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Abstract: This study is to predict two-dimensional 
brain tumors growth through parallel algorithm 
using the High Performance Computing System. 
The numerical finite-difference method is 
highlighted as a platform for discretization of two-
dimensional parabolic equations. The consequence 
of a type of finite difference approximation namely 
explicit method will be presented in this paper. The 
numerical solution is applied in the medical field by 
solving a mathematical model for the diffusion of 
brain tumors which is a new technique to predict 
brain tumor growth. A parabolic mathematical 
model used to describe and predict the evolution of 
tumor from the avascular stage to the vascular, 
through the angiogenic process. The parallel 
algorithm based on High Performance Computing 
(HPC) System is used to capture the growth of 
brain tumors cells in two-dimensional visualization. 
PVM (Parallel Virtual Machine) software is used as 
communication platform in the HPC System. The 
performance of the algorithm evaluated in terms of 
speedup, efficiency, effectiveness and temporal 
performance. 
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1. Introduction
Brain tumours can either develop within the 
brain (primary) or develop from cancer cells 
that spread to the brain (metastatic or 
secondary). Primary tumours can be grouped 
into non–cancerous (benign) and cancerous 
(malignant). Benign brain tumours usually 
grow slowly and can often be removed by 
surgery depending upon their specific location 
in the brain. Almost half of all brain tumours 
are non-cancerous. Malignant brain tumours 
are commonly called brain cancer tend to grow 
rapidly spreading into the surrounding brain 

tissue and often cannot be entirely removed 
surgically. Because there is no known cause of 
brain tumours, there is no way to clearly 
prevent them. For the simulation of brain 
tumours growth using parabolic equations, it 
needs us to see the definition of partial 
differential equations [1]. Mathematically, 
parabolic PDEs serve as a transition from the 
hyperbolic PDEs to the elliptic PDEs. 
Physically, parabolic PDEs tend to arise in 
time dependent diffusion problems, such as the 
transient flow of heat in accordance with 
Fourier's law of heat conduction.  
Mathematical modeling will play an 
increasingly important role in helping 
biomedical researchers to understand and gain 
useful insight into different aspects of solid 
tumor growth. In this study, the two-
dimensional model is deduced by a plane 
square lattice scheme [2] for the advection-
diffusion equation to describe the evolution of 
brain tumor growth in term of partial 
differential equation systems. This evolution 
equation can be extended to become a system 
on a cubic lattice [3]. 
This research will focus on the study of 
parabolic equation in two space dimensions. 
An efficient finite difference discretization 
method [4] is used to solve the parabolic 
equations. The explicit finite-difference 
method has been studied. The explicit method 
has used to solve the parabolic equations in 
this research. The finite-difference equations 
are converted into matrix forms and solved by 
Red Black Gauss-Seidel iterative. 
The using of heterogeneous parallel computer 
system in solving the mathematical problems 
by parabolic equations in two space 
dimensions will be introduced. Parallel 
computing is a software of using 
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heterogeneous or homogeneous parallel 
computer system as a counting source, which 
coordinate together and been connected with 
cluster system. Parallel computing is the 
simultaneous use of multiple compute 
resources to solve a computational problem [5, 
6]. The heterogeneous PC cluster system 
contains 6 Intel Pentium IV CPUs (each with a 
storage of 40GB, speed 1.8MHz and memory 
256 MB) and two servers (each with 2 
processors, a storage of 40GB, speed AMD-
Athlon (tm) MP processor 1700++ MHz and 
memory 1024 MB) are connected with internal 
network Intel 10/100 NIC under RetHat Linux 
9.2 operation are used in this study as [7]. A 
software package namely Parallel virtual 
Machine (PVM) has used. PVM as a 
communication platform permits a 
heterogeneous collection of Linux or Window 
computers hooked together by a network to be 
used as a single large parallel computer [8]. 
PVM is designed to link computing resources 
and provide with a parallel platform for 
running their computer applications, 
irrespective of the number of different 
computers are used and where the computers 
are located. Besides, the PVM model is a set of 
message passing routine, which allows data to 
be exchanged between tasks by sending and 
receiving messages. This study will analyze the 
performance of the parallel computer in respect 
of speedup, efficiency, effectiveness, and 
temporal performance. 
The application of the parabolic equation with 
numerical finite-difference methods has 
applied to solve a mathematical model in 
medical field. The mathematical model is 
converted to matrices form using the finite-
difference methods. Then, parallel computing 
system has chosen to solve mathematical 
problems. The growth of the brain tumor will 
be presented in a graph to predict the pattern of 
this cancer cell growth.  

2. The Mathematical Model
The model represents both the avascular and 
the vascular phase of tumor evolution, and is 
able to simulate when the transition occurs. 
The evolution problems can be written as a 
free-boundary problem in parabolic type joined 
with an initial-boundary value problem in a 
fixed domain. The two classes of model 
dependent variables characterize the physical 
state of the biological system in both the tumor 
mass and the outer environments are cell 

populations and chemical species. They are 
different fundamentally. The cell size is much 
larger than that of the chemical factors and 
macromolecules. The cells are delimited by a 
membrane and cannot penetrate each other; 
they occupy actual physical space. By contrast, 
the chemical species consist of 
macromolecules that may diffuse in the 
intercellular space, attach to the cell membrane 
or penetrate it, such that they actually do not 
take up physical space [9]. The cell 
populations considered important for the 
process and the chemical factors that influence 
their motion and proliferation [10]. 
The mathematical model consists in an 
evolution equation for the variable 

),( xtuu = considered to describe, in time, t 
and space, x, the physical state of the system. 
The variable u includes both cell population 
and chemical factors produced in the 
environment by interacting cells. The 
derivation of the model here described is 
developed on the basis of mass balance 
equations, also supported by a random walk 
scheme [3].  
Under suitable regularity assumptions one can 
expand use QPN ,, and R , as well as use 

ji,,, V),()( ∆≈ jiji yxtutN , and write the word 
equation above mathematically [2] as: 
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With jijiji Vtyxt ,, /)(),,( ∆Γ=Γ  and where 
the indices (i, j) have been substituted with the 
dependence of u and of all coefficients on the 
space variable. The elementary volume 
centered in the node (i, j) is denoted by ji,V
and its volume by ji,V∆ . Finally, all cells 

in ji,V are considered concentrated in the node 
(i, j). While the number of a certain type of 
cells (or chemical factors) is denoted by 

)(N ji, t found in the node (i, j) at the time t. 
Equivalently, one can then write the following 
general balance law in local form [2, 3, 9, 10, 
11] as:
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)(uΓ=Γ is the generation (proliferation/ 
production) coefficient )(uLL = is the death 
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/decay coefficient Q  is the diffusion 
coefficient W  is the drift velocity field and in 
two dimensions, ),( RPW = . 
2.1  Explicit Method  
A forward finite divided difference is used to 
approximate the time derivative.  
Consider the two-dimensional of parabolic 
equations 

)( 2

2

2

2

y
u

x
uc

t
u

∂
∂

+
∂
∂

=
∂
∂ , c  constant    (3) 

For numerical solution, one introduces a grid 
in the (x, y) plane. Let )(

,
n
jiu denote the value of 

u at the grid point ),( ji  at time step n. We 
consider I + 1 grid points in x and J + 1 points 
in y. The boundary points are at i = 0, I and j = 
0, J. When i = 1, I – 1, or j = 1, J – 1, 
boundary values are required, and their value 
from prescribed boundary conditions are used.  
Application of any explicit numerical method 
is very straightforward. For example, consider 
explicit Euler in conjunction with second order 
finite-difference approximation for the spatial 
derivatives  
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Given an initial condition on the grid points 
)0(

, jiu , for each one i and j simply marches 
forward in time to obtain the solution at 
subsequent time steps. The stability properties 
of this scheme can be analyzed in the same 
manner as in the one-dimensional case. 
Approximating the partial derivatives with 
centered second differences gives the 5-point 
discrete Laplacian.  
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It is convenient to let x∆  = y∆  = h. We shall 
use the convention of using an order pair of 
indices (i, j) to denote the point (i x∆ , j y∆ ) 
where i = 0,K , x∆  and j = 0,K , y∆ . 
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2.2 Red Black Gauss-Seidel Iteration 
       Method 
Red Black Gauss Seidel algorithm is used to 
implement the parallel algorithm in solving the 
finite difference equation. The iterative method 
contains 2-sub domain, RΩ and BΩ . There is 
a communication between RΩ and BΩ  [5]. 
The calculation of this method is shown as 
follow: 
i Grid calculation at RΩ : 
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ii Grid calculation at BΩ : 

i
n

i
n

i
n

i buuru ++= ++
−

+ ][ )1()1(
1

)1( , 
i =2, 4, 6,…, 1+n           (7) 

