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Abstract: The sorting problem is one of the most 
fundamental problems in computer science.  This 
paper is concerned with a new Tri-merge sorting 
algorithm. This is a modification of Merge sort. It 
is competitive with the fastest shorting 
algorithms, especially when the number of 
elements to be sorted is too large. Compared with 
the preceding Merge sort, Tri-merge sort is more 
robust. It is not only faster on random inputs, but 
also avoids extreme comparisons. The empirical 
results show that Tri-merge sort is faster than 
Merge sort. This reduces the time complexity and 
makes the algorithm faster. For a large data, we 
try to implement this algorithm in well known 
programming language Java.   
  
Keywords: Merge Sort, Tri-Merge Sort And 
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1. Introduction 
The substantial differences in characteristics 
of random access storage and tape devices 
dictate that concepts and objectives of 
computer program design be considered from 
the viewpoint of the external file medium 
used. This is particularly true in the case of 
sorting. In a tape-oriented system, the major 
sorting problem is that of minimizing merge 
time despite the limited orders of merge 
possible. In contrast, sorting in a random 
access-oriented system encourages the 
selection of the optimum order of merge 
from many possible orders. The latter 
problem is discussed in this paper, along with 
criteria developed for determining the 
optimum order of merge according to the 
various properties of random access storage 
devices. Attention is also given to the 
problem of key sorting versus record sorting 
and the possibly serious disadvantage of key 
sorting on a random access system. External 

sorting is quite different from internal sorting, 
even though the problem in both cases is to sort 
a given file into increasing or decreasing order. 
An amazingly large percentage of computing 
resources is devoted to sorting one thing or 
another. Much effort has been devoted to the 
development of sorting algorithms. There are 
many reasons why sorting algorithms interest 
computer Scientists and mathematicians. Among 
these reasons are that some algorithms are easier 
to implement, some algorithms are more 
efficient, some algorithms take advantage of 
particular computer architectures, and some 
algorithms are particularly clever. Dufrene and 
Lin [1] proposed an algorithm in which no other 
external file is needed; only the original file (file 
to be sorted) is used. Fang-Cheng Leu, Yin-Te 
Tsai and Chuan Yi Tang [2] proposed an 
algorithm in which they gave attention to reduce 
disk I/O complexity but they did not give 
attention to reduce the time complexity of 
sorting. By ex-ploiting the sorting technique of 
Dufrene and Lin [1], here we propose a new 
external sorting algorithm. The proposed 
algorithm is faster than the algorithm proposed 
by Dufrene and Lin [1], and uses special 
merging process demanding no other external 
files except the original one.  Many different 
sorting algorithms exist in literature [3]. Among 
the comparison based sorting methods, Quick 
sort [4-6], Heap sort [7], and merge sort [8,9] 
turn out, in most cases, to be the most efficient 
general purpose sorting algorithms.              
 
2. Formulation 
Suppose we have  elements. The merge sort 
algorithm uses recursive function technique to 
sort a list of elements. Let we have two sorted 
sub-files. Now comparing the first element from 
two sub-files take smallest or biggest one to a 

n
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temporary file. Again comparing remaining 
first element from two sub-files takes it to 
temporary file. All the elements will come to 
temporary file as a sorted file. The process is 
called merge. Now instead of two sub-files 
we make three sub-files and apply the 
merging technique on them. Strictly 
speaking, we worked with ternary three 
structures and were able to construct 
structure which proved to be more efficient 
than the existing ones. Since the algorithm 
sort data by merging from three files we 
named it Tri-merge sorting algorithm. The 
number of comparisons needed to Tri-merge 
sort a list with n elements is . 
Tri-merge is a new proposed technique for 
sorting data. It uses the attractive features of 
the sorting methods so far discussed: use of 
recursive functions and efficiency of merge 
sorting. The procedure of Tri-merge sort is 
completed in two phases. 

( nnO 3log )

( )n

Phase 1: Split in 3 parts recursively. 
Phase 2: Merge. 
Split: In this stage total data of the given 
array split into three (3) parts. Each part 
consequently split 3 parts recursively until 1 
or 2 elements remain. When two data remain 
in a part they are sorted among themselves.  
Merge: In this phase every 3 split parts 
become 1 part and are sorted among 
themselves. This process continues until all 
data become one part and finally we get 
completely sorted data.  
 
3. Tri-Merge Sorting Algorithm 
Here is the structural algorithm for easy 
implementation to the programming 
language. 
 

Tri-mergeSort (a[L,……,R], L,R)  { 
       n = R – L + 1 
       IF ( n > 2) THEN  { 
                      m1 = n/3  
                      m2 = 2*m1  
           Tri-mergeSort (a [L,….…. m1],L, m1) 
Tri-mergeSort (a[m1 +1,…., m2 ], m1+1, m2 ) 
Tri-mergeSort (a [m2 +1,……, R ], m2+1, R ) 
Tri-mergeSort (a[L,......,R],L,m1+1,m2 +1,R) 
               } 
               ELSE IF (n = 2) THEN      { 
                          IF (a [L] > a [R])  { 

                                 temp = a [L] 
                                  a [L] = a [R] 
                                  a [R] = temp 
                           } 
               } 
 
Tri-merge  (a [L,……,R], L, m1, m2, R)  { 
              part1 = a [L,……, m1-1] 
              part2 = a [m1,……, m2-1] 
              part3 = a [m2,……..,R] 
              TempArray [L,……..,R] 
              n = R – L + 1 
              IF (n > 2)  { 
WHILE (part1, part2 and part3 has elements)  { 
      Comparing from 3 parts find minimum and 
set to Temporary array.  } 
WHILE (part1 and part2 has elements)  { 
      Comparing from 2 parts find minimum and 
set to Temporary array.  } 
WHILE (part2 and part3 has elements)  { 
      Comparing from 2 parts find minimum and 
set to Temporary array.  } 
WHILE (part1 and part3 has elements)  { 
      Comparing from 2 parts find minimum and 
set to Temporary array.  } 
WHILE (part1 has elements)  { 
      Set to Temporary array.  } 
WHILE (part2 has elements)  { 
      Set to Temporary array.  } 
WHILE (part3 has elements)  { 
      Set to Temporary array.  } 
FOR ( i = L TO R STEP 1 )  { 
      Set all TempArray[ i ] value to a[ i ]  } 
      RETURN 
      } 
}        
 
4. Improving Merge Sort 
Merge sort is composed of three steps: divide 
the list of elements into two halves, recursively 
sort them and then combine (conquer) them into 
a single sorted list, meanwhile the merge sort 
splits the list to be sorted into two equal halves, 
and places them in separate arrays. Each array is 
recursively sorted, and then merged back 
together to form the final sorted list. Like most 
recursive sorts, the merge sort has an 
algorithmic complexity of . 
Elementary implementations of the merge sort 
make use of three arrays-one for each half of the 
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data set and one to store the sorted list in.  
The merge sort is slightly faster than the heap 
sort for larger sets, but it requires twice the 
memory of the heap sort because of the 
second array. This additional memory 
requirement makes it unattractive for most 
purposes - the quick sort is a better choice 
most of the time and the heap sort is a better 
choice for very large sets. We have to 
improve the merge sort by constructing Tri-
merge sort, which reduces time complexity 
and the algorithm is faster than merge sort to 
sort a large number of data. 
 
5. Time Complexity of The Proposed 
Algorithm 
We will assume that , the number of 
elements in the list, is a power of 3, say . 
This will make the analysis less complicated, 
but when this is not the case, various 
modifications can be applied. At the first 
stage of the splitting procedure, the list is 
split into three sub-lists of  elements 
each at level 1 of the tree generated by the 
splitting. This process continues, splitting the 
three sub-lists with  elements into nine 
sub-lists of  elements each at level 2, 
and so on. In general, there are  lists at 
level  k-1, each with  elements. These 
lists at level k-1 are split into  lists at level 
k, each with  elements. At the end of 
this process, we have  lists each with one 
element at level m. We start merging by 
combining pairs of the  lists of one 
element into  lists, at level m-1, each 
with two elements. To do this,  pairs of 
lists with one element each are merged. The 
merger of each pair requires exactly one 
comparison. The procedure continues, so that 
at level k (k = m, m-1, m-2, …., 3, 2, 1 ),  
lists each with  elements are merged 
into  lists each with  elements at 
level k-1. To do this a total of  mergers 
of two lists, each with  elements, are 

needed. But each of these mergers can be carried 
out using at most 3  
comparisons. Hence, going from level k to k-1 
can be accomplished using at most 
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comparisons required for the merge sort is at 
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since nm 3log=  and . This analysis 
shows that the merge sort achieves the best 
possible big-O estimate for the number of 
comparisons needed by sorting algorithms. The 
number of comparisons needed to Tri-merge sort 
a list with  elements is 

mn 3=

n ( )nnO . 3log
 

 
            
      Fig. 1 Time verses total number of data   
 
6. Results and Discussions 
To compare the merge sort with a new Tri-
Merge sorting algorithm we have generated 
seven different number of data of different sizes, 
run the algorithms on them and taken the 
average time needed to sort the data. Then we 
have plotted these data to have the graph in Fig: 
1 and showed the results in Table 1. It is better 
than merge sort not only in terms of the number 
of   comparisons, but also in terms of the number 
of swaps.  Fig. 1 shows that Tri-merge sort give 
comparatively remarkable good result than 
merge sort for a large data.  
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Table 1: Table of data analysis 

Merge Sort Tri-Merge Sort  
Number of Data  

Number of Operation 
Time in 

mili-Second 
 

Number of Operation 
Time in 

mili-Second 
210  8179 0 7626 0 
310  120579 35 112956 47 
410  1610743 94 1565278 94 
510  20096619 985 20059506 797 

5105×  114153811 6031 111678441 4500 
610  240311019 13219 236506615 9875 

51015×  371865175 21782 364556046 15484 

 
7. Conclusion   
 

In this paper, we have proposed an external 
sorting    algorithm, in which merging 
technique is used. The   algorithm uses 
minimum comparisons to sort records. 
Though the computational complexity 
remains less than the traditional one, it surely 
runs faster than the traditional 
implementations and the experimental results 
also support this claim. We have calculated 
the reduction of time complexity of the 
proposed algorithm. 
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