
DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 2, JULY 2009

19

A BETTER WAY FOR FINDING THE OPTIMAL NUMBER
OF NODES IN A DISTRIBUTED DATABASE

MANAGEMENT SYSTEM

1Rashed Mustafa, 1Md. Javed Hossain and 2Thomas Chowdhury

1Department of Computer Science and Telecommunication Engineering

Noakhali Science and Technology University, Bangladesh
2Department of Computer Science and Engineering

Chittagong University of Engineering and Technology (CUET), Bangladesh
E-mail: rashed_mustafa78@yahoo.com, javed_abc@yahoo.com and thms_chy@yahoo.com

Abstract: Distributed Database Management
System (DDBMS) is one of the prime concerns in
distributed computing. The driving force of
development of DDBMS is the demand of the
applications that need to query very large
databases (order of terabytes). Traditional Client-
Server database systems are too slower to handle
such applications. This paper presents a better
way to find the optimal number of nodes in a
distributed database management systems.

Keywords: DDBMS, Data Fragmentation, Linear
Search, RMI.

1 Introduction
Now a day, commercial data is increasing
rapidly. Due to technological innovation, the
size/price of storage devices improves
briskly. For business and scientific purposes,
sometimes, data size touches the thousand-
terabyte limit. To process and to keep such a
big databases, the demand of supercomputing
has risen over twelve years. But the price of
the parallel system is very high and the price
of Personal Computer (PC) has fallen and its
performance has been increased
tremendously. So, recently, developing a
Distributed system has become popular.
This paper is organized as follows: section 2
briefly discussed about distributed database
management system, in section 3 proposed
strategy has been analyzed, section 4
discusses its analytical result and finally
section 5 conclude the paper which
concentrates future work also.

2 Distributed Database Management
System (DDBMS)
In a DDBMS, data are scattered in several
nodes for security, faster processing or any
other business purposes. For retrieving

information it needs querying of data. Most
applications require searching operation than
inserting or updating a data to a database. To
design a Distributed Database system for
such applications, this research proposes to
consider optimal number of nodes for
ensuring the search faster.
The main disadvantages of a DDBMS are
network overhead, process startup time and
database connectivity time [1]. To simplify
our following discussion we express these
disadvantages as Distributed System
Overhead (DSO) [2]. For small amount of
data, a distributed database (DDB), which
consists of hundreds of node, suffers huge
network congestion. As a result, the
performance will degrade. On the other hand
for large amount of data (terabytes), the
performance of a distributed database system,
which or system that consists of few nodes,
may also degrade due to heavy load in each
node [4-6].
The above discussion promote that, number
of nodes is a prime concern to design a
DDBMS. This research identifies an
optimistic number of nodes of such a system.
There are two approaches to store tuples in
the DDBMS [7].
2.1 Replication
Identical replicas of the whole database are
stored in each node. This storage system
increases the robustness of database [5]. But
the main disadvantage of this storage system
is that is takes a huge amount of disk space to
store the data. Also, as the system needs to
ensure that all replicas of a relation r must be
consistent so whenever r is updated, the
update must be implemented to all nodes of
the system. Thus update increases overhead

MUSTAFA ET AL: A BETTER WAY FOR FINDING THE OPTIMAL NUMBER OF NODES IN A DISTRIBUTED DATABASE ...

20

in replication storage system. But it enhances
the read-only operations [8].
2.2 Fragmentation
Data can be fragmented vertically and
horizontally. Horizontal fragmentation splits
the relation by assigning each tuple of r to
one or more fragments. Whereas vertical
fragmentation splits the relation vertically,
i.e. one more relation will be created from a
relation [9,10].

3 Theory and Analysis
In worst case, the complexity of linear search
algorithm, f(n)=N, N is number of data in an
array, where’s the particular element is being
searched.
If the comparison time of the element is tc,
then the total comparison time required for
worst case in linear search is N × tc.
If N is very big and the data is kept in several
nodes of a network, the comparison time for
each node will be,
Td = (N / P) × tc, P is the number of nodes.
One demerit of the distributed system is that
we can’t omit DSO. Suppose, the time taken
to initialize the network for each node is tn,
the time for linear search in a distributed
database is

ncd PttPNT +×=))/(((1)
If P=1 i.e. the search is sequential then
according to Equation (1), the comparison
time will be

nc ttNT +×=)((2)

There’re two part of Equation (1), (N / P) ×
tc, this part represents the time taken for a
comparison in each node. It will be decreased
if we introduce more nodes without
increasing the amount of data. On the other
side, Ptn is DSO, suffered by the application.
It will be increased if we introduce more
nodes without increasing the amount of data.
Now, we take a look in Equation (1), if we
introduce more nodes in the system, more
DSO will be introduced. But it will decrease
comparison time i.e. the searching will be
optimal in the DDB only when

nc PttPN =×)/((3)
From Equation (3), we can write that the
optimal number of nodes for worst case will
be

n

c

t

Nt
P = (4)

And for average case it will be

n

c

t

Nt
P

2
= (5)

Here, P is the number of nodes, N is the
amount of data, tc is single compare time, tn is
network overhead. So, if we know N, tc, tn we
can easily find out P, the number of node in
the distributed system for optimum linear
searching.

4 System Architecture
For practical purpose, we establish a
distributed system using 16 nodes and one
workstation, which act as application server.
All nodes with identical configuration consist
of 128 RAM, 16 GB HDD, P-II Processor
with 450 MHz. A 100-based D-Link DES-
1024 fast Ethernet switch with 16K memory
is used for network. Operating system (OS)
of all nodes and workstation is Windows
2000. MySQL and java RMI are used for
distributed database and distributed
processing respectively [12].

