
44 DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 2, JULY 2010

COMPARISON OF MERGE SORT WITH A NEW TRI-
MERGE SORTING ALGORITHM

Jannatun Nayeem1 and Md. Abu Salek2

1Department of Arts and Science, Ahsanullah University of Science and Technology (AUST).
2Departmental Head of Mathematics, Joypurhat Government Mohilla College, Joypurhat.

E-mail: acm.math@gmail.com and salekphd@gmail.com.

Abstract: The sorting problem is one of the most
fundamental problems in computer science. This
paper is concerned with a new Tri-merge sorting
algorithm. This is a modification of Merge sort. It
is competitive with the fastest shorting
algorithms, especially when the number of
elements to be sorted is too large. Compared with
the preceding Merge sort, Tri-merge sort is more
robust. It is not only faster on random inputs, but
also avoids extreme comparisons. The empirical
results show that Tri-merge sort is faster than
Merge sort. This reduces the time complexity and
makes the algorithm faster. For a large data, we
try to implement this algorithm in well known
programming language Java.

Keywords: Merge Sort, Tri-Merge Sort And
Sorting Algorithms.

1. Introduction
The substantial differences in characteristics
of random access storage and tape devices
dictate that concepts and objectives of
computer program design be considered from
the viewpoint of the external file medium
used. This is particularly true in the case of
sorting. In a tape-oriented system, the major
sorting problem is that of minimizing merge
time despite the limited orders of merge
possible. In contrast, sorting in a random
access-oriented system encourages the
selection of the optimum order of merge
from many possible orders. The latter
problem is discussed in this paper, along with
criteria developed for determining the
optimum order of merge according to the
various properties of random access storage
devices. Attention is also given to the
problem of key sorting versus record sorting
and the possibly serious disadvantage of key
sorting on a random access system. External

sorting is quite different from internal sorting,
even though the problem in both cases is to sort
a given file into increasing or decreasing order.
An amazingly large percentage of computing
resources is devoted to sorting one thing or
another. Much effort has been devoted to the
development of sorting algorithms. There are
many reasons why sorting algorithms interest
computer Scientists and mathematicians. Among
these reasons are that some algorithms are easier
to implement, some algorithms are more
efficient, some algorithms take advantage of
particular computer architectures, and some
algorithms are particularly clever. Dufrene and
Lin [1] proposed an algorithm in which no other
external file is needed; only the original file (file
to be sorted) is used. Fang-Cheng Leu, Yin-Te
Tsai and Chuan Yi Tang [2] proposed an
algorithm in which they gave attention to reduce
disk I/O complexity but they did not give
attention to reduce the time complexity of
sorting. By ex-ploiting the sorting technique of
Dufrene and Lin [1], here we propose a new
external sorting algorithm. The proposed
algorithm is faster than the algorithm proposed
by Dufrene and Lin [1], and uses special
merging process demanding no other external
files except the original one. Many different
sorting algorithms exist in literature [3]. Among
the comparison based sorting methods, Quick
sort [4-6], Heap sort [7], and merge sort [8,9]
turn out, in most cases, to be the most efficient
general purpose sorting algorithms.

2. Formulation
Suppose we have elements. The merge sort
algorithm uses recursive function technique to
sort a list of elements. Let we have two sorted
sub-files. Now comparing the first element from
two sub-files take smallest or biggest one to a

n

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 2, JULY 2010 45

temporary file. Again comparing remaining
first element from two sub-files takes it to
temporary file. All the elements will come to
temporary file as a sorted file. The process is
called merge. Now instead of two sub-files
we make three sub-files and apply the
merging technique on them. Strictly
speaking, we worked with ternary three
structures and were able to construct
structure which proved to be more efficient
than the existing ones. Since the algorithm
sort data by merging from three files we
named it Tri-merge sorting algorithm. The
number of comparisons needed to Tri-merge
sort a list with n elements is .
Tri-merge is a new proposed technique for
sorting data. It uses the attractive features of
the sorting methods so far discussed: use of
recursive functions and efficiency of merge
sorting. The procedure of Tri-merge sort is
completed in two phases.

