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Abstract: The present study aims at an efficient 
application of the vortex method to flow around 
bluff body. Most bluff body systems react with 
fluids one way or the other. This can be designed 
to reduce heat transfer or drag, only if the 
surrounding fluid is calculated correctly. The 
pressure and velocity field have been calculated 
for the convection of vortex elements around the 
circular cylinder. The corresponding drag and 
lift coefficients have been investigated carefully. 
Further investigations are considered. 
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1. Introduction 
Vortex shedding behind a circular cylinder 
has been the subject of a number of studies 
[1]. Given a long circular cylinder with its 
axis perpendicular to fluid flow, the well-
known Karman-type (asymmetric) vortex 
shedding may occur behind the cylinder, the 
control or suppression of which is of great 
interest as it is closely related to various 
fluid-mechanical properties of practical 
importance, such as flow-induced forces, 
vibrations and noises, and the efficiencies of 
heat and mass transfer. There are several 
situations where this type of vortex shedding 
may cease, and one of them is when a plane 
boundary or ground is located near the 
cylinder; the focus of the present study is on 
this flow configuration. 
The characteristics of flow around a circular 
cylinder placed near and parallel to a ground 
are governed not only by the Reynolds 
number Re but also by the gap ratio, i.e., the 
ratio of the gap between the cylinder and the 
ground, h, to the cylinder diameter d [2]. 
However the mechanisms of the flow and 
force variations caused by different h/d, or 
'ground effect', are in general rather 
complicated since they can be significantly 

affected by the state of the boundary layer 
formed on the ground [2;3].  
A vortex method is a computation technique 
for simulation fluid flows. To simulate the 
fluid flow, vortex methods attempt to 
simulate only the evolution of the vorticity 
field which is the curl of the velocity field. 
The reason why some people are only 
interested in the vorticity of a flow is that 
there are many interesting flows where the 
vorticity is confined to a very small region 
of space even though the whole flow 
occupies are larger or even unbounded area. 
Flow around a circular cylinder, however, is 
still a very challenging subject in itself in 
today's computational fluid dynamics (CFD) 
even if the cylinder is outside the ground 
effect. 
Vortex methods were developed as a grid-
free methodology that would not be limited 
by the fundamental smoothing effects 
associated with grid-based methods. To be 
practical, however, vortex methods require 
means for rapidly computing velocities from 
the vortex elements.  
As is the case in every numerical simulation, 
the first step was taken by applying the 
calculation to a flow around a body. In the 
first case the convection of a single vortex 
element around a circular wall was 
calculated. It was found that certain 
corrections had to be made to account for 
the curvature of the body and to conserve 
the total circulation of the field. In the next 
case these corrections were applied to 
calculate the vortex shedding from a circular 
cylinder. The representation of vortex 
shedding was successful but the 
consideration of the viscous diffusion and 
dissipation was still insufficient. This is 
another matter of controversy in the vortex 
method. The two main ways to account for 

 

mailto:tarun.sheel@uclouvain.be


   DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY,  VOLUME 5, ISSUE 2, JULY 2010 57

the viscous effects are the deterministic 
method and the random walk method. They 
are both under careful consideration. 
 
2. Vortex Element Method (VEM) 
Vortex element method have been growing 
in popularity in last three decades. As their 
name indicates, they are based on the  
discretization of vorticity-a quantity that has 
a compact support in many physical 
problems-thereby making this approach 
interesting [4]. 
The three-dimensional incompressible flow 
of a viscous fluid has been studied here. The 
evolution equation for vorticity is 

