)( ≠∀ kW , for which the optimum value 

of γ . is preferred to be 
µ
1

 

Remark 3: For 0 < µ < 
max

2
λ

(where maxλ  is 

the largest eigenvalue of R), it is seen that in 
FLMS algorithm, the misadjustment is 
reduced by N times to that of the LMS 
algorithm, i.e., ).(

2
Rtr

N
MSDFLMS

µ
=   

The Adaptation accuracy, or, the 
misadjustment, in LFMLS is the same as that 
of FLMS which mainly comes from the 
correction term.  
 
4. RESULTS AND DISCUSSIONS  
We generate a Gaussian random variable, to 
be used as the input, with variance 0.01 and 
the filter length N is taken as 10. With this, 
the upper limit of µ comes out to be 2. We 
have worked with µ = 0.2 and µ = 2 in order 
to show the effectiveness of the proposed 
LFLMS algorithm. The channel impulse 
response used here is h(n) = [0.7 , 0.6, 0.1, 
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2]. The algorithm 
is tested on 5000 test data, averaged on 100 
independent trials.  
 

 
Fig. 1 MSE plots for FLMS and LFLMS 
algorithms with µ = 2 and γ = 0.5 
 
Fig. 1 shows the MSE plots of FLMS and 
LFLMS algorithms with µ = 2. Here, γ is 
taken as 0.5 (µ) as said earlier and both the 
MSE characteristics are observed. From the 
figure we can conclude that leaky factor 
settles down the algorithm’s error value to a 
constant one.  
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Fig. 2 BER versus SNR plots for FLMS and 
LFLMS algorithms with µ = 2 and γ = 0.5 
 
Fig. 2 shows the BER versus SNR plots of 
FLMS and LFLMS algorithms with the 
parameters as said earlier. Here we can see 
that the error rate is much more high for 
FLMS algorithm than the LFLMS at high 
SNR values.  
 

 
Fig. 3 MSE plots for LFLMS algorithm with 
dfferent γ values 
 

 
Fig. 4 BER versus SNR plots for LFLMS 
algorithm with dfferent γ values 

Fig. 3 shows the MSE plot of LFLMS 
algorithm for different γ values for µ = 0.2. 
From the figure we can conclude that MSE 
value increases with the increase in value of γ 
beyond µ. The error goes on increasing to an 
undesirable value if the γ value exceeds the 
maximum limit as given in (6). Fig. 4 shows 
the corresponding BER plots of LFLMS with 
the same γ values and same µ. The figure 
shows the results as expected from the 
increasing value of γ.  
 
5.  CONCLUSION  
In this paper, a new algorithm, leaky FLMS 
(LFLMS), is proposed and the performance 
characteristics of the proposed algorithm in 
terms of MSE and BER plots are observed.. 
Although LFLMS algorithm has better 
convergence with respect to FLMS algorithm, 
the computational complexity increase 
slightly because the leaky factor forces the 
filter taps to keep learning in all of the 
frequency bands     constantly and prevents 
the noise from building up. The convergence 
characteristic of LFLMS algorithm for 
different values of γ is also investigated. 
However, the convergence properties of the 
proposed LFLMS algorithm with correlated 
data are not shown here, which the authors 
are currently investigating. It is suggested to 
use this algorithm for frequency domain long 
memory applications like channel 
equalization, echo cancelation etc.  
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