dc.description.abstract |
We aim to explore the seasonal influences of meteorological factors on COVID-19 era over two distinct locations in Bangladesh using a generalized linear model (GLM) and wavelet analysis. GLM model findings show that summer humidity drives COVID-19 transmission to coastal and inland locations. During the summer in the coastal area, a 1 °C earth’s skin temperature increase causes a 41.9% increase in COVID (95% CL 86.32%-2.54%) transmission compared to inland. Relative humidity was recorded as the highest at 73.97% (95% CL, 99.3%, and 48.63%) for the coastal region, while wind speed and precipitation reduced confirmed cases by −38.62% and −22.15%, respectively. Wavelet analysis showed that coastal meteorological parameters were more coherent with COVID-19 than inland ones. The outcomes of this study are consistent with subtropical climate regions. Seasonality and climatic similarity should address to estimate COVID-19 trends. High societal concern and strong public health measures may decrease meteorological effect on COVID-19. |
en_US |