The simple Gauss-Seidel update strategy is 
more appropriate in sequential program while 
Red Black Gauss-Seidel parallel algorithm is 
more appropriate for the solution of large 
mathematical problem compares to the Gauss-
Seidel with sequential algorithm. 
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2.3  The Discretization of the Model    
       Equations 
Based on central finite difference method, the 
discretization is shown as follow, 
Red Black Gauss-Seidel algorithm can be 
implemented the parallel algorithm in solving 
the evolution equation for brain tumor 
prediction as,  
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We have formulated the discrete model that 
involves using a discretized form of the PDEs. 
The entire fixed computational domain 0 ≤ x ≤ 
1 and 0 ≤ y ≤ 1 are each discretized using 
equally spaced meshes, the interface is a mesh 
point, corresponding both to x = 1 and y = 1. 
The domain occupied by the tumor is 
embedded into a larger fixed, time-
independent, computational domain D that is 
discretized using a uniform Cartesian mesh 
with hyx =∆=∆ .  
Assume that the tumor has grown 
approximately independent on the initial cell 
density (u≈200± 20µ m). Initial conditions 
are given in the form of a discrete set of 
Gaussian bumps of width of the order of the 
average cell diameter (∼30µ m), placed at 
random position with uniform probability over 
a square surface [10]. The small initial 
proliferating cell density (0.01) at the centre of 
the tumor corresponds to the early stages of 
tumor growth [12]. While the death coefficient 
from 10-7 to 10-5 are taken. 

3. High Performance Computing
System

High Performance Computing System [13] 
computing provides infrastructure for solving 
distributed problem by sharing, selection and 
aggregation of distributed resources at runtime 
depending on their availability, performance, 
cost and users’ quality of service requirements. 
High Performance Computing is a computer 
system that made up of many specialized 
processing units working together in parallel. 
Parallel computing is an execution of the same 
task on multiple processors in order to obtain 

results faster. The idea is based on the fact that 
the process of solving a problem usually can be 
divided into smaller tasks, which may be 
carried out with some coordination. A huge 
number of software systems have been 
designed for the programming of HPC, both 
for the operating system and programming 
language level [14]. Parallel Virtual Machine 
(PVM) is one of them to develop parallel 
programs executable in networked UNIX 
computers [8]. PVM allows a heterogeneous 
collection of workstations and supercomputers 
to function as a single high-performance 
parallel machine [8]. PVM is designed to link 
computing resources and provide users with a 
parallel platform for running their computer 
application. It is capable of connecting the 
combined resources of typically heterogeneous 
networked computing platforms to deliver high 
levels of performance and functionality. 
3.1  The Prediction of the Brain Tumor  
       Growth through Explicit 
In this study, we have studied the finite 
difference approximation that is explicit, in 
solving the two-dimensional parabolic 
equation. Here the explicit method is applied in 
solving the mathematical model by using a 
suitable sequence iteration method of Red 
Black Gauss-Seidel parallel algorithms with 
some minimize requirements such as PVM, C 
programming and Linux environment on HPC 
system. The results from the parallel algorithm 
using C programming are shown in Table 1 for 
30 days. 
Table 1 shows that the data of the number of 
brain tumor cells had been computed using 
explicit methods. The values are used to 
predict the growth of the tumor cells more 
perceptibly within 30 days. This result is 
relatively correct, exact and the growth rate of 
the tumor cells can be perceived compare to 
actual data. The time step that has been used is 
200 with the round in 4, 8, 12, 16 and 20 
respectively. These caused the explicit to work 
properly in capturing the real image of the 
tumor cells growth. By using this method, the 
time step can be made larger without fret about 
excessive buildup of round off error. By using 
the data from the Table 1, the pattern of the 
brain tumor growth can be shown as the 
following graphs in different days.  
The graph in Figure 1 shows the movement in 
values of the tumor cells growth increasingly 
across two dimensional continuous curves.  
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Table 1: The number of cancer cells’ growth for 30 days 

  Days 
Grid 6 12 18 24 30

1 235.59 314.344 429.717 575.287 743.405 
2 235.608 314.368 429.751 575.333 743.464 
3 235.621 314.386 429.776 575.367 743.507 
4 235.629 314.398 429.792 575.389 743.536 
5 235.633 314.404 429.801 575.4 743.551 
6 237.386 316.794 433.089 579.822 749.281 
7 237.404 316.819 433.123 579.867 749.341 
8 237.417 316.837 433.148 579.901 749.385 
9 237.426 316.849 433.165 579.924 749.414 
10 237.43 316.855 433.173 579.935 749.429 
11 238.686 318.611 435.602 583.213 753.686 
12 238.705 318.636 435.636 583.259 753.746 
13 238.718 318.655 435.662 583.293 753.79 
14 238.726 318.667 435.678 583.316 753.82 
15 238.73 318.673 435.687 583.327 753.834
16 239.528 319.814 437.272 585.472 756.626 
17 239.546 319.839 437.306 585.518 756.686 
18 239.56 319.858 437.332 585.552 756.731 
19 239.568 319.87 437.349 585.575 756.76 
20 239.572 319.876 437.357 585.586 756.775 
21 239.942 320.414 438.107 586.603 758.1 
22 239.96 320.439 438.141 586.65 758.16 
23 239.973 320.458 438.167 586.684 758.204 
24 239.982 320.47 438.184 586.707 758.234 
25 239.986 320.476 438.192 586.718 758.249 

