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Abstract: Consider a Boolean lattice  

 with a greatest element 1. An 
interval   for  

( 1,,L,L ∧∨= )
[ ]1a, La ∈   is called a section. In 

each Section   an antitone bijection is defined. 
We  characterize  these Lattices by means  of  two  
induced  binary  operations  providing that the 
resulting  algebras  from  a  variety.  A mapping f, of  

 on to itself is called a switching mapping if 
 and for . We  

have   If   for  

[ 1a, ]

[ ]1a,

( ) ( ) a1f1,af == [ ] 1xa,1a,x ≠≠∈

( ) 1xfa ≠≠ qpL,qp, ≤∈  the 
mapping  on the section   is  determined by  
that of [  ,  [1] it is shown  that  the  compatibility  
condition is  satisfied . We  have  got  conditions  for  
antitone  of switching  mapping  and  a  connections 
with  complementation  in sections is shown. 

[ ]1a,

]11,
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1.  Introduction 
Let  ( )1,�È�É,L,=L  be a Lattice with the greatest 
element 1. For , the interval   will be 
called a section. 

La ∈ [ 1a, ]

A mapping  is called an involution if  
 for each

yx:f α
xf(f(u)) = xx ∈ . 

Let  be an ordered set. A mapping 
 is antitone if,  implies  
 for all

( ≤x, )
yx:f α yx ≤

f(x)f(y) ≤ xyx, ∈ . A weakly switching 

mapping  will be called a switching 
mapping if    for each 

1xx: α
1axa ≠≠ [ ]1a,x∈  

with . 1xa ≠≠
We induced Lattices with 1. where  for each  La ∈  
there  is  a mapping  on  the section ; such a 
structure will be  called  lattice  with  sectional  
mappings [1]. 

[ ]1a,

We study the following notation: for each   
and 

La ∈
[ ]1a,x∈   denote by  the image of x in this 

sectional mapping on

ax

[ ]1a, .   Thus is a 
symbol for the corresponding sectional mapping on 
the section

axx: α

[ ]1a, .  
Let ( )1,,L,L ∧∨=  be a lattice with sectional 
mapping. Define the so-called induced operation on 
L by the rule . Since 

 for any .  Also, conversely, 
if  is induced on L, then for each  

and

( )yyxyx �É=�É
]1,[�¸�É yyx Lyx �¸,

“v” La �¸
[ ]1,�¸ax . We have  .=)�É(=�É aa xaxax

 
2. Switching Mapping 
A mapping  on the  section axx α: [ ]1,a  is  

weakly  switching  if  , in  other 
words , a  weakly  switching  mapping “switches” 
the bound  element  of  the  section . 

aa aa =1,1=

Lemma 2.1   A   lattice  ( )1,�È,�É,= LL  with 
section involutions.  The following properties are 
equivalent for    La�¸

(i)  is antitone, axx α:
(ii) The section [ ]1,a   is a Lattice where 

  (De Morgan law). ( aaa
a yxyx �É=�È )

Proof. (i) Since the  sectional  mapping  on :)(�Ëii
[ ]1,a   is  an  antitone  involution, it  is a  bijection  

and yxyx �É¡Ü,  implies  and 
the existence of supremum  for   yields  
existence  of  the infimum  

aaa yxyx )�É(¡Ý,
]1,[�¸, ayx

.�Èyx a

Hence .  ( )aa
a

a yxyx �É¡Ý�È

However, . Thus, due to 

We obtain  
Whence  

a
a

aaa yxyx �È¡Ý,

,=,= aaaa yyxx ( ) .�È¡Ü, aa
a

a yxyx

( ) ( ) ¡Ý�É..�È¡Ü�É aaa
a

a yxeiyxyx a
a

a yx �È  
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Al together, we obtain (ii)   
(ii) Let   and suppose :)(�Ëi ]1,[�¸, ayx .¡Üyx  
Then  yyx =�É  and, by (ii)  

 ( ) a
a

aaa yxyxy �È=�É=
Thus  i.e. the sectional mapping on ,¡Ü aa xy [ ]1,a   
is antitone.     
Lemma 2.2 A Lattice  ( )1,�È,�É,= LL  with 
sectional mappings. 
(i)  if the sectional  mapping   is an  
involution  for  each  

lxx α:
LI ∈  then  the  induced 

operation satisfies the  identity 
  ............(1). yxxxyyyx �É=�É)�É(=�É)�É(

(ii)  if the sectional  mapping   is weakly  
switching  for each  

lxx α:
L�¸1  and the induced  peration 

an  involution  satisfies (1), the  every sectional  
mapping  is  an  involution. 
Remark 1. Identity (1) is called quasi-
Commutativity in [1, 2] 
Proof: (i) Since  ]1,[�¸�É yyx

We have . yyxyx y ¡Ý)�É(=�É
Thus, if the sectional mapping is an involution we 
conclude,  

( )
( ) ,�É=�É=

)�É�É(=�É)�É(

yxyx

yyxyyx
yy

yy

 

Whence (i) is evident. 
(ii)  Let each sectional mapping be weakly 
switching, let L�¸1   and  [ ]1,1�¸x . 
Then    and, by (i) xIx =�É

x

xlxxxxl

xxlllxx

x

xxxxx

ll

=1=

)�É(=)�É(=)�É)�É((=

�É)�É(=�É)�É(=

 and 

thus   is  an  involution.       lxx �¨:
Lemma 2.3 A Lattice  ( )1,�È,�É,= LL  with 
sectional mappings. Let  ≤  be its induced order.  
Then yx ¡Ü  if and only if . 1=�Éyx
Proof: If  yx ¡Ü  , then 

 ( ) ,1==�É=�É yy yyxyx
Conversely, if   then  ,1=�Éyx ( ) ,1=�É yyx
Since it is a switching mapping, yyx =�É , whence 
, yx ¡Ü        
Lemma 2.4 A Lattice ( )1,�È,�É,= LL  with 
sectional weakly switching mappings. 
Then L satisfies identities, 

)2.......(1=1�É,=�É1,1=�É xxxxx  

Proof:  Since  ( )yyxyx �É=�É

Thus  ( ) ,1==�É(=�É yy yyxyx
Again, since in a sectional switching mappings. 

( )xx

xx

x

lll

xx

xxl

xl

lxx

�É=

)�É)�É((=

)�É(=

)�É(=
�É

�É

   

x

x
x

x

=1=

)�É1(=
  

   
x

x

lll

x

lxlx

lxxfurther

=

)�É(=�É=

)�É(=, �É

  

    .1=                    
Theorem 2.5  A Lattice  ( )1,�È,�É,= LL  with 
sectional   switching mappings. 
(i)  If L satisfies   the identity   

( ) )3.......(1=�É�É)�É)�É)�É((( zxzyyx  
Then every switching mapping on L is antitone. 
(ii)  If every sectional   switching mappings. on L  is  
an  involution then  it  antitone if  and  only  if  L 
satisfies (3) 
Proof: (i) Let   [ ]1,�¸,,�¸ zyxLz  and  yx ¡Ü . 
By Lemma 2.3 we have    and by ,1=�Ézy
Lemma 2.4 and (3) we conclude:     

 
.1=

)�É(�É)�É)�É)�É(((=
)�É(�É)�É)�É1((=)�É(�É)�É(

zxzyyx
zxzyzxzy

By Lemma 2.3 we have   zxzy �É¡Ü�É  

and thus   zz xzxzyy =�É¡Ü�É=
(ii)  Let  the sectional  switching  mappings on L  
are  antitone   involutions [2],[3],[4].  
By Lemma 2.2 we have   . yxyyx �É=�É)�É(
Since  zxzyx �É¡Ý�É�É  and 
 [ ]1,�¸�É,�É�É zzxzyx  
We obtain, 

( ) zxzxzyxzyyx zz ∨=∨≤)∨∨(=∨)∨)∨((
 
By Lemma 2.3 we conclude   

      1=)�É(�É)�É)�É)�É((( zxzyyx
 
3.  The Compatibility Condition 
Consider  a  Lattice  with  sectional  mappings where 
the  mapping  in  a  smaller  section  is determined  
by  that of  a greater  one. 
We say that  ( )1,�È,�É,= LL  satisfies the 
compatibility condition if  xqp ¡Ü¡Ü  implies that  

 ................................................(4) qxx pq ∨=



   

It  is easy  to  verify  that (4) can  be  equivalently 
expressed  as  the  following  identity,  

)5).......(�É(�É)�É)�É((=)�É(�É)�É( yxxzyyxzy  
Since  zyxyxx �É�É¡Ü�É¡Ü     and  

 )�É()�É�É(=)�É(�É)�É( yxzyxyxzy
xzyxxzy )�É�É(=�É)�É(  

Lemma 3.1   A Lattice  ( )1,�È,�É,= LL  with 
sectional    switching mappings, satisfying the 
compatibility condition.  Then  
(i)   for  each   and  each  1=�Élxx Ll �¸