5 Proposed Strategy
Here, at first, we have taken results using
1,2,4,8,10,12,16 nodes according and, it
considers 100,000,000 rows in a table where
the data has been searched. The data is kept
in the nodes by round robin fashion [11].
We measured the comparison time of each
node is 0.81*10-3 ms/compare. The startup
costs (Initialize Database + Network
overhead) = 982 ms. So, from (5)
theoretically, P = 9.09

6 Result Analysis
Analytical result shown in Table 1. From
table 1, it is decided that the value of the P
lies between 8 and 10. So, we have also
taken data for 9 nodes. Table 2 shows the
result. From the above results, we see that the
number of nodes should be 9 for the best
performance and this is equal to our
theoretical result.
The following two concepts are useful in
comparing sequential and distributed process
[2].

The speedup, Sp = Ts / Td

Which is the ratio of the time taken for the
optimal sequential algorithm and the time
taken required by the proposed distributed
algorithm to solve the same problem.

Efficiency, Ep = Sp / N

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE 2, JULY 2009

21

Table 1 Represents the time taken (Seconds) in each node
Number of Nodes Number of tuples per Nodes Time Taken (Second)

1 100,000,000 81.75
2 50,000,000 42.03
4 25,000,000 27.54
8 12,500,000 18.56
10 10,000,000 19.65
12 8,333,333 22.44
16 6,250,000 25.29

Table 2 Time taken for 9 nodes

Number of nodes Number of tuples per Nodes Time Taken (Second)
9 11,111,111 17.83

Which measures the fraction of time that a
typical node (processor) is usefully
employed.
The following table 3 depicts speedup versus
efficiency for corresponding nodes.

Table 3: Calculation of Speedup and Efficiency.

No of nodes Speedup Efficiency
1 1 1
2 1.95 0.975
4 2.968 0.742
8 4.405 0.551
9 4.585 0.509
10 4.1603 0.416
12 3.643 0.304
16 3.233 0.2021

The following figures described graphically
on the basis of the results of Table 1 and 2.

0

10

20

30

40

50

60

70

80

90

1 2 4 8 9 10 12 16

N umbe r of P r oc e ssor s

Fig. 1 Number of Processors Vs Time Taken (Second)

Figure 1 depicts that time decreases due to
large number of nodes used, but the result is
not always proportional to number of nodes.
It is clearly shown on the graph that in the

case of 9 nodes, time is minimum, which
supports our experimental and also
theoretical analysis.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 9 10 12 16

N umb er o f Processors

Fig. 2 Number of processors versus speedup ratio

Figure 2 described number of nodes versus
speedup ratio. It is shown that speedup ratio
goes upward when small number and
unoptimized (excluding 8 and 9) number of
nodes used.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 9 10 12 16

N umber o f Processors

Fig. 3 Number of processors vs. efficiency

MUSTAFA ET AL: A BETTER WAY FOR FINDING THE OPTIMAL NUMBER OF NODES IN A DISTRIBUTED DATABASE ...

22

Figure 3 elucidate efficiency in accordance
with number of nodes. Here also clearly
shown that efficiency is inversely
proportional to number of nodes.

7 Conclusion
Distributed Database is a growing
technology. A huge research work has been
done on it and is continuing. In this paper,
theoretically and experimentally, we have
shown a way to find out the optimal number
of nodes for linear search in a distributed
database. A related work has been done [3],
which does not show the particular number of
nodes for optimal searching. In this paper it is
clearly identified a number of optimistic
nodes for a particular searching.

References
[1] M. Adelgurefi and K.F. Wong. “Parallel

Database Techniques, IEEE-CS press june 1998
(ISBN 0-8186-8398-8)”

[2] D. DeWitt, and J. Gray “Parallel Database
Systems: The Future of High Performance
Database Systems”, CACM, Volume 35, No. 6,
June 1992.

[3] D. DeWitt, and J. Gray “Parallel Database
Systems: The Future of High Performance
Database Systems”, CACM, Volume 35, No. 6,
June 1992.

[4] Nowshaba Durrani, Mohammed Anwer, A
comparison of parallel database search algorithm
on a 16 node cluster, ICCIT 2004, Brac
University, Dhaka.

[5] 5. Annaratone, M., Pommerell, C., and Ruhl, R.
(1989) Interprocessor communication speed and
performance in distributed-memory parallel
processors. IN 16th Annul Symposium on
Computer Architectures, pp. 315-324, June 1989.

[6] M.B. Ibiza-Espiga and M.H. Williams. “Data
placement strategy for a parallel database
system” in proceedings of DEXA’92 Conference,
pages 469-474, Valencia, Spain, September 1992.

[7] D. Gibson, J.M Kleinberg, and P. Raghavan.
Clustering categorical data: An approach based on
dynamical systems, In proc. 1998 Int. conf. Very
Large Databases (VLDB’98), pages 311-323, New
York, Aug, 1998

[8] Java as a Basis for Parallel data Mining, In proc.
7th Intl conf. On High Performance Computing and
Networking HPCN Europe, April 12-14, 1999,
Amsterdam, The Netherlands, LNCS 1593,
Springer verlag, pp.884-884

[9] Silberschatz, Korth and Sudarshan, Database
System Concepts, 4th ed., McGraw-Hill, pp.710-
712, 2002.

[10] Dimitri P. Bartsekas and John N. Tsitsiklis,
Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, pp. 27- 28,1989.

[11] Buya R. “High performance Cluster Computing”,
Vol-1,2, Prentice Hall PTR.

[12] Sun Microsystems: Remote Method Invocation
specification,http://java.sun.com/products/jdk/rmi