The curves shown above are smooth and 
relevant in describing the growth rate of the 
tumor cells of every 6 days until 30 days. They 
imply that explicit method is appropriate to 
apply the mathematical model in solving the 
parabolic problem. However according to 
Hang [15], Crank Nicolson method is the best 
technique compare to the explicit methods in 
solving a one-dimensional brain tumor 
problem with its unconditional stability. The 
graph formed by explicit method undoubtedly 
will surely produce smoother and relevant 
curve than the Crank Nicolson method in 
visualizing the growth of brain tumor cells in 
two-dimensional space.    
According to the Table 1, we noticed that the 
tumor is growing from 200 cells up to about 
more than 700 cells within one month. This 
implies that the tumor grows about 500 cells 
per month. The growth rate is about 17 cells 
per day. This also shows that the evolution of 
the tumors cells is high and triple the time of 
the initial growth. However, only a small 

portion of actual tumor can be predicted. For 
overall, we conclude that the growth of tumor 
cells is slow but the process of evolution is 
quick [9].  

 
Fig. 1: Expansion rate of brain tumor 
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Figure 1 shows that the growth rates of tumor 
cells are increasing day by day. These growth 
rate increases till the first 24 days consistently. 
After 24 days, the tumor cells become highly 
active in evolution. The tumor cell will grow 
more than 800 cells after 30 days. 
In more details, growth coefficients can be 
evaluated by looking at the mitotic rate of 
cells, and death coefficient, L  by looking at the 
rate at which cells die in the absence of 
mitosis. The amount of nutrient which 
promotes proliferation or that cause death can 
be evaluated by looking at the behaviour of the 
cells for decreasing amounts of nutrient [2]. It 
is slightly more difficult to obtain direct 
measurements of diffusion coefficients, Q and 
drift coefficients, ),( RPW = . However we 
obtain both of these results by data experiment. 
The values we have taken to run the algorithm 

are, 10-5 and 10-7 for the drift coefficients of P 
and R respectively while the diffusion 
coefficient, Q is 10-3. For each of the 
proliferation coefficient, Γ and death 
coefficient, L the values which have been 
taken are 10-2 and 10-8. 

4. Performance Analysis and
Discussion

There is a master task and a number of slave 
tasks in the PVM performance of the modeling 
codes. The master task is responsible to divide 
the model domain into sub domains and 
allocate them to slave tasks. The slave tasks 
that involve the actual computation will 
execute time matching and communicate after 
each time step. The performances of parallel 
algorithm with the sequence algorithm are 
compared in Table 2. 

Table 2: Time, convergence and number of iteration for parallel algorithm and sequence algorithm 

Red-Black Gauss Seidel with 
PVM (8 CPU) 

Gauss Seidel with Sequence 
Algorithm (1 CPU) 

Time (second) 10.90019 83.153291 
Convergence 2.3911e-2 2.3911 e-2
Number of iteration 200 200 

Table 2 shows that the executive time, 
convergence and number of iteration for both 
the Red-Black Gauss-Seidel (GSRB) with 
PVM and Gauss Seidel (GS) with sequence 
algorithm in solving the mathematical model. 
The table shows that the executive time for 
GSRB with PVM is about 8 times faster than 
GS with sequence algorithm. This signifies that 
parallel algorithm is better than sequence 
algorithm. Besides, the convergence and 
number of iteration performed by both of the 
algorithms are same.   

After running the parallel computing based on 
8 numbers of CPU, the parallel performance 
will be analyzed from the aspect of time 
execution, speedup, efficiency, effectiveness 
and temporal performance. The following 
outcomes show that the increasing of the 
number of processors comes with the 
decreasing of time execution for speedup, 
efficiency, effectiveness and temporal 
performance.

Table 3: Time execution, speedup, efficiency, effectiveness, and temporal performances against different 
number of processors. 

Number of 
processor 

Time execution 
(Second) 

Speedup Efficiency Effectiveness Temporal 
Performance 

1 83.153291 1 1 0.012025982 0.012025982
2 41.84082 1.987372 0.993686 0.023749205 0.023900195
3 27.8878808 2.981708 0.993903 0.035639322 0.035857963
4 20.98909 3.961739 0.990435 0.047188072 0.047643800
5 16.9 4.920313 0.984063 0.058228557 0.059171598
6 14.262847 5.830063 0.971677 0.068126448 0.070112229
7 12.362682 6.726153 0.960879 0.077724154 0.080888597
8 10.90019 7.628609 0.953576 0.087482527 0.091741520
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 Fig. 2: Speedup vs. number of processors      Fig. 3: Efficiency vs. number of process 
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Based of the table 3, the speedup increases 
when the numbers of CPU increase. Actually 
the real graph of speedup against the number 
of processors is not a straight line. It is due to 
the effect if the communication between the 
processors. Since the number of processors (8 
processors) is limited, a straight line is 
obtained in this research. Besides, the 
distributed memory hierarchy causes the 
reduction of the time consuming access to a 
cluster of workstations. According to 
Amdahl’s Law, the speedup increases with the 
number if processors increase up to the certain 
level. 
Fig. 2 shows that the efficiency is decrease and 
less than 1 when the numbers of processors 
increase due to the communication involved. 
The factors that cause the decrease of 
efficiency are because of the imbalance 
workload, which are distributed among the 
different processors. The idle time, time startup 
and waiting time of all the processors to 
complete the computations are also the factors 
of the decrease of efficiency. 
Table 3 shows that the effectiveness increases 
with the increasing number of CPU. The 
achievement of result for the increasing 
effectiveness is based on the increasing of the 
speedup. Moreover the effectiveness graph 
increases when the number of processors is 

added. A straight line has been formed for the 
graph due to the communication of the 8 
processors in this parallel computing system. 
Fig. 5, shows that the temporal performance 
increases while the number of processors 
increases. The graph shows a straight line due 
to the decreasing of execution time 
exceedingly versus with the number of 
processors. 
As summarise to this study, the analysis shows 
that the performance of the parallel algorithm 
is enhanced by increasing of the number of 
processors from the aspect of speedup, 
efficiency, effectiveness and temporal 
performance. Parallel computers become more 
famous since these computers provide many 
order of magnitude raw computing power than 
traditional supercomputers at much lower cost. 
Parallel computers consisting of thousands of 
processors are now commercially available. 
Systems with thousands of such processors are 
known as massively parallel. The avability of 
massively parallel computers has created a 
number of challenges. They open up new 
border in the application of computers, by 
which many unsolvable (previously) problems 
can be solved effectively.  
The results of the analysis for the performance 
measurements have proved that parallel 
algorithms are considerably better than the 

Fig. 4:  Effectiveness vs. number of 
processors 

Fig. 5: Temporal performance vs. number 
of processors 
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sequential algorithms from the aspect of 
speedup, efficiency, effectiveness and temporal 
performance. The Red-Black Gauss Seidel is 
found to be suitable for parallel 
implementation on the PVM efficiently [16]. 
Besides, the communication of processors and 
computing times are always effected the results 
of speedup, efficiency, effectiveness and 
temporal performance.   
The computing of Two-Dimensional parabolic 
equation of brain tumor growth is well suite in 
using High Performance Computing System 
because it involved a large space of matrix 
algorithm. 

5. Conclusion
In the last twenty years, most of the models of 
solid tumor growth were written and developed 
by several mathematical models, using 
different approaches. This indicates that the 
main directions for future mathematical 
research in this field.  
In this study, regarding the growth of brain 
tumors, a 2-Dimensional parabolic model has 
been chosen to solve this problem by using 
standard finite difference method.  
Explicit method is a numerical finite difference 
method, which had been used to solve the 
evolution equation in this study. From the 
graphically presented result, the explicit 
method can be used to show the relevant curve 
correctly to predict the growth of brain tumors 
compare to actual data [10].  
From the analysis, the parallel computing with 
PVM system can be concluded as a well suite 
performance tools in solving the grand 
challenge of mathematical problem. The 
parallel processing has saved a lot of execution 
time compare to the sequence processing.  
In this study, the explicit method has been used 
to predict the growth of brain tumor cells in 
two-dimensional space within 30 days. This is 
an extended research of one-dimension brain 
tumor cells from Hang [15].  
As our future research, to improve the speed 
and performance of the parallel processing 
systems, the number of processors that are 
used to solve the mathematical model can be 
increased. Besides, MPI (message-passing 
interface) can be used in replace of PVM to 
solve the large scale problems in High 
Performance Computing systems. The 
numerical schemes such as AGE (Alternating 
Group Explicit) and IADE (Iterative 
Alternating Decomposition Explicit) can be 

useful for numerical parallel processing as 
well, since they are convergent and have 
unconditional stability. 
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