(nnO 3log)

()n

Phase 1: Split in 3 parts recursively.
Phase 2: Merge.
Split: In this stage total data of the given
array split into three (3) parts. Each part
consequently split 3 parts recursively until 1
or 2 elements remain. When two data remain
in a part they are sorted among themselves.
Merge: In this phase every 3 split parts
become 1 part and are sorted among
themselves. This process continues until all
data become one part and finally we get
completely sorted data.

3. Tri-Merge Sorting Algorithm
Here is the structural algorithm for easy
implementation to the programming
language.

Tri-mergeSort (a[L,……,R], L,R) {
 n = R – L + 1
 IF (n > 2) THEN {
 m1 = n/3
 m2 = 2*m1
 Tri-mergeSort (a [L,….…. m1],L, m1)
Tri-mergeSort (a[m1 +1,…., m2], m1+1, m2)
Tri-mergeSort (a [m2 +1,……, R], m2+1, R)
Tri-mergeSort (a[L,......,R],L,m1+1,m2 +1,R)
 }
 ELSE IF (n = 2) THEN {
 IF (a [L] > a [R]) {

 temp = a [L]
 a [L] = a [R]
 a [R] = temp
 }
 }

Tri-merge (a [L,……,R], L, m1, m2, R) {
 part1 = a [L,……, m1-1]
 part2 = a [m1,……, m2-1]
 part3 = a [m2,……..,R]
 TempArray [L,……..,R]
 n = R – L + 1
 IF (n > 2) {
WHILE (part1, part2 and part3 has elements) {
 Comparing from 3 parts find minimum and
set to Temporary array. }
WHILE (part1 and part2 has elements) {
 Comparing from 2 parts find minimum and
set to Temporary array. }
WHILE (part2 and part3 has elements) {
 Comparing from 2 parts find minimum and
set to Temporary array. }
WHILE (part1 and part3 has elements) {
 Comparing from 2 parts find minimum and
set to Temporary array. }
WHILE (part1 has elements) {
 Set to Temporary array. }
WHILE (part2 has elements) {
 Set to Temporary array. }
WHILE (part3 has elements) {
 Set to Temporary array. }
FOR (i = L TO R STEP 1) {
 Set all TempArray[i] value to a[i] }
 RETURN
 }
}

4. Improving Merge Sort
Merge sort is composed of three steps: divide
the list of elements into two halves, recursively
sort them and then combine (conquer) them into
a single sorted list, meanwhile the merge sort
splits the list to be sorted into two equal halves,
and places them in separate arrays. Each array is
recursively sorted, and then merged back
together to form the final sorted list. Like most
recursive sorts, the merge sort has an
algorithmic complexity of .
Elementary implementations of the merge sort
make use of three arrays-one for each half of the

nO log

46 NAYEEM: COMPARISON OF MERGE SORT WITH A NEW TRI-MERGE SORTING ALGORITHM

data set and one to store the sorted list in.
The merge sort is slightly faster than the heap
sort for larger sets, but it requires twice the
memory of the heap sort because of the
second array. This additional memory
requirement makes it unattractive for most
purposes - the quick sort is a better choice
most of the time and the heap sort is a better
choice for very large sets. We have to
improve the merge sort by constructing Tri-
merge sort, which reduces time complexity
and the algorithm is faster than merge sort to
sort a large number of data.

5. Time Complexity of The Proposed
Algorithm
We will assume that , the number of
elements in the list, is a power of 3, say .
This will make the analysis less complicated,
but when this is not the case, various
modifications can be applied. At the first
stage of the splitting procedure, the list is
split into three sub-lists of elements
each at level 1 of the tree generated by the
splitting. This process continues, splitting the
three sub-lists with elements into nine
sub-lists of elements each at level 2,
and so on. In general, there are lists at
level k-1, each with elements. These
lists at level k-1 are split into lists at level
k, each with elements. At the end of
this process, we have lists each with one
element at level m. We start merging by
combining pairs of the lists of one
element into lists, at level m-1, each
with two elements. To do this, pairs of
lists with one element each are merged. The
merger of each pair requires exactly one
comparison. The procedure continues, so that
at level k (k = m, m-1, m-2, …., 3, 2, 1),
lists each with elements are merged
into lists each with elements at
level k-1. To do this a total of mergers
of two lists, each with elements, are

