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Abstract: In a mobile computing environment,
processes in mobile agents need to communicate with
each other, execute processes or spawn new
processes locally or in a remote location, share data
among processes. By studying the concurrency theory
we can define model for mobile computation based
on the idea of concurrent execution of processes. In
this paper, we have addressed the requirements of
kernel programming language for migratory mobile
processes, investigated KLAIM (Kernel Language for
Agents Interaction and Mobility) family as a model of
computation, the main results of the research,
applications and future trends.
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1. Introduction

Mobile computing involves movement of mobile
agents (e.g. laptop, PDA etc) from one location
to another. In such environment, by explicitly
knowing the location of mobile agents,
programmer can easily distribute and retrieve
data and processes among remote nodes in the
network.

A coordination language is required to handle all
issues related to migratory or mobile agent
interaction in global computing environment. It
should address the issue regarding type system
of data that can be used to control the access
right mechanism of mobile agents. Security,
reliability, modularity and resource management
are also need to be addressed. The language
should support explicit use of localities for

accessing data and computational resources.
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KLAIM is the coordination language which is
heavily inspired by Process Algebras [1, 2] and
Linda [3, 4]. It describes the mobile agents and
their interaction strategies.

2. Histories and Literature
In Global computing environment computers

are geographically distributed which are called

Global Computers. Applications running on

these Global Computers need continuous

interaction and may have to take decisions
according to information retrieved from the

Global environment. In order to implement a

Global Computer structure we need a model of

computation that supports migratory

applications.

Different programming languages are used to

write mobile agent such as:

e Java: Java [S] provides a working
mechanism for mobile computation which is
based on mobility of code not the mability of
the process. Though the data mobility has
been achieved by java RMI but concurrent
execution of threads or live objects in a
Global computing environment is still
problematic.

e Oblig: Oblig [6] language was designed for
the context of local area networks. It is an
untyped object oriented language that
supports  distributed  object  oriented
computation. Obliq objects are local to a site
and not suitable for computation and
mobility over the web
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o Telescript: Telescript [7] is an agent-based
language that explicitly deals with locality,
mobility, and finiteness of resources.
Telescript agents may migrate to new
locations while active, but cannot engage in
distributed communication. Telescript agents
run only on a dedicated global computer that
guarantees the integrity and security of
agents.

o TFacile; Facile [8] supports mobility of
program by allowing processes to be
transmitted in communications

Processes with changing structure can be

naturally expressed by a calculus of

communicating system. The PI calculus has been
used as the basis for designing concurrent object
oriented programming language. An abstract
semantic framework that would allow one to
formalize and understand global programming
languages is clearly required. This semantic
should support [9]:
e Agent migration

Communication between agent

Access to server resources

Security mechanisms

The ability to run on multiple platforms

Ease of programming for writing mobile

agent application

The kernel programming language, KLAIM

represents the model of computation that

supports mobile application satisfying all issues
mentioned above.

3. Main Definitions

KLAIM as a programming language has the
following syntax and semantic definition:

3.1 Syntax of KLAIM

The Klaim language consists of LINDA with
multiple tuple spaces and a set of operators from
Milner's CCS [10]. Linda [11, 12, 4] is not
completely  adequate  for  programming
distributed application and it doesn’t guarantee
data privacy. Moreover, it follows modular
programming that does not guarantee that tuples
coming from different contexts are not mixed up
when two modules are put together.
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Solution to these problems of Linda are
addressed in Klaim by providing a structure to
multiple tuple spaces [13] and allowing explicit
manipulation of localities and locality names.
Syntax for Klaim process

Symbols that are used for KLAIM process
Calculus are given below

Symbol Meaning
S(s) Set of sites or physical localities. A
site can be considered as the address
of a node where processes and tuple
spaces are allocated.

Loc(f) A set of (logical) localities. Symbolic
name of site. self(eLoc) s
distinguished locality that is used by
the programme to refer there
execution site.

VLoc A set of locality variables

(u)

Val (v) A set of basic values

Var (x) A set of value variables

Exp (e) Category of value expressions

W(A) A setof parameterized (process,
locality, value) process identifiers

x(X) A set of process variables
f Denotes both localities and locality
variables

F Indicates sequence of localities,
similar notations for other kinds of
sequences

{£] Set of localities

e [6/x] Substitution of value expression € for

the variable x in e
tvar Denotes variable where var is the
generic variable.

Processes P = nil | aP | P1j P2 |
P1+P2 | X| A (P, ¢, ¢)
Actions a u= out(r)@f ] in(1)@¢ |

read(1)@¢ | eval(P)@¢ | newloc(u)
Tuples tz=e |P| €| x| X | lu | t,t
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Process (P) Meaning Action Meaning
Nil Null Process out(t)@¢ Place the tuple t in the TS located
atf
a.P Action Prefixing in(t)@¢ Remove the tuple t from the TS
located at ¢
P1|P2 Parallel read(t) @¢ Read the tuple t from the TS
Composition located at ¢
P1+P2 Choice Operation eval(P)@¢ Generate a new process in the TS
X Process variable located ¢ (modification from
Linda that permits mobile agent
to be programmed)
AP, £ e) Process invocation  newloc(u) Create a “fresh” site that can be
accessed via locality variable u
Syntax for Klaim Nets
KLAIM net is a set of nodes in the network.
Symbols that are used for KLAIM nets:
Symbol Meaning Symbol Meaning
S is a site ) the empty environment
p Allocation environment [s/€] the environment that maps the locality € to the
site s.
P Process N Net N consist of a KLAIM node [triple (s, P, p)]
£ the set of environments N, " N, Net composition which is defined only if

Niu=s:,P | N || N;

3.2 Visibility control of sites

The allocation environment p [14] control
visibility of site when processes at one site want
to access any other site of the network. For
example a site 5' is visible at the node (s, P, p)

only if s” belongs to the image of p.

3.3 Operation to Stratify environment
If py.p; € & then py. p; is the environment by:

_(p1(€) if p(£) is defined
PLpa(f) = { pa(f) otherwise

St(N) N st(N,)=¢

3.4 Well formed Net

KLAIM considers only well formed nets. A net
N is well-formed if whenever s :: p P is a node of
N then p(self) = s and the image of p is included
in st(N) [st is a function that returns sites of N].

3.5 Operational Semantic of KLAIM
The operational semantics of KLAIM is written
in the SOS style [15] which follows two steps

® Processes as local rules (Symbolic

Semantics)

e Nets as Global rules (Net Semantics)
3.5.1 Symbolic Semantics
Evaluation of KLAIM processes without
providing the actual allocation of processes and
tuple spaces is called Symbolic Semantic in
Labeled Transition System. The structural rules
of symbolic semantics are given below:
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out(t)@, P ‘(';@" P
m(t)@fP ile}@t P
)

p nul@self P

e

newloc(1).
pEp
B
2P
B+Q 7
px p
-7
ple5 P IQ
PEp
T - .
Pia}; P {p}
- )
The transition P.:;.‘ P describes the evolution to

P of the process P.

The label of the transition {u, p) provides an
abstract description of the activities performed in
the evolution. For instance, p = s(t)@¢ describes
the output (sending) of tuple t in the tuple space
specified by (. Similarly, p = n(u)@self can be
thought of as the request for binding a fresh site
to the variable u.

The environment p records the local bindings
that must be taken into account to evaluate p.

3.5.2 Net Semantics

Net semantics of KLLAIM coordination language
is defined by a structural congruence which
incorporates the basic semantics of net parallel
compositions and a reduction rules that describes
the basic computation paradigm of interactions
among processes inside a net. Operational
semantics of Klaim nets exploits:

Evaluation Mechanism for Tuples

The evaluation function for tuples, 71 I,
exploits the allocation environment to resolve
locality names and relies on an evaluation
mechanism,ET T, for closed expressions.

