DSpace Repository

Computational Studies of the Excitonic and Optical Properties of Armchair SWCNT and SWBNNT for Optoelectronics Applications

Show simple item record

dc.contributor.author Itas, Yahaya Saadu
dc.contributor.author Suleiman, Abdussalam Balarabe
dc.contributor.author Ndikilar, Chifu E.
dc.contributor.author Lawal, Abdullahi
dc.contributor.author Razali, Razif
dc.contributor.author Idowu, Ismail Ibrahim
dc.contributor.author Khandaker, Mayeen Uddin
dc.contributor.author Ahmad, Pervaiz
dc.contributor.author Tamam, Nissren
dc.contributor.author Sulieman, Abdelmoneim
dc.contributor.author Faruque, Mohammad Rashed Iqbal
dc.date.accessioned 2024-02-18T04:49:53Z
dc.date.available 2024-02-18T04:49:53Z
dc.date.issued 2022-06-20
dc.identifier.uri http://dspace.daffodilvarsity.edu.bd:8080/handle/123456789/11454
dc.description.abstract In this study, the optical refractive constants of the (5, 5) SWBNNT and (5, 5) SWCNT systems were calculated in both parallel and perpendicular directions of the tube axis by using Quantum ESPRESSO and YAMBO code. It also extended the optical behaviors of (5, 5) SWCNT and (5, 5) SWBNNT to both perpendicular and parallel directions instead of the parallel directions reported in the literature. It also looked at the effects of the diameter of the nanotube on the optical properties instead of chiral angles. From our results, the best optical reflection was found for (5, 5) SWBNNT, while the best optical refraction was found with (5, 5) SWCNT. It was observed that the SWCNT demonstrates refraction in both parallel and perpendicular directions, while (5, 5) SWBNNT shows perfect absorption in perpendicular direction. These new features that appeared for both nanotubes in perpendicular directions were due to new optical band gaps, which appear in the perpendicular directions to both nanotubes’ axis. The electron energy loss (EEL) spectrum of SWBNNT revealed the prominent π- and π + δ- Plasmon peaks, which demonstrates themselves in the reflectivity spectrum. Furthermore, little effect of diameter was observed for the perpendicular direction to both nanotubes’ axis; as such, the combined properties of (5, 5) SWBNNT and (5, 5) SWCNT materials/systems for transmitting light offer great potential for applications in mobile phone touch screens and mobile network antennas. In addition, the studies of optical properties in the perpendicular axis will help bring ultra-small nanotubes such as SWCNT and SWBNNT to the applications of next-generation nanotechnology. en_US
dc.language.iso en_US en_US
dc.publisher Daffodil International University en_US
dc.subject Optical properties en_US
dc.title Computational Studies of the Excitonic and Optical Properties of Armchair SWCNT and SWBNNT for Optoelectronics Applications en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics