MESSAGE BASED ANALYSIS ON SIGNALING SYSTEM NUMBER 7 AND ITS COMPARISON WITH MULTI-FREQUENCY CODED SIGNALING

Md. Shah Alam¹ and Mohammad Rezaul Huque Khan²*

Dept. of Electronics and Telecommunication Engineering, Daffodil International University, Bangladesh

E-mail: 1shah_alam@daffodilvarsity.edu.bd, 2rhkcu@yahoo.com

Abstract: A message based comparative study between signaling system #7(SS7) and MFC Signaling is done. Here the limitations of SS7 and MFC signaling are also studied. The reasons for the transition from Multi-frequency Coded (MFC) Signaling to SS7 has been discussed.

Keywords: Common Channel Signaling No.7 (CCS7), R2 Signaling or Multi-frequency Coded (MFC) Signalin and, SS7 message.

1. Introduction

of The over increasing demand telecommunication in the world wide involves significantly telecommunication signaling systems. The Common Channel Signaling no.7 is usually termed as Signaling System No.7 (SS7). The purpose of this paper is to study the signaling systems R2 or MFC, SS7 [1], to find the limitations of the above signaling system, analysis of the signaling systems (R2 and SS7) on the basis of their message format. An overall comparison between the two systems has been studied. This paper also focuses on the transition of MFC to SS7.

2. Common Channel Signaling No. 7

Common Channel Signaling System No. 7 (i.e., SS7 or C7) is a global standard for telecommunications defined by the International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T). The standard defines the procedures and protocol by which network elements in the Public Switched Telephone Network (PSTN) exchange information over a digital signaling network to effect wireless (cellular) and wireline call setup, routing and control [2, 3, 4]. The SS7 network and protocol are used for:

- (i) Basic call setup, management, and tear down.
- (ii) Wireless services such as Personal Communications Services (PCS), wireless roaming, and mobile subscriber authentication.
- (iii) Local Number Portability (LNP).
- (iv) Toll-free (800/888) and toll (900) wireline services.
- (v) Enhanced call features such as call waiting, call forwarding, calling party name/number display/ restriction/rejection, and three-way calling.
- (vi) Interaction with Network Databases and Service Control Points (SCP) for service control.
- (vii) Handling congestion and priorities.
- (viii) Efficient and secure worldwide telecommunications.

SS7 started to make inroads in the 1980"s because it was a major technological advance. It was a fully digital technology running at the then blazing speed of 64,000 bps (versus no more than 30 bps for tone-based signaling). Messages which had previously been limited to a few digits in length could now be over 200 bytes long. Signaling messages were no longer transmitted "in-band" (within the voice circuit), so they could be exchanged with network elements that did not have voice trunks, allowing the development of services such as 1-800, the intelligent network (IN) [5] and wireless mobility management.

3. R2 Signaling

R2 signaling was known originally as MFC signaling [3]. It was developed cooperatively by European telecommunication equipment manufacturers and the European conference of

postal and telecommunications administrations (usually represented as CEPT), and was introduced in the 1960s. It is still used in many national networks in Europe, Latin America, Australia, and Asia. Although R2 signaling has ITU-T been defined in Q.400-Q.490 recommendations [6], there are many variations in how R2 is implemented. The R2 signaling is an international signaling system that transmits numerical and other information relating to the called and the calling subscribers' lines. There are two elements of R2 Signaling. They are Line Signaling (supervisory signals) and Inter-register Signaling (call setup/control signals) [7.8].

3.1 Line Signaling

R2 line signaling is a family of protocols which govern the resource acquisition and resource release related to a two-party telephone call attempt and, if successful, the establishment of a two-party telephone call. Although in the 1960s R2 line signaling was represented as electrical pulses on a two-wire or four-wire circuit, by the latter 1970s these analog electrical pulses also could be represented in digital form by a signaling DS0 (usually known as frame format of American first-order digital multiplex) in the trunk, which is normally channel 16 in an E1(a frame contains 32 eight-bit time slots defined by CEPT) trunk [9].