Tlelp = <¢le] Thrlp= 1x
TiPip = P{p} Thxlp= X
Tielp = plé} Thulp= 1u

TEf;:E:ﬁP = T{[t1EP,T
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eval(Q)@f.p **2'® p
°
read(t)@f. P ’f_:@_{ P

PX P
4

QP >

I
F-4

——a
QP
o0l

PIB/X ¥/i1, 8)7] m;: P

— : A(Xu%)= p
AlPLée)g r
’
Pattern Matching

Pattern matching rules is to select tuples in a
tuple space. The Matching rules are given below:

match(u, v) match(P,P)  matchis.s]
match(!x,v) match (! X, P) marchilu,s)
match(et , et;) matchiet,, et,] match(ers, et,)
match(et,,et;)  match({ets et,) (et;, et,))

Klaim syntax is extended with the process
out(et) whose symbolic semantics is expressed
by the following structural rule:

out(et)** =V nip
&

Where et is evaluated tuple.

The Reduction Rules of Nets

Rule 1: Adds a new tuple to the local tuple space
of the process
P sieti@t P’

. s=p -p(€) et=Thtl,,
?
5, P —s i, P Ia‘ut(et)

Rule 2: Add a new tuple to the remote tuple
space located at p2. The evaluation of the tuple t
depends on the allocation environment p e pl.
This corresponds to having a static scoping
discipline for the remote generation of tuples.

p sty @¢ P 5=p 'pl({) et = Tlitip—p:

e T |

Syt Pullsyss, Pymrsyn, B ilsy e, Py Jout(et)
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Rule 3, Rule 4: Describes A dynamic scoping
strategy is adopted for the eval operation. The
process spawned in the remote node is
transmitted ~ without the local allocation
P2 2P s=p' - p(e)
o
3 ::"P — & iz, QP

Pz——'ﬂqu P s;=p 0 (6)

Sp3, Pyl sy2p, Pomrosy iy P || sy, QIP

environment, and its execution is influenced by
the remote allocation environment p2.

Rule 5, 6, 7 and 8: For the communication operations we have: in and read operations. in modifies
the tuple space which focused on Rule 5 and Rule 6 but read does not (Rule 7 and Rule 8). Rule 5 and
Rule 7 are Local rules while Rule 6 and Rule 8 are Remote rules.

', .
P e b,
P

s=p - p(¢)

olet) @self p°
P, - P, match(Tlt], ,, et)

s, P[Py 51, PI‘{Etf‘T[[t]n’-p]IPZ.

P, iz} @& Pl S;=ppy €3 P, o{-ti@sezf
9

match(T{t], , ,et)

PP’

sy, Py Il s, o Py» 5y, Py [et/:f'[t]p.m] I sy 2, P,

pl o) @f pl'

P

s=p-p(f) P, ’r_:_(.r} @solf sz match(?[t}p'.p, et)
)

< ::p PJ,‘ ‘PZ - 5 ::D PIY[et/T[[tﬁp{p]IPZ

’.D1 i(ti@l P1 '

s;=p-p () P, ‘““l el P, match(TIH, ., et)

et

53 Ty, 2l s, S Flg vy “ps Fa [Ep_] Il s P P2
4

Rule 9: It describes the asynchronous evolution
of subcomponents of a node.

L P1>—;s ::ﬂP1

§ i, Pll P, s H, Pllle

Rule 10: It creates a new node where the
environment of a new node is obtained from that
of the creating one and inherits all the knowledge
about localities of the creating node.
priessp Jeoisas
£
5 ::p Prs ::p I [5'/‘“] ﬂ 5 ::{sv,/sslf]-p ﬂ-ii

4. Main Results

KLAIM offers the distinguishing features that
allow explicit use of localities for accessing data
or computational resources. It also provides a
simple type system to control access rights.
Concerning to the security issue Klaim process
and coordinators are extended with a simple type
system that can be used to enforce security
properties.

The. implementation of XKLAIM program and
the use of KLAVA java package allows
programmer to build programs for mobile
application.
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4.1 Typing and Security

KLAIM program provides typing analysis by

two phases:

e Deducing process intention (read, write,
execute.. etc)

~ This is done by an inference system which
assigns types to processes, and also,
partially, checks whether these behave in
accordance with their declared intensions.

e Checking necessary access right to perform
intended operations.
It does not violate the access rights as
granted by the net coordinator.

A type is a finite map that assigns pairs

consisting of polarities and types to both

localities and locality variables. The first

component of the pair associated with ¢

describes the polarity of £, while the second

describes the types of the processes executed at

L.

KLAIM types, ranged over by &, are elements of

a universe which is defined by the following

domain equation

a= Fin{{LocuVLoc)» (] X a)),

The formal syntax of typed nets, whose role is to

allocate and coordinate processes, and to assign

access rights

Pu=nil] ol | BIP. | A +P, |X APEE)

o= outl )@ | in{t}@¢ | read{)@F  eralP)@F | newloc(u:d)
tuse | P& x| 1X:6 | b ftuh

4.1.2 Deriving Processes Types

e Type contexts I" are functions mapping
process variables and identifiers into types.

e The auxiliary function update, defined
structurally over tuples syntax, will be used
to update type contexts.

o A statement such as I'}- P : § asserts that the
capabilities of P are those in 8, within the
context I,

Typing Rules:
e The typing rule of the out operation states
that the type of out(t)@£.P (possibility)

extends that of P at £ with capability o.
TreP:6

[+ out(@L.P : 5[8'(£) = &' (£) u{0}]
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e The typing rules for read and in update the
context with the types of the process
variables they bind. The second half of their
premises checks whether process P does not
misuse the locality variables bound by read
and in.

update T+ P:§ 6, 84uforall(lu:6,) € fields(t)
[+ read(t)@4.P: 8[8"() = 6* (U )

update T F P:6 6, %8 Luforall(lu:6,) € fields(t)
TFin(t)@d.p: 8[6'(6):=8'()u i

e The typing rule of eval extends the type of P
at £ with e and records that the remote
operations of P have to be extended with
those (6’ ) of the spawned process Q.

TRP:E THQ:4

I eval(Q)@4.P : 8[5(4) = 8 () U EIIIE (A N &) /E ()]

e The typing rule for newloc extends the type
of P at self with n and at u with the type &
declared for u, while it checks whether the
operations that P is willing to perform at u
(8%(u)) comply with 6.

TPp:s §'g8lu
[+ newloc( u:8').P : 8[8%(self) = 62 (self) v {n}][8' /6*(u)]

e The typing rules for parallel composition and
choice state that the intentions of the
composed processes are in both cases the
union, formally the greatest lower bound, of
those of the components. The binding
context is left unchanged.

[ ]
[+P:6, r+Q:.4,
TFP+Q:6,N 6,

rl—P:61 r}'P'az
T+ PIQ:6,1 6,

s The typing rule for process definition, first
updates the type context with the types of the
process variables that occur as parameters of
A and with a candidate type § for A.

P/R|[b/A] - P8 8, < 8%(u,) for all u € (i)
-
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¢ The typing rule for process invocation, first
determines the type of the process identifier
and those of the process arguments.

'+ A6 T+ P:6, and by <8, for all P, € {P}
TrA(RLE): 68 1)
Typing for KLAIM Nets:

Well-typed required that the types of processes
in the net agree with the access rights of the sites
where they are located. Given a net N:(A, Y),
the type 8s of each site s € st{IV) is obtained as:
v¢ € (dom(ps) U dom(y(s))):

W6 (D) Sy i 1€ domlp)
ROE i 0.e,n)8,)  if £ €dom(Y(s))n NVioc
Loen)l) L€ dom(Y(s)) N TVloc

Notice that, for any site s, 8, is well-defined
since, by definition of net, if if € € dom{p,)

then A(s) (p,(!)) is a polarity.

5. Applications and Implementations

KLAIM is used to program Mobile Code
Applications (MCAs). It is focused on
distributed application programming paradigm
which is based on client-server architecture.
KLAIM provides powerful programming
constructs to implement three main properties for
building MCAs:

Remote Evaluation

e Any component of a distributed application
can invoke services from other components
by transmitting both the data needed to
perform the service and the code that
describes how to perform the service.

e Example: Assume that a server located at
location € executes (evaluates) code P where
the values vi........ v, must be assigned to
variables X; X,. The instruction is:

out(in(! yy, ..., v, )@L Ay, ...,y ))@F
where we assume that
A(xy .oenux,) & Pand the server
performs
in(!x, . ..,!x,)@selft.out (x,,.... x,)@self.X

Mobile Agents

e A process (i.e. a program and an associated
state of execution) on a given node of a
network can migrate to a different node
where it continues its execution from the
current state.

