DSpace Repository

Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications

Show simple item record

dc.contributor.author Chowdhury, Md Zikrul Bari
dc.contributor.author Islam, Mohammad Tariqul
dc.contributor.author Hoque, Ahasanul
dc.contributor.author Alshammari, Ahmed S.
dc.contributor.author Alzamil, Ahmed
dc.contributor.author Alsaif, Haitham
dc.contributor.author Alshammari, Badr M.
dc.contributor.author Hossain, Ismail
dc.contributor.author Samsuzzaman, Md
dc.date.accessioned 2023-03-13T06:20:15Z
dc.date.available 2023-03-13T06:20:15Z
dc.date.issued 22-11-29
dc.identifier.uri http://dspace.daffodilvarsity.edu.bd:8080/handle/123456789/9879
dc.description.abstract Researchers are trying to work out how to make a broadband response metamaterial absorber (MMA). Electromagnetic (EM) waves that can pass through the atmosphere and reach the ground are most commonly used in the visible frequency range. In addition, they are used to detect faults, inspect tapped live-powered components, electrical failures, and thermal leaking hot spots. This research provides a numerical analysis of a compact split ring resonator (SRR) and circular ring resonator (CRR) based metamaterial absorber (MMA) using a three-layer substrate material configuration for wideband visible optical wavelength applications. The proposed metamaterial absorber has an overall unit cell size of 800 nm × 800 nm × 175 nm in both TE and TM mode simulations and it achieved above 80% absorbance in the visible spectrums from 450 nm to 650 nm wavelength. The proposed MA performed a maximum absorptivity of 99.99% at 557 nm. In addition, the steady absorption property has a broad range of oblique incidence angle stability. The polarization conversion ratio (PCR) is evaluated to ensure that the MMA is perfect. Both TM and TE modes can observe polarization insensitivity and wide-angle incidence angle stability with 18° bending effects. Moreover, a structural study using electric and magnetic fields was carried out to better understand the MMA’s absorption properties. The observable novelty of the proposed metamaterial is compact in size compared with reference paper, and it achieves an average absorbance of 91.82% for visible optical wavelength. The proposed MMA also has bendable properties. The proposed MMA validation has been done by two numerical simulation software. The MMA has diverse applications, such as color image, wide-angle stability, substantial absorption, absolute invisible layers, thermal imaging, and magnetic resonance imaging (MRI) applications. en_US
dc.language.iso en_US en_US
dc.publisher Scopus en_US
dc.subject metamaterial absorber en_US
dc.subject bendable en_US
dc.subject oblique incident stable en_US
dc.subject visible optical wavelength en_US
dc.subject polarization insensitive en_US
dc.title Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics