DSpace Repository

A Multiwall Path-Loss Prediction Model Using 433 MHz LoRa-WAN Frequency to Characterize Foliage’s Influence in a Malaysian Palm Oil Plantation Environment

Show simple item record

dc.contributor.author Anzum, Rabeya
dc.contributor.author Habaebi, Mohamed Hadi
dc.contributor.author Islam, Md Rafiqul
dc.contributor.author Hakim, Galang P. N.
dc.contributor.author Khandaker, Mayeen Uddin
dc.contributor.author Osman, Hamid
dc.contributor.author Alamri, Sultan
dc.contributor.author AbdElrahim, Elrashed
dc.date.accessioned 2024-02-11T09:36:46Z
dc.date.available 2024-02-11T09:36:46Z
dc.date.issued 2022-07-20
dc.identifier.issn 1424-8220
dc.identifier.uri http://dspace.daffodilvarsity.edu.bd:8080/handle/123456789/11390
dc.description.abstract Palm oil is the main cash crop of tropical Asia, and the implementation of LPWAN (low- power wide-area network) technologies for smart agriculture applications in palm oil plantations will benefit the palm oil industry in terms of making more revenue. This research attempts to characterize the LoRa 433 MHz frequency channels for the available spreading factors (SF7-SF12) and bandwidths (125 kHz, 250 kHz, and 500 kHz) for wireless sensor networks. The LoRa channel modeling in terms of path-loss calculation uses empirical measurements of RSS (received signal strength) in a palm oil plantation located in Selangor, Malaysia. In this research, about 1500 LoS (line-of-sight) and 300 NLoS (non-line-of-sight) propagation measurement data are collected for path-loss prediction modeling. Using the empirical data, a prediction model is constructed. The path-loss exponent for LoS propagation of the proposed prediction model is found to be 2.34 and 2.9 for 125–250 kHz bandwidth and 500 kHz bandwidth, respectively. Again, for the NLoS propagation links, the attenuation per trunk is found to be 7.58 dB, 7.04 dB, 5.35 dB, 5.02 dB, 5.01 dB, and 5 dB for SF7-SF12, and the attenuation per canopy is found to be 9.32 dB, 7.96 dB, 6.2 dB, 5.89 dB, 5.79 dB, and 5.45 dB for SF7-SF12. Moreover, the prediction model is found to be the better choice (mean RMSE 2.74 dB) in comparison to the empirical foliage loss models (Weissberger’s and ITU-R) to predict the path loss in palm oil plantations. en_US
dc.language.iso en_US en_US
dc.publisher Daffodil International University en_US
dc.subject Palm Oil en_US
dc.subject Agricultural country en_US
dc.subject Palm oil industry en_US
dc.title A Multiwall Path-Loss Prediction Model Using 433 MHz LoRa-WAN Frequency to Characterize Foliage’s Influence in a Malaysian Palm Oil Plantation Environment en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics