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Abstract: This paper presents the three-dimensional 
haracteristics of coherent fine scale eddies related 
o their axis in homogeneous isotropic turbulence in 
rder to understand the detailed features of the fine 
cale eddy in turbulence. The coherent fine scale 
ddy and their axis are identified by an auto tracking 
lgorithm from the Direct Numerical Simulation 
DNS) database, where DNS is performed based on a 
pectral method. It is shown that the axis of each fine 
cale eddy contains several nodes, in which these 
odes are identified by the minima of second 
nvariant (Q) of the velocity gradient tensor on the 
xis. It is also shown that the number of nodes 
ncreases for strong and relatively long eddy but it 
ecreases for weak and short eddy. At each node the 
xis bends with a large angle. The maximum 
zimuthal velocity and axial velocity of coherent fine 
cale eddy show relatively large fluctuations along 
heir axis, while the diameter is nearly constant 
long the entire axis of the fine scale eddy. The 
oherent fine scale eddies have large advection 
elocity but the dissipation rate along the axis of the 
ddy is not so large. 

eywords: Homogeneous Isotropic Turbulence, 
irect Numerical Simulation, Local Flow Pattern, 
elocity Gradient Tensor, Second Invariant, Tube-
ike Vortical Structure. 

 
1.  Introduction 
Active researchers are making their efforts to 
construct a comprehensive theory for 
understanding the physical characteristics of tur
b u l e n c e  for many decades. Especially the 
studies on fine scale structure in turbulent flows 
have been the subjects of considerable interest 
among turbulence researchers. In the theoretical 
study, it is believed that tube-like structure is a 
type of eddy or vortex, which is the candidate of 
fine scale structure, particularly, in the small-
scale motions in turbulence(1)-(4) Nowadays, 
from direct numerical simulation of 
turbulence(5)-(14), fine scale tube-like eddy in 
homogeneous turbulence can be observed, and 
the visualization of this small-scale structure in 

the turbulent flow in principle becomes easier. 
Since direct numerical simulations (DNS) 
provide vast amount of information, an efficient 
method is needed to identify the fine scale 
structure in small scales of turbulence from the 
DNS database. In recent studies, by direct use of 
‘local flow pattern’ in turbulence(10)-(12), the 
cross-sections of tube-like coherent fine scale 
eddies are investigated from DNS database of 
homogeneous isotropic turbulence in which the 
cross-sections are selected to include the local 
maximum of second invariant of the velocity 
gradient tensor on the axis of the fine scale tube-
like eddies. In these studies, they have shown 
that the mean diameter of the coherent fine scale 
eddies is about 10 times of Kolmogorov 
microscale (η) and the maximum of mean 
azimuthal velocity is about a half of root man 
square of velocity fluctuations (urms) and that 
the Reynolds numbers dependence of these 
characters is very weak. The same analyses have 
been applied to turbulent mixing layer(15) and 
showed that the characteristics of tube-like 
eddies in homogeneous isotropic turbulence and 
fully-developed turbulent mixing layer obey the 
same scaling law. Since the educed fine scale 
eddies in their study have similar mean 
azimuthal velocity profiles and distinct axes, 
they described these eddies as ‘coherent fine 
scale structures’ in turbulence. The 
characteristics of vortical structures in turbulent 
channel flows(16) and MHD turbulence(17) also 
show the similar behavior of tube-like eddies in 
homogeneous isotropic turbulence. These 
results suggest that the existence of ‘coherent 
fine scale eddy’ in turbulence is universal. 
As we discussed above ‘coherent fine scale 
eddies’ are the universal structures in turbulence, 
whereas these structures show strong three-
dimensionality in the flow fields. However, 
three-dimensional characters of these tube-like 
eddies are hardly discussed in the previous 
researches. But the lack of the proper 

 



   