3.2 Register Signaling

R2 register signaling is a family of protocols which govern the conveyance of addressing information during the addressing phase and how the call attempt turned out during the disposition phase. Although in the 1960s R2 register signaling was represented by electromechanical devices which could generate multi-frequency audio tones and by electromechanical devices which could detect those audio tones, by the latter 1970s these electromechanical registers also could be represented by digitized Pulse Code Modulation (PCM) audio in DS0 channels of an E1 other than the R2 line signaling DS0 in that E1 [10].

4. Limitations

4.1 Limitations of R2 Signaling

Some of the major limitations of R2 signaling are (i) much slower than common channel

signaling. (ii) R2 signaling cannot be used on Time Assignment Speech Interpolation (TASI) equipped trunks. (iii) It is more costly to interface the MF registers and line signaling hardware for the individual trunks used in R2 signaling. (iv)The transfer of additional signaling information for processing a call is not possible in case of R2 signaling. So MFC or R2 signaling does not provide the requirements to meet the new and future challenges [3].

4.2 Limitations of SS7 Signaling

Some of the major restrictions with SS7 are: (i) Link speed and capacity, message size, addressing, international routing [12]. (ii) The size of a single data packet must be less than about 250 bytes. (iii) Lack of seamless international operation, unlike the TCP/IP protocol used on the internet and the basic addressing method, the point code, stops at a country boundary, etc [13].

5. Message Based Analysis of the Signaling System (R2 & Ss7)

A message based analysis on SS7 signaling system and R2 signaling system is presented here. Usually SS7 mainly deals with ISUP signaling i.e., Integrated Services user part signaling. There are some basic differences between these two systems (R2 and SS7) in their message format and how the signaling is done. An SS7 message format (ISUP TRACE) [14] and an R2 message format (R2 TRACE) [14] is given below for example. From the analysis of ISUP traces it is shown that there are three types of codes included in ISUP message format. These are originating point code (OPC), destination point code (DPC), and circuit identification code (CIC) and they are represented in hexadecimal number. The CIC identifies a trunk within a trunk group. The CIC field has a length of 12 bits, and thus can identify trunks in groups of up to 4095 trunks. When an ISUP message is sent or received, it contains these codes. But in case of R2 messages it contains only the destination point code. For this reason a R2 signal message does not contain its caller ID. In case of R2 message it is also observed that it conveys two types of signal, one is forward signal (FS) and another is backward signal (BS). On the other hand ISUP message

consists of initial address message (IAM), subsequent address messages (SAM), address complete message (ACM), answer message (ANM), release message (REL), release complete message (RLC), and many other message parts. The different parts of the message contain different types of signaling information (SI).

The transfer of additional signaling information for processing a call is most necessary. This is possible only in case of SS7. In ISUP message, many signaling information just like call origination, trunk type, call start time, end time and the release of call is also mentioned in the message. In case of R2 signaling the transfer of additional signaling information is not provided.

5.1 An SS7 Message Format: ISUP TRACE

TRC-ISUP: RTE 700;

M8480 ISUP SIGNALING TRACE RESULT =OK ITEM ASP TI LNK TRK S_TRK E_TRK RTE ** ***** ** **** **** RTE CNT TRC_TYPE 700 100 ALL

M8480 ISUP SIGNALING TRACE (1/100) ITEM ASP TI LNK TRK S_TRK E_TRK RTE 0 ***** ** 34 **** **** RTE CALL S_TIME E_TIME TRC_TYPE 700 OGT 13:43:34 13:43:40 ALL OPC DPC CIC NAT/H[°] OcOf NAT/H[°] 0001 H[°] 0002

MSG DIR DATA ------

I AM 00 60 00 0F 03 02 00 04 03 10 03 00 SAM 02 00 02 80 00 SAM 02 00 02 80 02 SAM 02 00 02 80 02 ACM 16 04 00 REL 02 00 02 80 90 RLC 00 REL_REASON = NORMAL CALL CLEARING

5.2 An R2 Message Format **R2 TRACE TRC-R2: RTE=601;** M8430 R2 SIGNALING TRACE TRC TYPE = RTERTE NO = 601COUNT = 100**RESULT = OK** REASON =TRACE RAG OK M8430 R2 SIGNALING TRACE TRC MODE=RTE-ALL TRC CNT=001/100 RTE NO =0601 ASP NO=00 TRK NO=0130 R2 NO=014 FS CNT=08 BS CNT=08 S/R=RECEIVER SIG TIME=2064MSEC FS=03 10 10 10 10 10 02 04 xx xx xx xx xx BS=01 01 01 01 01 01 03 06 xx xx xx xx xx

6. Transition from MFC To SS7

There are several reasons for the move from MFC to SS7. These are faster call setup times (compared to in-band signaling using MF signaling tones). The speed of operation results in reduced post-dialing delays and consequently, this allows the sending of an increased number of signals for additional customer services. Complex messages, instead of simple signals, allow SS7 to offer more services and increased flexibility to meet new and future service requirements. More efficient use of voice circuits, especially on international or long distance calls, where the voice channel is only occupied when the called party is available.

7. Comparison between SS7 Signaling And R2 Signaling

A Comparative study between Signaling System No.7 and R2 Signaling is shown below in a tabular form.

Table 1: Comparison of Signaling System No. 7 and R2 Signaling or MFC Signaling		
Comparative Features	Signaling System No.7	R2 Signaling or MFC Signaling
1.Channel mode	Common channel signaling is done.	Channel associated signaling (CAS) is done.
2.Channel	In SS7, an E1 frame has 32*8=256	Signaling frequency is 3825 Hz and 300-
bandwidth	bits and bit rate of the system is	3400 Hz for subscriber speech.
	8000*256=2048 kbps.	
3.Supporting	SS7 can be used on Time	R2 signaling cannot be used on TASI
trunks	Assignment Speech Interpolation	equipped trunks.
	(TASI) equipped trunks.	
4. Time slot for	There is no fixed time slot dedicated	There is a fixed time slot, TS16 dedicated
signaling	for signaling in SS7.	for signaling in R2 signaling system.
5.Time slot (TS)	30 TS is allotted for voice or data	First 15 TS is used for incoming and the
for voice or data	transfer and each TS can be used for	rest of the 15 are used for outgoing call
transfer	bidirectional i.e., incoming and	processing.
	outgoing call processing.	
6.Interfacing cost	It is often less costly to interface the	It is more costly to interface the MF
-	processing equipment of SPC	registers and line signaling hardware for
	exchanges with a relatively small	the individual trunks used in R2
	number of signaling links used in	signaling.
	SS7.	
7.Signaling speed	SS7 is much faster than multi	Multi-frequency signaling is much slower
	frequency signaling.	than common channel signaling.
8.Additional	The transfer of additional signaling	The transfer of additional signaling
information	information for processing a call is	information for processing a call is not
transfer	possible in case of SS7.	possible in case of MFC signaling.
9.Flexibility	Common channel signaling messages	In MFC signaling messages provide no
	provide a more flexible way to	flexibility like SS7, because the signals
	transfer both the classical	on a trunk necessarily relate to that trunk.
	supervision and other types of call	
	control information.	
10. Caller identity	In SS7, caller identity and the calling	In CCITT-R2 (International Telephone
	party category is sent from the	and Telegraph Consultative Committee)
	originating to the terminating	signaling, caller identity and the calling
	exchange.	party category is not sent from the
		originating to the terminating exchange.
11. Access	Subscriber cannot access the SS7	This kind of facility is not available in
capability	signaling links. This avoids the blue-	MFC signaling. For this reason blue-box
	box fraud problems arise in case of	fraud problems arise in CAS which uses
	CAS signaling.	FDM trunk groups.
12 Signal	SS7 supervision signaling is intended	The supervision signaling of CCITT-R2,
Supervision	for both way analog and digital	intended for one-way analog trunks only
	trunks.	[3].
13. Compatibility	SS7 has the compatibility to meet the	MFC or R2 signaling does not provide
	new and future service requirements.	the requirements to meet the new and
		future challenges.
14.Need for	In SS7, a common signaling link	In CAS systems, the signaling
signaling link	(SL) carries signaling messages for a	information for a trunk is carried by the
(SL)	number of trunks.	trunk itself. There is no need of signaling
		link in R2 signaling.

Table 1: Comparison of Signaling System No. 7 and R2 Signaling or MFC Signaling

8. Conclusions

In this paper an effort has been made to give an overview of R2 and SS7signaling. Emphasize is given on the basic limitations of R2 signaling. However, these limitations do not arise in case of SS7. From the analysis some limitations of SS7 in case of link speed and capacity, message size, addressing and international routing have arisen that mentioned in the section 4.2. High speed SS7 links are a good long-term solution to the message size problem, but will not help until the majority of Signaling Transfer Points (STPs) are upgraded to support them. For international signaling, an alternate address method known as global title translation is necessary. But, this is more complex than point codes, and requires management of distinct routing tables in every STP for each global title type.

The standard link speed with SS7 is 64 kbps. The capacity can be increased by implementing up to sixteen SS7 links at a single signaling point. The can be further expanded capacity bv implementing 1.5 Mbps links i.e. an entire T1 (a frame format contains 24 eight-bit time slots defined by Bell Laboratories) PCM frame. Theoretically it is possible but practically it is not so easy to done. We should also think about addressing scheme and the routing methodology compatible with different countries.

References

- A history of Engineering and Science in the Bell System, Chapter 12, Bell Telephone Laboratories, Inc., 1982.
- [2] <u>http://www.itu.int/ITU-T/</u>
- [3] John G. Van Bosse, "Signaling in Telecommunication Networks", Published by Wiley –Interscience. ISBN number 0- 471-57377-9, Chapter 4, pp. 90-106, Chapter 5 pp. 109-124, Chapter 7, pp. 150-158.
- [4] http://www.c7.com/ss7/ss7_tutorials.htm
- [5] R.K. Berman, J.H. Brewster, "Perspective on the AIN architecture," IEEE Comm. Mag., 31, no.2, February 1992.
- [6] Specifications of Signaling Systems R1 and R2, Rec.Q.310-Q.331 (R1 Signaling) and Q.400-Q.480 (R2 Signaling), CCITT Red Book, VI.4, ITU, Geneva, 1985.
- [7] S. Welch, Signaling in Telecommunications Networks, Peter Peregrinus Ltd, Stevenage, U.K., 1981.
- [8] M. den Hertog, "Interregister Multifrequench Code Signaling for Telephone Switching in Europe", Elec. Comm., 38, 1963.
- [9] R.L. Freeman, "Telecommunication System Engineering", Second Edition, Wiley-Inter science, New York, 1989.
- [10] Digital Networks, Transmission Systems and Multiplex Equipment, CCITT Red Book, III.3, ITU, Geneva, 1985.
- [11] Behrouz A. Forouzan, "Data Communications and Networking", Published by Mc Graw Hill, Third Edition, 2004-2005, Chapter 20, pp. 519-535.
- [12] http://www.cnp.wireless.com/articlearchive/wireless20 review/
- [13] David Crowe"s "Wireless Telecom" Articles, "2002'Q4: SS7 Now, IP Later?", May 14, 2007: Cellular Networking Perspectives Ltd.
- [14] http://www.mercurykr.com/ DTS 4000 Operation Manual, ISUP TRACE, Vol.I. pp. 22-30, R2 TRACE, pp. 10-21.