needed. But each of these mergers can be carried
out using at most 3
comparisons. Hence, going from level k to k-1
can be accomplished using at most

n
m3

13 −m

13 −m

23 −m

13 −k

13 +−km

k3
km−3

m3

m3
13 −m

13 −m

k3
km−3

13 −m 13 +−km

13 −k

km−3

1313 1 −=−+ +−−− kmkmkm

()133 11 −+−− kmk comparisons. Summing all
these estimates shows that the number of
comparisons required for the merge sort is at

most ()
() 1log133

33133

3

1 1

1

1

111

+−=−−=

−=−∑ ∑∑
= =

−

=

−+−−

nnnm mm

m

k

m

k

k
m

k

kkmk

since nm 3log= and . This analysis
shows that the merge sort achieves the best
possible big-O estimate for the number of
comparisons needed by sorting algorithms. The
number of comparisons needed to Tri-merge sort
a list with elements is

mn 3=

n ()nnO . 3log

 Fig. 1 Time verses total number of data

6. Results and Discussions
To compare the merge sort with a new Tri-
Merge sorting algorithm we have generated
seven different number of data of different sizes,
run the algorithms on them and taken the
average time needed to sort the data. Then we
have plotted these data to have the graph in Fig:
1 and showed the results in Table 1. It is better
than merge sort not only in terms of the number
of comparisons, but also in terms of the number
of swaps. Fig. 1 shows that Tri-merge sort give
comparatively remarkable good result than
merge sort for a large data.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 2, JULY 2010 47

Table 1: Table of data analysis

Merge Sort Tri-Merge Sort
Number of Data

Number of Operation
Time in

mili-Second

Number of Operation
Time in

mili-Second
210 8179 0 7626 0
310 120579 35 112956 47
410 1610743 94 1565278 94
510 20096619 985 20059506 797

5105× 114153811 6031 111678441 4500
610 240311019 13219 236506615 9875

51015× 371865175 21782 364556046 15484

7. Conclusion

In this paper, we have proposed an external
sorting algorithm, in which merging
technique is used. The algorithm uses
minimum comparisons to sort records.
Though the computational complexity
remains less than the traditional one, it surely
runs faster than the traditional
implementations and the experimental results
also support this claim. We have calculated
the reduction of time complexity of the
proposed algorithm.

References

[1] W. R. Dufrene, F. C. Lin, An efficient sorting
algorithm with no additional space, Compute. J.
35 (3) (1992).

[2] F.-C. Leu, Y.- T. Tsai, C. Y. Tang, An efficient
external sorting algorithm, Revised in May
2000.

[3] Weiss, M. A. (1993). “Data Structures and
Algorithm Analysis in C”, Addison-Wesley;
Reading MA.

[4] Hoare, C. A. R. (1961). “Algorithm 63
(partition) and algorithm 65 (find) ”,Comm.
ACM 4(7) 321-322.

[5] Sedgewick, R. (1978). “Implementing Quick sort
programs ”, Comm. ACM, 21(10), p. 847-857.

[6] Sedgewick, R. (1980). “Quick sort ”, Garland
Publishing, New York.

[7] Williams, J. W. (1964). “Heap sort (alg. 232)”,
Comm. ACM, 7, p. 347-348.

[8] Grimaldi, R. P. (1994). “Discrete and combinatorial
Mathematics”, 3rd Edition, p. 634-638, Addison-
Wesley; Reading MA.

[9] Rosen, K. H. (2003). “Discrete Mathematics and its
applications”, 5th Edition, p. 120-135 and 274-283,
McGraw-Hill, New York.

Ms. Jannatun Nayeem completed M.S. in
Applied Mathematics from Dhaka
university. She is working as a lecturer in
Mathematics in AUST since October,
2006. She stood 1st class 1st in M.S final
examination.

Mr. Md. Abu Salek completed M.S from
University of Dhaka in 2006. He worked

as an assistant professor in Mathematics in
United International University. Now he is
working as lecturer in Mathematics. under
27th BCS in Joypurhat Govt. Mohilla
College, Joypurhat.