 

knowledge about this fine scale motions 
prevents the development of turbulence theory 
and turbulent models. To understand the detail 
of fine scale motions of turbulence, 
investigation of three-dimensional features of 
coherent fine scale eddies is required. In our 
previous studies(11),(12), by tracing the axis of the 
coherent fine scale eddy, we have investigated 
the three-dimensional features of the fine scale 
eddy with its’ scaling in homogeneous isotropic 
turbulence. However, it is necessary to clarify 
the characteristics of each tube-like eddy 
individually to understand the significant 
structures and self-stretching behaviors of the 
fine scale tube-like eddy, and that is the 
considerable interest of the present study. 
Therefore, in this study, we present the 
individual characteristics of several typical 
coherent fine scale eddies related to its’ axis in 
homogeneous isotropic turbulence. The 
objective is to clarify the three-dimensional 
characteristics of coherent fine scale eddy 
clearly and quantitatively. 
 
2.  Nomenclature 
Aij  : velocity gradient tensor 
l  : Integral length scale 
s  : coordinates along the axis 
sl  : coordinates along the axis normalized by 
l 
sλ  : coordinates along the axis normalized by 
λ 
Q  : second invariant of velocity gradient 
tensor 
R  : third invariant of the velocity gradient 
tensor 
Rel  : Integral length scale Reynolds number 
Reλ  : Taylor microscale Reynolds number 
r : radius of the fine scale eddy 
Sij : symmetric part of the velocity gradient 

tensor 
urms  : root mean square of velocity fluctuations 
uθ  : azimuthal velocity 
Wij : asymmetric part of the velocity gradient 

tensor 
ε   :dissipation rate  
φ  : inclination angle 
λ  : Taylor microscale 
η  : Kolmogorov microscale 
ν  : kinematic viscosity 
π  : periodic length 
 

3.  Identification of the Axis of Coherent 
Fine Scale Eddy 
3.1 DNS database 
In this study, DNS data of decaying 
homogeneous isotropic turbulence has been 
used, which is calculated by using 2563 grid 
points. Reynolds numbers based on urms and 
Taylor microscale, λ, of the DNS data is 
Reλ =37.1, while Reynolds number based on urms 
and Integral length scale, l, of the DNS data is 
Rel =190. A spectral method is used for 
conducting the direct numerical simulations. 
The aliasing errors due to nonlinear interactions 
are fully removed by a 3/2-rule. Details of the 
numerical procedure and conditions of this 
simulation are given in the recent papers by 
Tanahashi et al.(11),(12) and Uddin et al.(13),(14). 
3.2. Invariants of velocity gradient tensor and 

coherent fine scale eddy 
The concept usually associated with an eddy is 
that of a region in the flow where the fluid 
elements are rotating around a ‘set of points’. 
Identification of the eddy or vortex from DNS 
database is a very difficult and complex task, 
requiring considerable computational efforts 
with a proper identification method. There are 
several methods for identification of the vortical 
structures in turbulence with significant 
differences(18) and most of them show threshold 
dependence. We discussed in the introduction 
that direct ‘local flow pattern’(19) can educe 
coherent structures in several flow fields(10)-(17), 
which shows universal characteristics in 
turbulence. This ‘local flow pattern’ method is 
completely independent from any thresholds of 
variables. In our previous studies(13),(20), using 
this method we also have identified the coherent 
fine scale eddies and its’ axes without using any 
thresholds and then discussed the spatial 
distribution of coherent fine scale eddies by 
visualization of axes in homogeneous isotropic 
turbulence. From the distributions of second and 
third invariants of the velocity gradient tensor 
one can easily define the ‘local flow pattern’ in 
turbulence. 
The second and third invariants of the velocity 
gradient tensor are defined as: 

( )ijijijij WWSSQ −−=
2
1  (1) 

( )kijkijkijkij SWWSSSR 3
3
1

+−=  (2) 

where, 
1
2

ji
ij

j i

uuS
x x

⎛ ∂∂
= +⎜⎜ ⎟∂ ∂⎝ ⎠

⎞
⎟
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are the symmetric and asymmetric part of the 
velocity gradient tensor: 

i
ij ij ij

j
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x

∂
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Fig. 1: Contour surfaces of the second invariant 
of the velocity gradient tensor (Q*=0.03) in the 
decaying homogeneous isotropic turbulence for 
the case of Reλ =37.1. Second invariant Q is 
normalization by Kolmogorov microscale η and 
root mean square of velocity fluctuations, urms. 
 
Now in order to discuss about the characteristics 
of coherent fine scale eddy, at first, we notice 
the tube-like coherent fine scale eddy by 
visualization of flows in the DNS database. 
Figure 1 shows the contour surfaces of 
normalized second invariant of the velocity 
gradient tensor Q in the DNS data for Reλ =37.1. 
The level of the isosurface is selected to be Q* 
=0.03. Hereafter, * denotes the normalization by 
Kolmogorov microscale η and root mean square 
of velocity fluctuations, urms. The normalization 
of Q by η and urms is due to the fact that the 
diameter and the maximum azimuthal velocity 
of tube-like fine scale structures can be scaled 
by η and urms

(10)-(12). In this figure, the visualized 
region is 1/8 of the whole calculation domain. 
Figure 1 shows that lots of coherent tube-like 
vortical structures are randomly oriented in 
homogeneous isotropic turbulence which 
demonstrates strong three-dimensional 
characteristics in turbulence. These tube-like 
vortical structures can be considered as the 
coherent fine scale eddy in turbulence. However, 
if we increase or decrease the value of Q*, we 
can also show distinct tube-like structures in 
turbulence, little bit different from Fig.1, which 

means the visualization of fine scale structures 
significantly depends on the thresholds value of 
Q(10)-(14). However, in this case, we considered 
the threshold value of Q*=0.03 only to show the 
visualized structures in the flows. So it is 
necessary to consider an identification method 
that can educe fine scale eddy without choosing 
any thresholds of variables. 
3.3 Details of the Identification Scheme 
Since we use positive Q for visualization in 
Fig.1 and we can see the existence of many 
tube-like coherent structures in the DNS data in 
homogeneous isotropic turbulence. Obviously 
these tube-like eddies contain at least one local 
Q maximum on its axis. To identify the axes of 
fine scale eddy, first we search the points with 
local Q maximums on the cross-section of the 
axis of fine scale eddy. We consider this point as 
the starting point on the axis and from this point 
we move to the axial direction with a short 
distance to find the other point on the axis and 
continue this procedure until the end of the axis. 
The identification scheme consists of the 
following steps:  
Step (a): Evaluation of Q at each collocation 

point from the results of DNS. 
Step (b): Probability of existence of positive 

local maximum of Q near the 
collocation points is evaluated at each 
collocation point from Q distribution. 
Because the case that a local maximum 
of Q coincides with a collocation point 
is very rare, it is necessary to define 
probability on collocation points. 

Step (c): Collocation points with non-zero 
probability are selected to survey actual 
maxima of Q. Locations of maximal Q 
are determined within the accuracy of 
10-6 in terms of relative error of Q by 
applying a three dimensional cubic 
spline interpolation to DNS data. 

Step (d): A cylindrical coordinate system (r, θ, z) 
is considered by setting the maximal 
point as the origin. The coordinate 
system is assumed to have advection 
velocity at the origin. The z direction is 
selected to be parallel to the vorticity 
vector at the maximal point. The 
velocity vectors are projected on this 
coordinate and azimuthal velocity uθ is 
calculated. 

Step (e): Point that has small variance in 
azimuthal velocity compared with the 
surroundings is determined. If the 
azimuthal velocities at r =1/5 
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computational grid space show same 
sign for all θ, that point is identified as 
the center of the swirling motion. 

Step (f): Statistical properties are calculated 
around the points. 

After completion of the above steps, we can get 
a point on the cross-section of the axis of 
coherent fine scale eddy with local Q maximum 
which is considered as the starting point (xs). 
From this starting point on the cross-section, 
axes of each coherent fine scale eddy are 
searched by using the following auto-tracing 
algorithm: 
Step (g): From xs, the investigated point is 

moved in the axial direction with a short 
distance, ds. ds is parallel to the 
vorticity vector at xs. A new cylindrical 
coordinate system (r’, θ’, z’) is 
considered by setting the new point as 
the origin. On the (r’, θ’) plane with 
z’=0, the point with maximum Q is 
determined, and the steps  (c)-(e) are 
applied. 

Step (h): Central axis of each eddy is 
determined by repeating the step (g). In 
this procedure, |ds| is set equal to 1/5 
computational grid space. If angle (φn) 
between xn-1 and xn i.e., two neighboring 
points on the axis, is greater than 30 
degree, the step (g) is applied again 
with |ds’| =|ds|cos(φn).b 

Step (i): After the calculation of statistical 
properties, above steps are repeated 
until second invariant on the axis 
becomes negative or swirling motion 
can not be detected. 

Step (j): The steps (g)-(i) are conducted in the 
opposite direction of vorticity vector at 
xs. 

Step (k): The steps (g)-(j) are applied for the 
next starting point. 

Detailed of this method is also given by 
Tanahashi et al. (11),(12)and Uddin et al.(13). 
3.4 Axes of Coherent Fine Scale Eddy 
The above identification method is applied in 
DNS results to educe the axes of fine scale eddy 
in homogeneous isotropic turbulence. Figure 2 
displays the distributions of axes of coherent 
fine scale eddy for the case of Reλ =37.1 in the 
same region which are shown in Fig.1. The view 
point of these two figures is same. The 
visualized width of the axes is drawn to be 
proportional to the square root of second 
invariant on the axis. By the comparison of 

figures 1 and 2, we can see the well coincidence 
of the identified axes and the tube-like eddies 
which are visualized by contour surfaces of Q. 
Figure 2 includes many weak eddies which are 
not visualized in Fig.1. This is because this 
identification does not depend upon the strength 
of the fine scale eddies in turbulence. This direct 
visualization of the axis gives only the 
information about spatial distribution of 
coherent fine scale eddy because the axis are 
defined as lines in three-dimensional field. 
However, the coherent fine scale eddy shows 
relatively large variance in their strength, length, 
etc. These variances are very important to 
understand the physics of turbulence. In our 
previous studies (11),(12) we have shown that 
relatively large fluctuation of second invariant 
with several minima of Q occurs along the axis 
of fine scale eddy. 

 
4.  Three-dimensional Characteristics of the 
Fine Scale Eddy Along the Axis 
We mentioned earlier that the coherent fine 
scale eddies show strong three-dimensional 
character as shown in Fig.1. To clarify the 
three-dimensional characteristics of coherent 
fine scale eddies, we have analyzed several fine 
scale eddies in homogeneous isotropic 
turbulence. In this section, we have selected 
three typical coherent fine scale eddies with 
different intensity for the case Reλ =37.1. Here 
intensity of the coherent fine scale eddy is 
denoted by the value of Q on the axis. 

 
 
Fig. 2: The axes of coherent fine scale eddy for 
the case of Reλ =37.1. The visualized width of 
the axes is drawn to be proportional to the 
square root of second invariant on the axis. 
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(a) Strong Eddy 

 
(b) Medium Eddy 

 
(c) Weak Eddy 

 
Fig. 3: Axes of the typical coherent fine scale 
eddy. Thickness of the axis is proportional to the 
square root of second invariant on the axis of 
the eddy, cQ . (a) strong eddy, (b) medium 
eddy and (c) weak eddy. The arrow marked end 
of the axis indicates the origin. 
 