[ ]1,�¸lx  
(ii) If  is  a  switching  mappings  for    
then   and  if  

lzz α 1�‚l
xx l ≠ yx <  then  

ll yx �‚  for  [ ]1,�¸, lyx  
(iii)  If  all  the  sectional      mappings  are  switching 
, then no section  of  L  can  be   a  chain  with  more  
then  two  elements.  
Proof:  (i) Since, we conclude directly by (5)  

 xxx lx �É==1
(ii) If  is  a  switching  mapping  on lzz α [ ]1,1   

and  [ ]1,�¸, lyx , then  if   by  (i) ,  ,= xxl

We  obtain   and , hence,  xxxl =�É=1
lx ll =1==1 , a   contradiction. 

If  yx ¡Ü   and  , then  by  (5) and (i) , 

 

ll yx =
1=�É=�É= xxxyy llx

Since  the  sectional   mapping  is  switching,  it 
yields  y = x, a  contradiction. 
(iii)  Suppose  that  [ ]1,1  is  a chain  with  more  then  
two  elements.  
Then  there  exists, 

[ ] 1�‚�‚,1,�¸ xllx   
We  have,  and  by  (i) , 1�‚,�‚ ll xlx

),,(x=�É=1 ll xxmaxx  a  contradiction.      
Theorem 3.2 A Lattice ( )1,�È,�É,= LL  with  
sectional   switching  mapping  satisfying  the  
compatibility  condition .  If  is  antitone  on  lxx α
[ ]1,1  ,  then  xl   is  a  complement of  x  for  each  

[ ],1,�¸, lx  
Proof: Considers  the  sectional  switching  mapping  
on [ ]1,1   is  antitone.  [5] 

By  Lemma 2.5  we have   and  
 for  each 

1=�Élxx
1=�Élll xx [ ],1,�¸, lx  

Take  l
l xxz �È=

Then   and ,  due  to  the  antitone  
property  of mapping, also   

lxzxz ¡Ü,¡Ü
lllll xzxz ¡Ý,¡Ý
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Thus,  1=�É¡Ý llll xxz
Therefore, it follows that, 

lzei
zl

=.,.
,1=

   

and  is  complement of  x  in  the  Lattice  
  

lx
)1,�È,�É]1,([l

Theorem 3.3  A Lattice  ( )1,�È,�É,= LL  with  
sectionally antitone involutions satisfying the  
compatibility  condition.  Then  for  each  the  
section  

Ll �¸
[ ]1,1  is  an  orthomodular  lattice  where  

is  an  orthocomplement  of 

lx
[ ],1,�¸, lx   

Proof:  Since sectionally   antitone involutions  are  
switching  mappings,  thus  by  Lemma  1.1 and   
Theorem 3.2, [ ]1,1   is  a  Lattice  and   is  a  
complement  of 

lx
[ ],1,�¸, lx .Since  this  sectional   

mapping  is an  involution,  we  have and  
due  to antitony, 

xxll =
yx ¡Ü  implies  for  ll xy ¡Ü

[ ],1,�¸, lyx  thus   is  an   orthocomplement  of  x  
in   , 

lx

By  using  the compatibility  condition   

implies  and  hence 

 

yxl ¡Ü¡Ü

xyy lx �É=
xyyyyyxy x

x
x

l
l

l =�È=�È=)�É(�È
which  is the  orthomodular  condition in  the  lattice 

  )�È,�É]1,([ ll
Theorem 3.4  A Lattice  ( )1,�È,�É,= LL  with  
sectionally   antitone involutions. If  for   and  
each  

Ll �¸
[ ],1,�¸, lyx  the  relation  

 )6..(..........�É)�É(=�É)�É( lllll yxyxyx
holds,  then  is  a  Boolean  algebra. )�È,�É]1,([ ll
Proof:  Due  to Lemma 1.1  is  a  lattice  
and  we can  use De   Morgan  law for each   

)�È,�É]1,([ ll

section.  Let  [ ]1,�¸la . 
Using  of  the  identity (6),  we  obtain   

lllllll alaaaaa �É)�É(=�É=�É    

1=1�É)�É1(=�É)�É(= llll alal  
Due  to  the  De  Morgan  law,  we have,  

.=1=)�É(=�É=�É laaaaaa llll
l

lll
l  

Hence,  is a complement of  a  in  la [ ]1,1  . 
Let  [ ],1,�¸lu  is  a complement of  a  in  [ ]1,1  ,  
i.e.  and  . 1=�Éua lua l =�È
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