     ( ) )1(2
ii

i

Dt
D ωuωω

∇+∇⋅= ν                                                                     

where  is vorticity  defined as 
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by deformation of vortex lines and the term 
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viscous diffusion. The velocity field on 
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elements and is the volume of element. 
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   Using the Winckelmans model [5] as a 
cutoff function, Biot-Savart law is as 
follows 
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where ,jiij rrr −= jσ and  are distance 
of the position vector, core radius and 
strength of element. The subscript i stands 
for the target elements, while j stands for the 
source elements. 
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When the stretching term of Eq. (1) can be 
discretized as follows: 
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if I put vortex strength  in 
equation (4), then it becomes 
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Hence, the vortex strength of an individual 
element is expressed by Eq. (3) in a 
discretized formulation as  
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where all notations denotes the same 
meaning as of Eq. (3). Further details 
mathematical formulations see [6;7]. 
2.1 Viscous Diffusion 
Vortex methods originate in inviscid 
methods and recent studies mostly focus on 
their extension to viscous flows. Though, 
this has not been a straightforward task and 
the diversity of methods has become quite 
large. The random vortex method (RVM)[8] 
uses a stochastic interpretation of the 
diffusion equation. It has served an 
important role in the early development of 
viscous diffusion schemes, but its slow 
convergence rate prompted the development 
of alternative methods. The core spreading 
method (CSM) by Kuwahara[9] and 
Leonard[10] uses a deterministic approach, 
which changes the standard deviation of the 
Gaussian distribution to match the 
fundamental solution of the diffusion 
equation. A straightforward implementation 
of this method lacks convergence due to the 
fact that the ever-expanding Gaussian 
distribution moves with the velocity at its 
center. Local spatial refinement [11] can 
circumvent this problem, though this will 
introduce a large amount of error without 
careful consideration [12;13;14]. 
The particle strength exchange (PSE) by 
[15] redistributes the strength among vortex 
elements by solving the integral equation of 
the Laplacian operator. The location of 
elements are used as quadrature points, thus 
requires them to be nearly uniform for an 
accurate calculation [16]. The vortex 
redistribution method (VRM) by [17] also 
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redistributes the strength of vortex elements 
but by solving an underdetermined system 
of equations to equate the truncated Taylor 
series of the new distribution with that of the 
exactly diffused vorticity. Although, 
restrictions of particle nonuniformity are not 
as severe as the PSE, it is obvious that a 
sufficient number must exist in the 
neighborhood. The insertion and merging of 
particles is still an open area of research, as 
is the case with CSMs. 
In most cases a vortex element has three 
properties, circulation, core radius, and 
velocity. The CSM changes the core radius, 
PSE and RVM change the circulation to 
account for diffusion. The diffusion velocity 
method by [18] modifies the velocity 
instead, where the diffusion velocity 
becomes the product of ων−  and the 
gradient of vorticity. For regions of zero 
vorticity the ων−   becomes singular, so an 
algorithm which does not increase the 
vorticity magnitude outside of the 
computational vorticity support [19] is 
essential to this scheme. There exist many 
other ways to calculate the viscous diffusion 
of vorticity using a semi-Lagrangian 
discretization, such as the vortex in cell 
(VIC), free Lagrangian, triangulated, 
moving particle semi-implicit method(MPS) 
[20], and moving least squares (MLS). The 
present study focuses on pure Lagrangian 
schemes (with remeshing in some cases), 
thus semi-Lagrangian methods are out of 
scope. 
In particular, we will focus only the scheme 
of core spreading method as follows. 
The CSM is way to discretize the viscous 
diffusion equation 
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ω  is the vorticity,ν is the kinematic 
viscosity, γ is the circulation, x is the 
position vector, and d is the dimensionality 
of the problem. The subscript i stands for the 
target elements, while j stands for the source 
elements. The CSM uses a cutoff function 

ζ  to discretize the diffusion equation. In 
this case the vorticity at an arbitrary point 
can be expressed as 
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A common choice for the cutoff function is 
the Gaussian distribution 
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If we substitute Eq. (10) into Eq. (9), we can 
see that changing the variance of the 
Gaussian distribution according to 
 

)11(22 tνσ =  
will result in the heat kernel Eq. (8). σ is 
often referred to as the core radius of the 
vortex blob, and represents the physical 
length scale of the vortex elements.  
The radial basis function interpolation [12] 
is used every ten time steps to ensure the 
convergence of the core spreading method 
[21]. The convection is solved by updating 
the position of vortex elements according to 
their velocity 
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3. Numerical Result 
3.1 Convection Term 
The convection term was evaluated using a 
simple program of two vortex elements 
circling around one another. The velocities 
induced on the body were calculated from 
the vorticity of each element by using the 
Biot-Savart law (Eq. 3). The displacement 
was calculated from the induced velocity by 
using the predictor-corrector method. While 
the common method for time advancing in 
the vortex method is the Adams-Bashforth 
method, which has a constant accuracy of 
the 2nd order. By using the predictor-
corrector method, the order of accuracy can 
be controlled by using more correction 
steps. Although, the number of correction 
steps depends on how much time one can 
afford to spend on the convection term. 
Figure 1 shows the  convection of two 
elements before and after the correction 
step. 
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(a) Before correction 
 
 
 
 
 
 
 
 

(b) One step correction 
 
 
 
 
 
 
 
 
 

(c) Five steps correction 
 

Fig. 1: Convection term 
 
3.2 Kelvin-Helmholtz Instability 
 
 

 
 
 
 
 
 
 

(a) Initial Displacement 
 
 
 
 
 
 
 
 

(b) After 40 time steps 
Fig. 2: Instability 

 

This simple program was then applied to an 
actual calculation of the Kelvin-Helmholtz 
instability, which can be observed in a field 
where there are two parallel flows of 
different velocities. In the first case the two 
elements in the middle were slightly 
displaced in order to simulate an initial 
disturbance shown in figure 2(a). The results 
were as expected causing the vortex sheet to 
roll-up eventually as seen in figure 2(b). In 
the second case, initial disturbance was not 
applied but the same type of roll-up was 
observed. It turned out that this instability 
was caused by the accumulating round-off 
error, which resulted in an artificial 
displacement of the vortex elements. 
3.3 Martensen Analysis 
The next step was taken by applying this 
calculation to a flow around a body. The no-
slip and no-through-flow conditions at the 
surface of the body were satisfied by using a 
vortex panel and source panel treatment. 
Application of elements to the wall may 
seem artificial but it is important to point out 
that this is the result of a discretized 
boundary integral equation and is a direct 
numerical solution of the governing 
equations. The vorticity of the wall elements 
is calculated from a matrix analysis called 
the Martensen analysis. In the first case, the 
convection of a single vortex element 
around a circular wall was calculated. It was 
found that certain corrections had to be 
made to account for the curvature of the 
body and to conserve the total circulation of 
the field as shown in Fig. 3. The curvature 
correction accounts for the self-induced 
velocity on a wall element due to curvature, 
while the circulation correction assures 
Kelvin's circulation theorem. It was 
confirmed that, without these corrections the  
convection error would become 
unacceptable near the wall. Figure 3 
represents the analytical (exact) and 
calculated (numerical) results for this 
analysis. It can be observed that the both 
results are coincided each other after applied 
the correction method (source panel). 
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(a) Before correction  