Fig.3 shows the visualized axes of the selected 
typical eddy where (a) strong eddy, (b) medium 
eddy and (c) weak eddy in homogeneous 
isotropic turbulence. The visualized diameters 
of (a), (b) and (c) are selected to be proportional 
to the square root of second invariant Q on the 
axis. From Fig.3, we can see that the strong and 
medium eddies have several sharp bends that 
are identified with the minima of second 
invariant Q on the axis while a light bend exists 
in the weak eddy. It is also clear that the 
segments between the bends seem to show 
relatively large second invariant and to be 
nearly straight. From these figures, we can 
understand the three- dimensional 
characteristics of each eddy but these visualized 
figures are not sufficient to clarify its’ 
significant character in turbulence. To 
understand the detailed structures of these fine 
scale eddies, we have calculated the following 
properties along the axis. Hereafter, the 
properties shown in (a), (b) and (c) of each 

figure given below, correspond to those given in 
Fig.3, respectively. 
The distributions of second and third invariant 
of the velocity gradient tensor on the axes of the 
typical coherent fine scale eddy given in Fig.3 
are shown in Figs.4 and 5, respectively. Here, 
asterisk denotes that the variables are 
normalized by Kolmogorov microscale, (η) and 
r.m.s of velocity fluctuations, (urms). s represents 
the coordinates along the axis and sl and sλ are 
normalized by integral length scale, (l) and 
Taylor microscale, (λ), respectively, where the 
selected origins of s are shown in Fig.3 by 
arrows. It is clear that the second invariant 
become negative at the end sl(sλ) =0 for all 
cases given in Fig.4. At the other end, second 
invariant become negative for the cases of the 
medium and weak eddies, whereas distinct 
swirling motion can not be observed for the case 
of the strong eddy (Fig. 4(a)). Because of the 
above reason, we have stopped the identification 
procedure. From the relation between second 
invariant Q and coordinate s, we can find the 
length of the coherent fine scale eddies in 
turbulence. In the present cases, the length of 
the strong eddy reaches to 2.4l, 12.3λ and 148η 
and for the case of the medium eddy it is 1.4l, 
7.1λ and 85η. On the other hand, the length of 
the weak eddy is only 0.6l, 3.1λ and 37η. 
Previously, it is reported that the length of the 
tube-like structures appears to be of the order of 
integral length scale(6),(8),(21). In their studies, 
mainly the strongest structures are considered. 
Whereas, in this study, it is possible to 
characterize all eddies in turbulence as we can 
see in Fig.4. 
From the distributions of Q, we can see that 
relatively large fluctuation of Q occurs along the 
axis of fine scale eddies and several minima of 
Q exist along it. In this study, we defined the 
‘nodes’ of the eddy with the minima of second 
invariant on the axis. It shows clearly that the 
strong eddy has 4 nodes and medium eddy has 2 
nodes while a single node is contained by the 
weak eddy. 
The signs of the third invariant of the velocity 
gradient tensor represent the local stretching and 
compression of fluid element(19). As we can see 
from Fig.5, third invariant show negative values 
in most of the part of the axes, which imply that 
these eddies are continuously stretched along its 
axes. It is also clear that the stretching rate on 
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the axis decreases at the nodes of fine scale 
eddies because the third invariant seems to 
increase there. The pattern is almost opposite in 
the profiles of Q and R given in Figs.4 and 5, 
respectively. 
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Fig. 4: Distributions of second invariant on the 
axes of the typical coherent fine scale eddy. 
Second invariant Q is normalized by η and urms. 
s is the coordinates along the axes and sl and sλ 
are normalized by integral length scale, l and 
Taylor microscale, λ, respectively. (a) strong 
eddy, (b) medium eddy and (c) weak eddy. 
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Fig. 5: Distributions of third invariant on the 
axes of the typical coherent fine scale eddy. 
Third invariant R is normalized by η and urms. 
(a) strong eddy, (b) medium eddy and (c) weak 
eddy. 
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Fig.6: Distributions of maximum azimuthal 
velocity along the axes of the typical coherent 
fine scale eddy normalized by urms. (a) strong 
eddy, (b) medium eddy and (c) weak eddy. 
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Fig. 7: Distributions of axial velocity along the 
axes of the typical coherent fine scale eddy 
normalized by urms. (a) strong eddy, (b) medium 
eddy and (c) weak eddy. 
 
