DSpace Repository

Finite element computational procedure for convective flow of nanofluids in an annulus

Show simple item record

dc.contributor.author Uddin, M.J.
dc.contributor.author Rahman, M.M.
dc.date.accessioned 2019-05-14T08:53:06Z
dc.date.accessioned 2019-05-27T09:57:08Z
dc.date.available 2019-05-14T08:53:06Z
dc.date.available 2019-05-27T09:57:08Z
dc.date.issued 2018-04-22
dc.identifier.issn 2451-9049
dc.identifier.uri http://hdl.handle.net/20.500.11948/3569
dc.description.abstract In the present study, the detailed procedures of Galerkin weighted residual technique of finite element method (FEM) for solving two-dimensional incompressible natural convective flow of nanofluids using nonhomogeneous dynamic model are discussed for the first time. The physical domain is discretized by using unstructured triangular elements. The governing partial differential equations of nanofluids are made dimensionless using the suitable transformation of variables for weak formulations. The method of weighted residuals is used for obtaining the approximate solutions. This approach typically leads to a sparse and indefinite matrix that is difficult to solve efficiently. The formation of an indefinite matrix is avoided in the present work by introducing an artificial compressibility term in the continuity equation. Unequal order interpolation functions are used for pressure, velocity, temperature and concentration variables. The coefficient matrices are calculated using interpolation functions. Assembling of triangular elements in the discretized domain is discussed elaborately. The process of calculating boundary integrals is also discussed. The Newton-Raphson iteration technique along with Euler-backward scheme is used to solve the global matrix. The sample results are obtained for the convective flow of nanofluids in a concentric annulus. It shows that the annulus of having higher thickness is the best performer enhancing convective heat transfer rates. en_US
dc.language.iso en_US en_US
dc.publisher Elsevier Ltd. en_US
dc.subject Dynamic nanofluid model en_US
dc.subject Finite element method en_US
dc.subject Artificial compressibility en_US
dc.subject Shape function en_US
dc.subject Annulus en_US
dc.title Finite element computational procedure for convective flow of nanofluids in an annulus en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics