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Abstract: Cellular telecommunication is one of the
fastest growing and most  demanding
telecommunication applications ever. In cellular
telecommunication, an adaptive call establishment
between two BTS (Base Transceiver Station} which are
under different MSC (Mobile Switching Center) is an
intelligent routing procedure. This paper presents
CellAnt, an agent based routing algorithm for BTS
search in the Mobile communication network. In
CellAnt, a set of cooperating agents called ants
cooperate to find shortest path. It’s a mobile agent
based algorithm which is inspired by the Ant Colony
Systemn (ACS). CellAnt algorithm is used for dynamic
routing in the mobile communication network. The
experiments are run for various traffic distributions.
CellAnt have showed very good performances with
respect to its competitors.
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1. Introduction

Cellular telecommunication represents a large and
continuously increasing  percentage of all new
telephone subscriptions around the world. The
use of digital radio transmission and the advanced
handover algorithms between radio cells in GSM
networks allow for significant usage than in
analogue cellular systems, thus increasing the
number of subscribers that can be served.
Advance Mobile Phone Service (AMPS) [1]
provide telephone communications to thousands
of mobile users within a greater metropolitan
area. And to accomplish this goal, it uses a
minimal amount of the frequency spectrum. In
this type of network, each geographical area is
divided into small regions called cells.

At the center of the cell is a base station (Base
Transceiver Station — BTS) [2] to which all the
telephones in the cell transmit. In a small system,
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all the base stations are connected to a single
device called a Mobile Switching Center (MSC).
In a larger one, several MSC maybe needed, all of
which are connected to a second level MSC and
so on. At any instance, each mobile telephone is
logically in one specific cell’s base station.

Real ants have been shown to be able to find
shortest paths using only the pheromone trail
deposited by other ants. The artificial ant uses this
pheromone to find out the BTS under any MSC.
When the called person is under another MSC’
BTS then the caller’s home MSC generates an ant
to find out the rout and search MSC under where
the destination BTS is present.

The ant uses the probability from Probability
Table to go from one MSC to another MSC.
When any mobile user move from one cell to
another cell then the HLR (Home Location
Register) of that cell’s home MSC is upgraded
automatically. VLR (Visitor Location Register) of
the MSC contains the routing table sometimes
denoted here as Database Table.

The CellAnt algorithm is so used to find out the
destination MSC (BTS) and to upgrade the VLR
of source cell’s home MSC. The shortest route is
stored in the Database Table (VLR). The
Database Table is upgraded dynamically as ant
can launch from any other MSC for searching
another MSC, a new mobile user. Among the
conventional routing algorithms, the CellAnt
algorithm is faster to find out the destination
BTS.

The routing algorithm that is proposed in this
thesis was inspired by previous works on ant
system, ant colony system [3], [4], where
pheromone is used for the shortest path direction.
In ant colony system each ant can move from one
place to another place and deposit pheromone on
the way. So, next ant can be able to find shortest
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path using only this pheromone trail deposited by
other ants.

In CellAnt algorithm, each artificial ant build a
path from source BTS to destination BTS. While
building the path, it collects explicit and implicit
information about load status of each MSC. This
information upgrades the Probability Table of the
visited MSC. The behavior of CellAnt algorithm
is compared to some effective shortest path
algorithm. CellAnt shows the best performance
and more stable behavior for all traffic
distribution. Absolute performance is scored
according to a scale defined by an ideal algorithm
giving an empirical bound. Competing algorithms
performed poorly for heavy traffic conditions and
showed more sensitivity to internal parameters
tuning. ‘

2. An Overview of the Routing Algorithms
The goal of every routing algorithm is to
direct traffic from sources to destinations
maximizing network performance while
minimizing costs. In this way, the general
problem of determining an optimal routing
algorithm can be stated as a multi-objective
optimization problem in a non-stationary
stochastic environment. Additional
constraints are posed by the underlying
network  switching and  transmission
technology.

The performance measures that usually are
taken into account are average delay and
error in finding the destination. The former
quantify the quantity of service that the
network has been able to offer in a certain
amount of time, while the latter defines the
quality of service produced at the same time.

Routing algorithms can be at first broadly
classified as static or adaptive. In static (or
oblivious) routers the path taken by an ant is
determined only on the basis of the source
and destination, without regard to the current
network state. This path is usually chosen as
the shortest one according to some cost
criterion.

Adaptive routers are, in principle, more
attractive, because they try to adapt the
routing policy to the varying traffic

conditions. As a drawback, they can cause
oscillations in selected paths. This can
generate circular routes, as well' as large
fluctuations in performances, especially for
what concerns average delays.

The most widely used shortest path
algorithms are shortest path algorithms
Shortest path searching has a source

destination pair perspective: there is no global
cost function to optimize. Here our
algorithms objective is to determine the
shortest path between two BTS, where the
link delays are computed adaptively
following some statistical description of the
link..

The conventional searching method is called
BLIND search where no intelligence is used.
But here each ant (agent) can move from one
MSC to another MSC, choosing the lower
probability MSC and change the Probability
Table. So every time each ant uses the
modified Probability Table and is allowed to
modify it. Going to the nearest MSC, change
the Probability Table having the summation
of the probability to go from one MSC to
another MSC is equal to 1.00(one) [5}], [6].

3. CellAnt: The Proposed Approach

3.1 Overview of CellAnt

As emphasized before, the routing problem is
a stochastic distributed multi-objective
problem. Information propagation delays and
the difficulty to model the network dynamic
under arbitrary traffic patterns, make the
general routing  problem intrinsically
distributed. Routing decisions can only be
made on the basis of local and approximate
information about the current and the future
network states.

These features make the problem well
adapted to be solved following a multi-agent
approach like our CellAnt algorithm,
composed by two sets of homogeneous
mobile agents, called in the following
respectively forward and backward ants.



DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 7, ISSUE 2, JULY 2012 3

Agents in each set possess the same structure,
but they are differently situated in the
environment; that is, they can sense different
inputs and they can produce different,
independent  outputs.  Agents  behave
reactively retrieving a pre-compiled set of
behaviors to select the rout and to modify the
Probability Table, but at same time they
maintain a complete internal state description.
3.2 The CellAnt Algorithm

1. At regular intervals, from every MSC s

(under where the source BTS s
connected), a mobile agent (ant) is
launched with a randomly selected

destination MSC d (under where a
destination BTS is connected)
identifier of every visited MSC k and the
time elapsed since its launching time to
arrive at this k-th MSC are pushed onto a
memory STACK _, (k).

2. At first an ant selects a MSC which is
reachable from current position and test

whether it is destination MSC. If it is, ith)

must be go to the destination MSC. And
this path and the delay is pushed on the
SFACK _ 4K) -

3. Each traveling ant selects the next hop
MSC using the information stored in the
Probability Table. The route is selected,
following a random scheme,
proportionally to the goodness
(probability of each neighbor MSC) or
with a tiny probability (exploration
probability), assigning the same selection
probability to each of the neighbor MSC.
If, in the proportional case, the chosen
MSC is already been visited, a uniformly
random selection among the neighbors is
applied.

4. If a cycle is detected, that is, if an ant is
forced to return in an already visited
MSC, the cycles MSCs are popped from
the ants STACK (k) and all the memory

about them destroyed.

5. When the destination MSC d is reached,
the agent F,_,, generates another agent

(backward ant) B, , transferring to it all

its memory.

The backward ant makes the same path as
that of its corresponding forward ant, but
in the opposite direction. At each MSC k
along the path it pops its stack
STACK _,,(k) to know the next hop

MSC.

Arriving in a MSC % coming from a
neighbor MSC f, the backward ant
updates the following two data structures
maintained by every MSC:

Thed) A Probability Table organized as in vector

distance algorithms; in the table, a probability
value Prob(i,n) which expresses the
goodness of choosing n as next MSC when
the destination MSC is i, is stored for each
pair (i , n) with the constraint:

S Probiin)=1, i€ [LN] N, ={neightor (K)}
ne N,

A list
estimates of arithmetic mean values mean, and

Memory , (mean, var iance *) of

associated variance variance, for trip times
from itself to all the MSCs i in the network.
This data structure represents a memory of the
network state as seen by MSC k.

These two data structures are updated as
follows:

The list Memonymeanvariancé)is updated

with the values stored in the stack memory
STACK,,(k); all the times elapsed to arrive in
every MSC k'€ S,
current. MSC & are used to update the
corresponding sample means and variances
Memory, (mean, variance®) .

The  Probability Table is changed
incrementing the probability Prob(d, f)
associated with MSC f when the destination
is MSC d and decrementing the probability
Prob(d, n) associated with the other MSC n
in the neighborhood for the same destination.

starting from the
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The update of the Probability Table happens
using the only available feedback signal, that
is, the trip time experienced by the forward
ant. This time gives a clear indication about
the goodness of the followed route because it
is proportional to its physical length and to
the traffic congestion.

The time measure is used as a reinforcement
signal to provide structural and temporal
credit assignment. The credit assignment
problem is the typical one arising in
reinforcement learning field [6]. “Optimal”
times depend on traffic and/or components
failure states, and they have to be considered
from a network wide point of view. An
“advice” about the goodness of the observed
trip time on the basis of the estimated means
values for the agent’s trip times, are stored in

the list Memory, (mean, variance®) .

Now mean =y and variance’ = o’ is used.
In this situation, the routing table is updated
in the following way:

If T is the observed trip time (delay between i
and n when an ant come form i to n) and g is
in the

its (i-th) mean value, as stored

list Memory, (mean, var iance®), the
computation of a raw quantity »* measuring the
goodness of 7, with small values of r’
corresponding to satisfactory trip times [5]:
L ext o Toer e @
r=qcp [
| otherwise

' is a dimensional measure, problem
independent, scoring how good is the clapsed
trip time with respect to what has been on

average observed until now. u plays the role

of a unit of measure and c is a scale factor (
setting ¢=2 is a reasonable choice). “Out-
scaled-values” are saturated to 1.

A correction strategy is applied to the
goodness measure r” taking into account how
reliable is the currently observed trip time
with respect to the variance in the so far
sampled values, that is, considering how
stable the trip time mean value is. The

f functions

observations in the mean are stable if

a
—< £, £ <€ 1.

In this case, a good trip time (i.e.: r” less than
a threshold value ¢ that is set to 0.5) is
decreased by subtracting a value [5]:

S(o,u;a)=e¢ * N &)
To the value of r’* while a poor trip time is
increased adding the same quantity. On the
other hand, if the mean is not stable, the raw
values r’ cannot be completely considered
reliable and, in this case, the quantity [5]:

-a'c
Uie.ma")=¢ # 4)
with @’ < a, is added to a good r” value and
subtracted from a poor one. In this case, to
avoid following the traffic fluctuations, with
the risk of amplifying them: adding and
subtracting the value U helps to stabilize
them.
The above correction strategy, for both cases

o] .
of — value can be summarized as [5]:

U
' O is [
r’ e '+ sign (1 — r)sign [— E]f(o’,,u)
“

with f being S or U according to the case. The
have been chosen as
decreasing/increasing exponential because
both the function and its first derivative are
monotonically decreasing/increasing  with

. : o :
increasing values of the — ratio. These

7

transformations from the raw value T to the
more refined value r’ play the role of a local
estimation of a traffic model. More
sophisticated and computationally-demanding
models could be learnt to generate a more
effective traffic-dependent correction.
The obtained value " is used by the current
MSC k to define a positive reinforcement, r,
for the MSC f the ant comes from, and a
negative one r_ for the other neighboring [5]
MSC n:

r, (—-(1 - r')(l "'Pmk(d f ))
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r «{1-r\Prob{d,n)) ... (7
where ne N, n# f, where Prob(d,f) and
Prob(d,n) are the last probability values
assigned to neighbors of MSC k [7]. In this
way, the reinforcements are proportional to
the obtained goodness measure r’ and to the
previous value of MSC probabilities.
These probabilities are then increased/
decreased by the reinforcement values as
follows (their sum will till be 1, being
r'elo1]:
Prod. f)«ProH{d, f)+r,
Prold,n) «—Proid,n)+r ... ... 9

It is now clear that the power law
rescaling of the r” value is equivalent to the
definition of a learning rate: the scale
compression factor and its degree of non
linearity determine the final size of the
allowed jumps in the probability values.

4. Experimental Results
To evaluate the performances of CellAnt, two
competitor algorithms are selected from the

shortest path class reflecting network
standards and state-of-the-art for routing
algorithm.

4.1 Bellman-Ford (BF)

BF is an implementation of the asynchronous
distributed Bellman-Ford algorithm with
dynamic link matrix [8].Vector distance
Bellman-Ford-like algorithms are today in
use mainly for intra-domain routing, being
used in the Routing Information Protocol
(RIP) [9] supplied with the BSD (Berkeley
Software Distribution) version of Unix.

4.2 Dijkstra

Dijkstra is a list-cost routing algorithm used
in packet switching network, internet, and
mobile communication network. In this
algorithm, each MSC must have complete
topological information about the network.
That is, each MSC must know the link delay
of all links in the network. Thus for this
algorithm, information is exchanged with all
other MSCs.

4.3 Experimental Settings

In this experiment a mobile network instance
of figure | is simulated using graph in Visual
C++. The hexagons in the figure are the
nodes of the graph. The nodes represent BTS
(each BTS is connected with one MSC). Each
edge in the graph represents a pair of directed
link and the numbers are propagation delay.

Fig. 1: Numbers in Hexagons (nodes) are BTS
Identifier (each BTS is connected with one MSC).

Each edge in the graph represents a pair of
directed link and the numbers are propagation
delay. Two models, static and dynamic, of
temporal traffic patterns have been used. In the
static model all the sessions start at the beginning
of the simulation and they last until the end. In
this way, a situation of stationary is simulated. In
the dynamic model, sessions are activated
following a negative exponential distribution for
the inter-arrival times. The distribution mean
value is fixed. In this case sessions are “bursty”
and hence data flows are highly irregular.

The constants (c,a,a',h,t) used in this section

are not problem-dependent and they simply
define an appropriate scaling system for the
computed values. They have been set to the
following values: c=2a=10a"=9,k=004r=05.
4.4 Experimental Result

The performance of the CellAnt comparing
Dijkstra and Bellman-Ford algorithm is evaluated
for the source-destination pair with the following
BTS pairs (1,7), (2,12), (3,10), (4,14), (5,9), (6,1),
(7,11), (8,13), (9.2), (10,4), (11,8), (12,5), (13,3)
and (14,6).
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Table 1 shows the errors of different algorithms

in finding the actual result from 1* BTS to 7"
BTS. The table also contains the actual path

length. The error is obtained by subtracting the
observed value from actual value.

Table 1: Errors of Different Algorithm in Finding the Shortest Path from 1¥ BTS to 7" BTS

Obtained Shortest Path s g the A podihm
Tigration (glféfésygiliﬁ) Bell CellAnt | Dijkst Bl
CellAnt | Dijkstra ¢ man- el g Ford
Ford
1 29 40 7 7 71 2 22
2 29 30 9 9 1 20 20
3 29 30 9 9 1 20 20
4 29 29 16 16 0 13 13
5 29 29 22 2 0 7 7
6 29 29 22 0 0 7 7
9 29 29 25 25 0 4 4
8 29 29 29 29 0 0 0
25 -
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Fig.2: CellAnt, Dijkstra and Bellman-Ford’s Error
Decreasing Curve from BTS 1 to BTS 7

Fig. 2 shows the error decreasing curve for each
algorithm. The figure clearly shows that CellAnt
is more efficient in finding the optimum result
than other algorithms.

Similarly, for every source and destination BTSs,
we find that CellAnt obtains the optimum
solution in fewer iterations than Dijkstra and
Bellman-Ford algorithms. Table 2 summarizes
the needed iterations for CellAnt , Dijkstra and
Bellman-Ford algorithm to find the shortest path
between different BTSs.

Table 2: The Actual Result in Different Iteration
for Different Algorithm

Shortest MSC Needed Iterations
LlSt(:erl;Ota’ CellAnt Dijkstra B_eflrl;l:n
1-2-7 =29 4 8 8
2-7-10-12 =35 12 12 12
3-8-9-10=26 4 11 11
4-11-13-14 =33 7 12 12
5-6-7-10-9 = 26 5 12 12
6-5-3-1 =23 1 9 9
7-10-12-11 =24 2 11 11
8-9-13 =12 2 4 4
9-10-7-2 =32 1 12 12
10-12-11-4=32 9 12 12
11-13-14-8 =26 T 12 12
12-11-5=20 2 10 10
13-14-8-3 =20 8 8 8
14-10-7-6 =19 4 8 8

5. Conclusion

In this paper, CellAnt, a new algorithm for
adaptive routing for cellular communication is
introduced. Its behavior with respect to iteration
and error for finding actual cost has been
compared to the behavior of two shortest path
routing algorithms. The CellAnt performed
always the best among its competitors or at the
same level within the statistical fluctuations.
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CellAnt shows stable performance and behavior,
that is, always moving rapidly toward the
optimum solution.
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