¢ Example: we want to execute process P at a
(perhaps remote) location ¢, the paradigm
MA can be implemented by means of

The instruction eval(P)@¢, if a dynamic

scoping discipline for resolving location names

is adopted,

The sequence

newloc(!u).out(P)@u.in(!X) @u.eval(X)@¢,

otherwise

Code on-demand

e Finally if we want to download a program
code P stored in a tuple with one field only
(which contains P) from a (perhaps remote)
location 1, the COD paradigm is simply
programmed by means of an instruction of
the form read(!X)@<{.

5.1 Applications of KLAIM

Based on the kemnel language KLAIM an

experimental programming language has been

developed that uses java package called

KLAVA.

e X-KLAIM extends KLAIM with a high level
syntax for processes; it provides variable
declaration, enriched operations,
assignments, conditionals, sequential and
iterative process composition and object-
oriented features based on inheritance

e KLAVA provides the run-time system for X-
KLAIM operations, and a complier translates
X-KLAIM programs into java programs that
use KLAVA.

Package
X-Klami Java Byte
Program Progral code
X- Java i
KLAIM Complier » VM
Complier
UEEEE—
Java
Program

Fig. 1: Framework for KLAIM

Some example applications
mobility in X-KLAIM are:

dealing  with
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¢ Remote Procedure Call

— A sender process sends a request to the
receiver and waits for a response which is
implemented by KLAIM

¢ Dynamic Newsgatherer

— At first it read a tuple from desired
information. If the agent finds desired tuple
it sends it back to its owner otherwise it
migrate to next site '

¢ An Electronic Marketplace

~  For buying a specific product at a market of
geographically distributed shops, at first
decide at which shop to buy ones activate a

migrating agent is programmed to find and -

return the home of the closest shop with the
lowest price.
Several researches have been done on KLAIM.
For example

e To impose the object oriented features the
KLAIM language extended as O-KLAIM

e Use of temporal logic for KLAIM
programs introduces the u-KLAIM

e An extension of the language KLAIM has
shown as an infrastructure language for
open nets which can be used as a guide for
actual distributed implementation of mobile
systems

e A Stochastic extension of KLAIM which
permits the description of random
phenomena such as spontaneous of
computer crashes.

e The KLAIM also extended with the
probabilistic feature which focused on
probability of network update. Probability
is introduced in both the process and
network level. The Probabilistic version of
KLAIM is called p-KLAIM.

e David Jonathan Scott has defined (in the
notion of ubiquitous computing) Mobility
Restriction Policy Language (MRPL)
which shows some similarity with KLAIM.
Both KILAIM and the MRPL attempt to
control access to localised resources and to
prevent some process migrations (in
KLAIM a migration would be blocked if
the process had insufficient access to the
intended migration target whereas here
migrations would be blocked if found to
violate MRPL policies). However KLAIM
and the system proposed here have a
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number of philosophical differences. The
KLAIM system analyses a fixed network of
sites up-front in a compile-time type-
checking phase whereas we take a more
dynamic approach, enforcing policies at
run-time. Rather than only consider
networks of sites, MRPL policies are
written also in terms of physical spaces and
can react to the physical movements of
people and computers.
KLAIM is developed in the notion of designing
the model computation for Global computing
environment. Network aware programming and
security issue are the two main points of global
computing. Research is going on these two
issues.

6. Conclusions

From the notion of ubiquitous computing mobile
application is not limited to only network and
sites. The world is approaching towards the
internet scale based ubiquitous computing
through which the user gets an opportunity to
interact with appliances from anywhere. A
variety of network capable computing devices
need a model of computations for seamless
communication and we are interested to do
research on this vision. Klaim provides a basic
step for doing so.
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