Figs.6 and 7 show the distributions of maximum 
azimuthal velocities on the cross-section and 
axial velocities on the axis of the typical 
coherent fine scale eddies given in Fig.3, 
respectively. These velocity profiles are 
normalized by urms. The azimuthal velocity of 
the coherent fine scale eddy is of the order of 
urms which is also shown in previous research by 
Tanahashi et al.(10)(11). The fluctuations of 
maximum azimuthal velocities along the axes 
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are well correlated with that of second invariant 
given in Fig.4. It is revealed that the sections 
with large second invariant show relatively 
large azimuthal velocities along the axis, while 
the fluctuation of axial velocity is not so large. 
We can observe very strong axial flows with 
positive and negative velocities in the case of 
strong and medium eddy but weak eddy shows 
only positive velocity in axial direction. The 
magnitude of axial velocity component is 
relatively large and is of the order of urms. 
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Fig. 8: Distributions of diameter along the axes 
of the typical coherent fine scale eddy. The 
diameter is normalized by η. (a) strong eddy, (b) 
medium eddy and (c) weak eddy. 
 
Fig. 8 gives the distributions of diameter along 
the axes of the typical coherent fine scale eddy. 
The diameter is normalized by Kolmogorov 
microscale (η). In this study, radius of the fine 
scale eddy is defined by a distance between the 
center and location where the mean azimuthal 
velocity reaches to the maximum value. 
Contrary to the large fluctuation of second 
invariant and maximum azimuthal velocity, the 
variation of diameter along the axes is very 
small. Figs.8(b) & (c) show that the diameter is 
about 5η at the origin but gradually increases to 
8η. Nevertheless, the most expected diameter of 
the coherent fine scale eddy is nearly constant 
along the axis and about 8-9η. The mean 
diameter of the coherent fine scale eddies would 
be 8-10η that is very close to the value reported 
by Tanahashi et al.(10),(11). 
 
Fig. 9 gives the inclination angle (φ) which is 
integrated from the origin. The axes of coherent 

fine scale eddy turn its’ direction at the nodes 
where second invariant is minimum. We have 
seen that the segments of axes between the 
nodes are nearly straight but the axis bends with 
a large angle, almost π, at the nodes. However, 
the inclination angle of the weak eddy, Fig.9(c), 
is relatively small. 
We have seen in Figs.1 and 2 that the coherent 
fine scale eddies show strong swirling motion 
around its’ axes and have distinct three 
dimensional characters. These eddies are 
continuously moving with large advection 
velocity in turbulence(11).  
 

0

π

0.0 0.5 1.0 1.5 2.0 2.5

0 2 4 6 8 10 12

φ

s
l

s
λ

(a)
2π

 

0

π

2π

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0 1 2 3 4 5 6 7
φ

s
l

s
λ

(b)

 

0

π

2π

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

φ

s
l

s
λ

(c)

 
 
Fig. 9: Inclination angle of the axes of the 
typical coherent fine scale eddy. (a) strong eddy, 
(b) medium eddy and (c) weak eddy. 
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Fig. 10: Magnitude of the advection velocity in 
the radial direction of the typical coherent fine 
scale eddies. The magnitude of the advection 
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velocity is normalized by urms. (a) strong eddy, 
(b) medium eddy and (c) weak eddy. 
 
The magnitudes of advection velocity in the 
radial direction of the given typical coherent 
fine scale eddies on each section are shown in 
Fig.10. The total advection velocity of the fluid 
elements near the central axis can be 
represented by sum of axial velocity given in 
Fig.7 and the radial advection velocity given in 
Fig.10. However, we discuss only the radial 
advection velocity because the axial velocity on 
the axis does not correspond to the advection of 
the eddy if the coherent fine scale eddy can be 
locally approximated by a Burgers’ vortex. In 
the case of stretched Burgers’ vortex, the outer 
strain field induces axial velocity, while the 
vortex has no advection velocity. Fig.10 
suggests that the advection velocity of the axes 
is also the order of urms. 
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Fig. 11: Direction angle of the advection 
velocity of the typical coherent fine scale eddies. 
(a) strong eddy, (b) medium eddy and (c) weak 
eddy. 
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Fig. 12: Distributions of dissipation rate on the 
axes of the typical coherent fine scale eddy. 
Dissipation rate, ε is normalized by η and urms. 
(a) strong eddy, (b) medium eddy and (c) weak 
eddy. 
 
Fig. 11 gives the direction angle of advection of 
the typical eddies in a (r, θ)-plane. The change 
of advection direction of the weak eddy is very 
small and it also shows almost uniform 
advection velocity around its entire axis. On the 
other hand, strong and medium eddies 
drastically change its’ direction of advection at 
every nodes and these angles are the order of π 
similar to the inclination angle given in Fig.9, 
while the magnitude of advection velocity and 
the direction are nearly uniform in the segments 
between the nodes. These results imply that 
segments of the coherent fine scale eddies 
which are divided by the nodes are moving in 
the other directions, respectively. 
Coherent fine scale eddy plays an important role 
in the total turbulent energy dissipation and its 
intermittent character(11),(12),(22). Tanahashi et 
al.(11),(12),(22) have shown that turbulent energy 
dissipation near the center of vortex tube is very 
small while the energy dissipation is large in the 
negative second invariant region. Figure12 
shows the distributions of dissipation rate (ε) on 
the central axes of coherent fine scale eddy 
which is normalized by η and urms where, 

ijij SSνε 2=  (6) 
From the profiles of Fig.12 it is revealed that the 
dissipation rate on the central axes of the fine 
scale eddy is not so large along the axis and the 
value of it also depends on the second invariant 
and size of the eddy. In Fig.5 we have seen that 
the above coherent fine scale eddies give the 
negative third invariant in the most part on its 
axes and from Fig.12 we can see that the 
dissipation rate is relatively large in negative 
third invariant region of coherent fine scale 
eddies. Also the dissipation becomes relatively 
large at the nodes of the eddy. 
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4.  Mean Characteristics of The Fine Scale 
Eddy Around The Axis 
In this section, we present the mean 
characteristics of fine scale eddy around its’ 
axes as a function of radius. 

 

Fig. 13 and 14 show the mean distributions of 
normalized second and third invariant around 
the axes of fine scale eddy given in Fig.3. Here, 
r indicates the radius of the tube-like fine scale 
eddy. 
From Fig. 13 we can see the existence of 
relatively large second invariant on the axis and 
it gradually decreases towards the ambient of 
the tube-like fine scale eddies, and finally it 
becomes negative. In the case of weak eddy, we 
can observe the existence of large second 
invariant far from the axis, which imply that the 
other eddy may intersect there. We can see from 
Fig.14 that the typical fine scale eddies in the 
present study show the negative values not only 
on the axis but also around the axis of it. At the 
nodes, mentioned earlier, third invariant gives 
the positive value. As the negative third 
invariant represents the stretching character of 
fine scale eddies, the given strong eddies 
(Fig.14 (a&b)) are undoubtedly stretched in the 
turbulence. In the case of weak eddy (Fig.14(c)), 
most of the part on the axis shows negative 
values but around the axis about half of the 
region shows positive values. 
 
Fig.s15-17 show the mean distributions of 
normalized velocities around the typical axes 
given in Fig.3, respectively. Here Fig.15 gives 
the mean azimuthal velocity, Fig.16 represents 
the mean radial  
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Fig. 13: Mean distributions of second invariant 
along the coherent fine scale eddies. r represents 
the radius and  s is the coordinate along the 
axes. 
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Fig. 14: Mean distributions of third invariant 
along the coherent fine scale eddies. r represents 
the radius and s is the coordinate along the axes. r/η
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Fig. 15: Mean distributions of azimuthal 
velocity along the coherent fine scale eddies. r 
represents the radius and s is the coordinate 
along the axes. 
 
 

 

 

 
 
Fig. 16: Mean distributions of radial velocity 
along the coherent fine scale eddies. r represents 
the radius and s is the coordinate along the axes. 
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Fig. 17: Mean distributions of axial velocity 
along the coherent fine scale eddies. r represents 
the radius and s is the coordinate along the axes. 
 
 

 

 

 
 
Fig. 18. Mean distributions of dissipation rate 
along the coherent fine scale eddies. r represents 
the radius and s is the coordinate along the axes. 
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velocity and Fig.17 shows the mean axial 
velocity around the axes of coherent fine scale 
eddy. The distributions of mean azimuthal 
velocity of fine scale eddies provide the 
evidence of existence of the distinct swirling 
motion around the axes of coherent fine scale 
structure in turbulence. Coherent fine scale 
eddies produce strong rotational motion in the 
area where second invariant Q is large. Also 
relatively strong flow can be observed toward 
the central axis of fine scale eddy. There are 
strong radial flows from the ambient of the 
tube-like eddy to the central axis. The uniform 
incoming flow can be observed where the 
second invariant is large or the segments 
between the nodes of the axis. Fig.17 suggests 
that the very strong axial flows can be observed 
not only on the axis of fine scale eddies but also 
in the regimes far from the central axis. In the 
case of strong eddy (Fig.17(a)), we can see that 
the axial flow is divided into negative and 
positive parts at about sl =1.4 and shows the 
same pattern in the respective parts not only on 
the axis but also in the entire regime around its 
axis. On the other hand, the weak eddy 
(Fig.17(c)) shows only positive flows on the 
axis throughout its whole length and negative 
flows far from the central axis. 
Fig. 18 shows the distribution of mean energy 
dissipation along the axis of fine scale eddies 
given in Fig.3, respectively. The maxima of 
mean energy dissipation rate averaged in the 
azimuthal direction reaches to twice of volume-
averaged value. The coherent fine scale eddies 
have important role in the dissipation of 
turbulent energy and its intermittent character(11). 
In this study, we have restricted our discussion 
to the above three typical coherent fine scale 
eddies. We applied the same analysis for lots of 
individual coherent fine scale eddies and have 
observed that the characteristics of other eddies 
are quite similar to the above. We are confirmed 
that the three-dimensional features of tube-like 
fine scale eddies should follow the above 
characteristics in turbulence. 

 
5.  Conclusions 
In this study, we have presented the detailed 
structures of several typical coherent fine scale 
eddy related to its’ axis in homogeneous 
isotropic turbulence with its mean characters 
around the axis. The following conclusions can 
be drawn from our observation. The axes of 
coherent fine scale eddy have several nodes, 
which are identified by the minima of second 

invariant of the velocity gradient tensor on the 
axis. The number of nodes increases for strong 
or relatively long eddy but it decreases for weak 
or short eddy. The sections of fine scale eddy 
between two consecutive nodes show relatively 
large second invariant and are nearly straight. 
The maximum azimuthal velocity and axial 
velocity of coherent fine scale eddy show 
relatively large fluctuations along the axes, 
while the diameter is nearly constant along the 
entire axis of fine scale eddy. 
At each node, the axis bends with a large angle. 
Magnitude of advection velocity and directional 
movement of the coherent fine scale eddy also 
change at the nodes of the axis. 
The coherent fine scale eddies have strong axial 
flow and large advection velocity, which 
suggest that the streamlines of the flow can not 
represent swirling motion of the coherent fine 
scale eddy. 
The dissipation rate along the axes of fine scale 
eddy is not so large but the fine scale eddy 
produces high-energy dissipation around the 
axis of it. Also the axis of fine scale eddy shows 
relatively higher dissipation rate at the nodes of 
the axis. 
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