 
 
 
 
 
 
 
 
 

 
(b) After correction 

 

Fig. 3: Velocity of wall elements 
 
3.4 Vortex Shedding 
Now these corrections were applied to 
calculate the vortex shedding from a circular 
cylinder. Vortex elements were shed from 
each element on the wall. For this case, the 
vortex elements were shed only once and the 
convection of these elements were 
evaluated. Then the case for periodic 
shedding was tested. Instead of shedding 
one set of vortex elements at the beginning 
of the calculation, they were shed every time 
step. This causes a vortex cloud to form 
around the cylinder as shown in Fig. 4(a). 
The shedding was successful but the 
consideration of the viscous diffusion and 
dissipation is still insufficient. This is 
another matter of controversy in the vortex 
method. The two main ways to account for 
the viscous effects are the deterministic 
method and the random walk method. The 
deterministic method was adopted for this 
test case. A cut-off function was used to 
account for the viscous diffusion. A core 
spreading method was used to account for 
the dissipation (sec. 2.1). 
The corresponding velocity field represents 
in figure 4(b). The velocity field behave as 
follows. When circulation is zero, the 
uniform stream approaching from the right 
divides into two symmetric flows, one going 

over the cylinder, the other flowing under it. 
The two flows connect again downstream of 
the cylinder. The flow field is symmetric 
with respect to the x-axis. Two fluid 
particles immediately above and below the 
upstream stagnation point travel the same 
distance around the cylinder and then meet 
again at the downstream stagnation point. 
When circulation is increased, the stagnation 
points move towards the lower half of the 
cylinder so that the two companion fluid 
particles follow different routes to reach the 
downstream stagnation point.  
 
 
 
 
 
 
 
 
 
 

 
 

(a) Vortex convection 
 
 
 
 
 
 
 
 
 
 

(b) Velocity field 
 

Fig.4: Vortex convection and velocity field 

In particular the fluid particle that travels 
above the cylinder makes a longer route 
with respect to its companion, but it travels 
fast enough to arrive at the same time at the 
downstream stagnation point.  
3.5 Pressure Analysis 
The cylinder is a bluff body whereas a wing 
that is well-oriented with respect to flow is a 
slender body. In reality (in the sense of a 
real viscous fluid) separation of the 
boundary layer with the formation of a wake 
will be unavoidable for the cylinder. The 
irrotational solution can not predict such 
phenomenon and the resulting flow field 
does not resemble the real flow around a 
cylinder.  
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(a) Pressure field 
 
 
 
 
 
 
 
 
 
 

(b) Pressure distribution 
 
 
 
 

 
 
 
 
 
 
 
 

(c) Drag and lift coefficients 
 

Fig.5: Pressure Analysis 
 

When circulation is absent, the pressure 
field is symmetric with respect to both the x 
and the y axes (Fig. 5(a)). On the stagnation 
points the excess pressure is positive (which 
means an action directed towards the body) 
while on the upper and lower points the 
excess pressure is negative (which means an 
action directed away from the body). The 
pressure field was calculated from the 
discrete vortex elements.  
The pressure distribution is shown in Fig. 
5(b). The solid line represent the analytic 
results and the point circle represent the 
simulated results. It can be observed that the 
both results have good agreement in this 

case. From the pressure distribution on the 
cylinder, the drag and lift were calculated. 
The area above the obstacle is at high 
pressure, while the area below the obstacle 
is at low pressure. 
Drag coefficient (Cd) is a mechanical force 
generated by a solid object moving through 
a fluid. The lift coefficient (Cl) is a 
dimensionless coefficient that relates the lift 
generated by an airfoil/body, the dynamic 
pressure of the fluid flow around the body, 
and the platform area of the body. It may 
also be described as the ratio of lift pressure 
to dynamic pressure. Figure 5(c) represents 
the drag and lift coefficient of the flow 
around a circular cylider. Both results have 
good agreement compare to other 
experimental works (not shown here). 
 
4. Conclusion 
Vortex method has been successfully 
introduced to calculate the flow around 
circular cylinder. It was shown that, the 
vortex method is capable of calculating the 
accurate pressure distribution around a 
circular cylinder. The accuracy of the 
calculation can be improved by introducing 
more elements or by considering other 
physical models. These results will be used 
for calculating the deformation of the 
cylinder as a consequent work. 
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